基于新型碳材料和室温离子液体的电化学传感研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学传感器因其构造简单,成本低廉,灵敏度高,选择性、稳定性和重现性好等优点,在化学传感领域得到十分广泛的应用。电极上的修饰材料与电化学传感器的性能具有密切联系,因此寻求适当的电极修饰材料以提高电化学传感器的性能一直是人们研究的主要方向之一。各种新型微/纳米碳材料(如活性碳、碳纳米管、硼氮掺杂碳、石墨烯等)因其良好的导电性、微观形貌可控及易功能化等物理化学特性,在电化学传感中得到广泛应用。另一方面,室温离子液体(RTILs)因为其良好的离子导电性能,极低的蒸汽压,宽的电化学窗口等特点,可以同时做为非水溶剂和电解质,在电化学传感研究领域具有广阔的应用前景。本论文基于新型碳材料和室温离子液体开展了一系列关于电化学传感器的研究工作,具体如下:
     (1)制备聚合型离子液体包裹的碳纳米管(PIL-CNTs)并应用于氧化还原型蛋白酶的固定、直接电化学和生物传感研究。通过透射电子显微镜(TEM)、热重分析(TGA)和傅里叶变换红外光谱(FT-IR)考察了PIL-CNTs的表面形貌及PIL的质量百分含量。相对于未修饰的CNTs,PIL-CNTs在水中具有更好的分散性以及表现出对O2和H2O2更优异的电催化氧化还原性能。另外将葡萄糖氧化酶(GOD)固定在PIL-CNTs修饰的玻碳电极(GC)电极上,GOD分子呈现出优异的直接电化学行为。同时,该电极(GOD/PIL-CNTs/GCE)对葡萄糖检测具有良好的电化学传感性能:宽线性范围(可达6mM),高灵敏度(0.853μA mM-1)以及优良的稳定性和选择性。
     (2)利用CNTs和高锰酸钾之间的直接氧化还原反应,制备了一维毛虫状的二氧化锰-碳纳米复合材料(MnO2-C)。所制备的MnO2-C纳米复合材料主要由-MnO2纳米片组成,具有独特的微观结构,高比表面积(200m2/g)以及优良的导电性能。通过壳聚糖水凝胶电化学共沉积法制得MnO2-C复合材料修饰玻碳(MnO2-C/chit/GC)电极。该电极对L-半胱氨酸电化学氧化具有良好的特异性催化作用。同时,采用安培法研究了(MnO2-C/chit/GC)电极对L-半胱氨酸的电化学传感性能,在优化的实验条件下,响应快(7秒以内),线性范围宽(0.5-680μM),检测限低(22nM),稳定性高(在一个月之后响应信号仍然没有任何衰减),并且抗干扰能力强(对谷胱甘肽和其他可氧化氨基酸包括色氨酸,酪氨酸,L-赖氨酸和甲硫氨酸等的响应几乎可以忽略)。
     (3)采用模板法成功制备新型氮掺杂碳空心微球(HNCMs),并且研究HNCMs修饰玻碳(HNCMs/GC)电极对尿酸(UA)、抗坏血酸(AA)和多巴胺(DA)三种有机小分子同时检测的传感性能。与裸GC和CNTs修饰GC(CNTs/GC)电极相比,HNCMs/GC电极对UA、AA和DA具有更高的催化氧化活性。而且HNCMs/GC电极上AA和DA、DA和UA的氧化峰电位差分别增至212mV和136mV,优于CNTs/GC电极上的峰电位差(168和114mV)。在UA、AA和DA共存体系中,UA、AA和DA的检测线性范围分别为5-30μM,100-1000μM和3-75μM,检测限(S/N=3)分别为0.04μM,0.91μM和0.02μM。此外,HNCMs/GC电极被证实可以检测人体尿液中的尿酸,并能有效检测超出正常浓度范围的AA或DA。为实际样品中UA、AA和DA的同时检测提供了一种潜在的应用材料。
     (4)首先采用高温裂解多巴胺聚合物法制备氮掺杂碳层修饰碳纳米管纳米复合材料(CNX-CNTs),并在该材料表面固载高分散、窄粒径分布的铂纳米颗粒(PtNPs)得到纳米复合材料Pt/CNX-CNTs,并研究了其在安培型葡萄糖酶传感器中的应用。分别采用透射电子显微镜(TEM)、循环伏安法(CV)和计时电流法(i-t)对该复合物的形貌特性及其电化学性质进行了表征。结果表明,碳纳米管表面被修饰了一层厚度约为9nm CNX层,并且在CNX-CNTs表面均匀地分散粒径为1.7±0.5nm的PtNPs。相比于未经处理的CNTs表面固载铂纳米颗粒的复合物(Pt/CNTs),Pt/CNX-CNTs对过氧化氢的电化学氧化具有更优的催化活性。以Pt/CNX-CNTs为电极材料构建的葡萄糖酶生物传感器具有在不同pH条件下稳定、灵敏度高(66.51μA mM-1cm-2)、检测限低(0.4μM)、线性范围宽(0.01-6mM)和稳定性高的特点。
     (5)研究三硝基甲苯(TNT)和二硝基甲苯(DNT)在室温离子液体(RTILs)中的氧化还原动力学过程,并分别从以下几个因素进行评估:(1) RTILs阴阳离子结构的影响;(2) RTILs物理参数(如粘度、电导率、溶剂化作用等)的影响;(3)环境(温度和湿度)的影响。考察了TNT和DNT在RTILs电极体系中的电化学传感性能。对TNT和DNT的检测限分别达到190和230nM,线性范围可达100μM。此外,将TNT和DNT及其混合物(1:1)的电化学响应数据进行线性判别分析(LDA),三种物质的分类精度达到100%。同时该体系在TNT和DNT浓度分别为0.27ppm (1.2nM)和2.05ppm (11.3nM)的气相中,也显示出较强的电化学响应,表明RTILs在气相传感器中可以作为理想的气体预富集材料从而提高灵敏度,并因其理化性质多样的特点,有望应用于电化学传感从而提高其响应灵敏度和选择性。
     (6)本章以石英晶体金电极作为工作电极,以离子液体为非水电解质溶液,采用实时的EQCM联用技术研究了离子液体中的氧气电化学还原过程,分析还原过程中产生QCM响应的原因,并研究离子液体的理化性质对EQCM响应的影响。EQCM的结果提供了其它方法不能提供的电化学过程中的动态信息,有利于研究循环伏安扫描及氧气还原对离子液体/电极界面变化的作用。并在该电极体系中考察氧气的电化学传感性能,结果表明,该体系对氧气的传感性能受阴阳离子结构的影响,对氧气电化学传感的检测限最低可达0.05vol.%,电化学响应与0%和20%之间的氧气浓度呈线性关系。电极体系在超过60天过后依然保留原有响应的98%,显示出该传感电极优越的实际操作性能。
The electrochemical method has wide applications because of its easy preparation,low cost, high sensitivity, excellent selectivity, stability and reproducibility. Since thecharacteristics of the electrochemical biosensors greatly rely on the materials modifiedon the electrodes, in order to improve the performance of the biosensor, developingsuitable electrode materials is one of the most interesting projects. Novel carbonmaterials (such as active carbon, carbon nanotubes, B/N doped carbon, graphene et al.),due to unique physiochemical properties including excellent conductivity,morphology-controllable synthesis and easy functionalization, have been widely usedin electrochemical biosensor. On the other hand, room temperature ionic liquids(RTILs) can be used for both of solvent and electrolyte due to its intrinsic ionicconductivity, extremly low vapor potential, wide electrochemical window, which havebeen attracted wide consideration in electrochemical sensors. In this t hesis, a fewelectrochemical sensors based on carbon materials and RTILs have been developed, ofwhich the main points are summarized as follows:
     (1) Polymerized ionic liquid-wrapped carbon nanotubes (PIL-CNTs) were firstlydesigned for direct electrochemistry and biosensing of redox proteins. The CNTs werecoated successfully with polymerized ionic liquid (PIL) layer, as verified bytransmission electron microscopy (TEM), thermogravimetric analysis (TGA) andFourier transform infrared (FT-IR) spectroscopy. The PIL-CNTs were dispersed betterin water and showed superior electrocatalysis toward O2and H2O2comparing topristine CNTs and the mixture of IL monomer and CNTs. With glucose oxidase (GOD)as a protein model, the direct electrochemistry of the redox protein was investigated onthe PIL-CNTs modified glassy carbon (GC) electrode and excellent directelectrochemical performance of GOD molecules was observed. The proposedbiosensor (GOD/PIL-CNTs/GC electrode) displayed good analytical performance forglucose with linear response up to6mM, response sensitivity of0.853μA mM-1, goodstability and selectivity.
     (2) A novel one-dimensional (1-D) caterpillar-like manganese dioxide-carbon(MnO2-C) nanocomposite has been synthesized by a direct redox reaction betweencarbon nanotubes and permanganate ions for the first time. The as-preparednanostructured MnO2-C composite mainly consisting of-MnO2nanoflakes had a unique microstructure, high specific surface area (200m2/g) and favourableconductivity. The MnO2-C composite, added as a modification to the glassy carbon(GC) electrode via a direct electrochemical co-deposition process with a chitosanhydrogel, was found to exhibit excellent catalytic activity toward L-cysteineelectro-oxidation because the specific interaction between the-SH group of L-cysteineand solid MnO2occurred to form surface complexes. A determination of L-cysteine atthe MnO2-C/chitosan/GC electrode was carried out by amperometric measurement.Under the optimum experimental conditions, the detection response for L-cysteine wasfast (within7s). The logarithm of catalytic currents shows a good linear relationshipwith that of the L-cysteine concentration in the range of0.5-680mM, with a lowdetection limit of22nM. The MnO2–C/Chit/GC electrode exhibited excellent stability(without any decrease of the response signal after1month) and admirable resistanceagainst interference like glutathione and other oxidizable amino acids (tryptophan,tyrosine, L-lysine and methionine).
     (3) Hollow nitrogen-doped carbon microspheres (HNCMs) as a novel carbonmaterial have been prepared and the catalytic activities of HNCMs-modified glassycarbon (GC) electrode towards the electrooxidation of uric acid (UA), ascorbic acid(AA) and dopamine (DA) have also been investigated. Comparing with the bare GCand carbon nanotubes (CNTs) modified GC (CNTs/GC) electrodes, the HNCMsmodified GC (HNCMs/GC) electrode has higher catalytic activities towards theoxidation of UA, AA and DA. Moreover, the peak separations between AA and DA,and DA and UA at the HNCMs/GC electrode are up to212and136mV, respectively,which are superior to those at the CNTs/GC electrode (168and114mV). Thus thesimultaneous determination of UA, AA and DA was carried out successfully. In theco-existence system of UA, AA and DA, the linear response range for UA, AA and DAare5-30μM,100-1000μM and3-75μM, respectively and the detection limits (S/N=3)are0.04μM,0.91μM and0.02μM, respectively. Meanwhile, the HNCMs/GCelectrode can be applied to measure uric acid in human urine, and may be useful formeasuring abnormally high concentration of AA or DA. The attractive features ofHNCMSprovide potential applications in the simultaneous determination of UA, AAand DA.
     (4) CNTs wrapped with nitrogen-doped carbon (CNx) layer (CNx-CNTs) werepyrolyzed from Polydopamine-CNTs composite (PDA-CNTs). Using CNx-CNTs assupport, PtNPs with high dispersion and small particle size were successfully anchoredon CNT surface and as-prepared Pt/CNX-CNTs nanohybrids were fabricated in amperometirc enyzme sensor for glucose detection. The micrographs of Pt/CNX-CNTsnanohybrids were characterized by TEM. The result shows that the CNTs surface wasuniformly coated with a CNXlayer with a thickness of ca.9nm. Pt NPs with anaverage diameter of ca.1.7±0.5nm were highly dispersed on CNX-CNTs surface.Comparing Pt/CNTs, Pt/CNX-CNTs nanocomposite shows much better electrocatalyticactivity toward H2O2electrooxidation. Based on these results, we succeed inconstructing a glucose amperometric biosensor with admirable pH tolerant, highsensitivity (66.51μA mM-1cm-2), low detection limit (0.4μM) and excelent stability.
     (5) The full spectrum of properties associated with RTILs is exploited to assess theviability of this platform, thus revealing the correlation between the redox propertiesand the physiochemical parameters of the species involved. This includes theevaluation of (1) the variation of redox responses toward analytes with similarmolecular structures or functionalities of RTILs;(2) the influence in terms of physicalcriteria of the system such as viscosity and conductivity as well as chemical structureof RTILs;(3) the sustainability in harsh conditions (high temperature or humidity) andinterferences. The principle is exemplified via trinitrotoluene (TNT) and dinitrotoluene(DNT) with inherent redox activity as analytes and IL membranes as solvents andelectrolytes using glassy carbon (GC) electrodes. A discrete response pattern isgenerated that is analyzed through linear discriminant analysis (LDA) leading to100%classification accuracy even for the mixture of analytes. Quantitative analysis throughsquare wave voltammetry (SWV) gave rise to the detection limits in liquid phase of190and230nM for TNT and DNT, respectively, with a linear range up to100μM.Gas-phase analysis shows strong redox signals for the estimated concentrations of0.27(1.2nM) and2.05ppm (11.3nM) in the gas phase for TNT and DNT, respectively,highlighting that RTILs adopt a role as a preconcentrator to add on sensitivity withenhanced selectivity coming from their physiochemical diversity, thus addressing themajor concerns usually referred to most sensor systems.
     (6) A simple online electrochemical cell design, consisting of Au quartz crystalworking electrode and incorporating ionic liquids (RTILs) as electrolytes, has beensuccessfully applied for the amperometric sensing of oxygen. In addtion, the ionicliquid electrochemical system has also been investigated by the real time EQCMintergrated technique, which provides sensitive measure of interfacial dynamicprocesses that other techniques can not. The obtained analytical parameters were foundto be strongly dependent on the choice of cation and anion. A limit of detection foroxygen as low as0.05vol.%, linearity over an oxygen partial pressure between0%and 20%, with a stable practical analytical response shown over the examined period of60days with no obvious fouling of the electrode surface.
引文
[1] Clark L C, Lyons C. Electrode systems for continuous monitoring incardiovascular surgery. Annals of the New York Academy of Sciences. BlackwellPublishing Ltd.1962:29-45
    [2]陈长庆,胡明等.气敏传感器的发展.材料导报,2003,17(2):33-35
    [3]李平,余萍.气敏传感器的近期展望.功能材料,1999,30(2):126-128,132
    [4]徐毓龙.国外气敏传感器的发展动向.传感器世界,1996,2(1):21-28
    [5] Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354(6348):56-58
    [6] Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: Elasticity, strength,and toughness of nanorods and nanotubes. Science,1997,277(5334):1971-1975
    [7] Ebbesen T W, Lezec H J, Hiura H, et al. Electrical conductivity of individualcarbon nanotubes. Nature,1996,382(6586):54-56
    [8] Britto P J, Santhanam K S V, Rubio A, et al. Improved charge transfer at carbonnanotube electrodes. Advanced Materials,1999,11(2):154-157
    [9] Cheng H M, Li F, Sun X, et al. Bulk morphology and diameter distribution ofsingle-walled carbon nanotubes synthesized by catalytic decomposition ofhydrocarbons. Chemical Physics Letters,1998,289(5–6):602-610
    [10] Kong J, Cassell A M, Dai H. Chemical vapor deposition of methane forsingle-walled carbon nanotubes. Chemical Physics Letters,1998,292(4-6):567-574
    [11] Ebbesen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes. Nature,1992,358(6383):220-222
    [12] Guo T, Nikolaev P, Rinzler A G, et al. Self-assembly of tubular fullerenes. TheJournal of Physical Chemistry,1995,99(27):10694-10697
    [13] Li W Z, Xie S S, Qian L X, et al. Large-scale synthesis of aligned carbonnanotubes. Science,1996,274(5293):1701-1703
    [14] Lucisano J Y, Gough D A. Transient response of the two-dimensional glucosesensor. Analytical Chemistry,1988,60(13):1272-1281
    [15] Wang J, Lu F. Oxygen-rich oxidase enzyme electrodes for operation inoxygen-free solutions. Journal of the American Chemical Society,1998,120(5):1048-1050
    [16] Osborne P G, Niwa O, Yamamoto K. Plastic film carbon electrodes: Enzymaticmodification for on-line, continuous, and simultaneous measurement of lactateand glucose using microdialysis sampling. Analytical Chemistry,1998,70(9):1701-1706
    [17] Wang J, Liu J, Chen L, et al. Highly selective membrane-free, mediator-freeglucose biosensor. Analytical Chemistry,1994,66(21):3600-3603
    [18] Gough D A, Lucisano J Y, Tse P H S. Two-dimensional enzyme electrode sensorfor glucose. Analytical Chemistry,1985,57(12):2351-2357
    [19] Zhang Y, Hu Y, WRTILson G S, et al. Elimination of the acetaminopheninterference in an implantable glucose sensor. Analytical Chemistry,1994,66(7):1183-1188
    [20] Zhang Z, Liu H, Deng J. A glucose biosensor based on immobilization of glucoseoxidase in electropolymerized o-aminophenol film on platinized glassy carbonelectrode. Analytical Chemistry,1996,68(9):1632-1638
    [21] Degani Y, Heller A. Direct electrical communication between chemicallymodified enzymes and metal electrodes. I. Electron transfer from glucose oxidaseto metal electrodes via electron relays, bound covalently to the enzyme. TheJournal of Physical Chemistry,1987,91(6):1285-1289
    [22] Hasunuma T, Kuwabata S, Fukusaki E-I, et al. Real-time quantification ofmethanol in plants using a hybrid alcohol oxidase peroxidase biosensor.Analytical Chemistry,2004,76(5):1500-1506
    [23] Hsu C T, Chung H H, Tsai D M, et al. Fabrication of a glucose biosensor based oninserted barrel plating gold electrodes. Analytical Chemistry,2008,81(1):515-518
    [24] Huang X J, Li C C, Gu B, et al. Controlled molecularly mediated assembly o fgold nanooctahedra for a glucose biosensor. The Journal of Physical Chemistry C,2008,112(10):3605-3611
    [25] Marzouk S A M, Cosofret V V, Buck R P, et al. A conducting salt-basedamperometric biosensor for measurement of extracellular lactate accumulation i nischemic myocardium. Analytical Chemistry,1997,69(14):2646-2652
    [26] Rajagopalan R, Aoki A, Heller A. Effect of quaternization of the glucose oxidase“wiring” redox polymer on the maximum current densities of glucose electrodes.The Journal of Physical Chemistry,1996,100(9):3719-3727
    [27] Schmidtke D W, Heller A. Accuracy of the one-point in vivo calibration of“wired” glucose oxidase electrodes implanted in jugular veins of rats in periodsof rapid rise and decline of the glucose concentration. Analytical Ch emistry,1998,70(10):2149-2155
    [28] Wang B, Li B, Wang Z, et al. Sol-gel thin-film immobilized soybean peroxidasebiosensor for the amperometric determination of hydrogen peroxide in acidmedium. Analytical Chemistry,1999,71(10):1935-1939
    [29] Labra-Espina M, Male K B, Luong J H T. A flow injection (FI) biosensor systemfor pentachlorophenol (PCP) using a substrate recycling scheme. EnvironmentalScience&Technology,2000,34(15):3291-3295
    [30] Male K B, Hrapovic S, Santini J M, et al. Biosensor for arsenite using arseniteoxidase and multiwalled carbon nanotube modified electrodes. AnalyticalChemistry,2007,79(20):7831-7837
    [31] Palmisano F, Zambonin P G, Centonze D, et al. A disposable, reagentless,third-generation glucose biosensor based on overoxidized poly(pyrrole)/tetrathiafulvalene-tetracyanoquinodimethane composite. Analytical Chemistry,2002,74(23):5913-5918
    [32] Shan C, Yang H, Song J, et al. Direct electrochemistry of glucose oxidase andbiosensing for glucose based on graphene. Analytical Chemistry,2009,81(6):2378-2382
    [33] Wang Z, Liu S, Wu P, et al. Detection of glucose based on direct electron transferreaction of glucose oxidase immobilized on highly ordered polyaniline nanotubes.Analytical Chemistry,2009,81(4):1638-1645
    [34] Zhao M, Wu X, Cai C. Polyaniline nanofibers: Synthesis, characterization, andapplication to direct electron transfer of glucose oxidase. The Journal of PhysicalChemistry C,2009,113(12):4987-4996
    [35]褚晓晨.葡萄糖和超氧阴离子电化学传感器研究:[湖南大学硕士学位论文].长沙:湖南大学,2011,5
    [36] Zhao Y D, Bi Y H, Zhang W D, et al. The interface behavior of hemoglobin atcarbon nanotube and the detection for H2O2. Talanta,2005,65(2):489-494
    [37] Chen S, Yuan R, Chai Y, et al. Amperometric third-generation hydrogen peroxidebiosensor based on the immobilization of hemoglobin on multiwall carbonnanotubes and gold colloidal nanoparticles. Biosensors and Bioelectronics,2007,22(7):1268-1274
    [38] Liu A R, Qian D J, Wakayama T, et al. Monolayers, langmuir-blodgett films ofcarbon nanotubes-cytochrome c conjugates and electrochemistry. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2006,284-285(0):485-489
    [39] Chen H, Dong S. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in sol-gel-derived ceramic-carbon nanotube nanocomposite film. Biosensors and Bioelectronics,2007,22(8):1811-1815
    [40] Davis J J, Coles R J, Allen H, et al. Protein electrochemistry at carbon nanotubeelectrodes. Journal of Electroanalytical Chemistry,1997,440(1-2):279-282
    [41] Britto P J, Santhanam K S V, Ajayan P M. Carbon nanotube electrode foroxidation of dopamine. Bioelectrochemistry and Bioenergetics,1996,41(1):121-125
    [42] Wang J, Li M, Shi Z, et al. Direct electrochemistry of cytochrome c at a glassycarbon electrode modified with single-wall carbon nanotubes. AnalyticalChemistry,2002,74(9):1993-1997
    [43] Luo H, Shi Z, Li N, et al. Investigation of the electrochemical andelectrocatalytic behavior of single-wall carbon nanotube film on a glassy carbonelectrode. Analytical Chemistry,2001,73(5):915-920
    [44] Fei S D, Chen J H, Yao S Z, et al. Electrochemical behavior of L-cysteine and itsdetection at carbon nanotube electrode modified with platinum. AnalyticalBiochemistry,2005,339(1):29-35
    [45] Chen X, Yang Y, Ding M. Electrocatalytic oxidation and sensitive detection ofcysteine at layer-by-layer assembled carbon nanotube-modified electrode.Analytica Chimica Acta,2006,557(1-2):52-56
    [46] Gong K, Dong Y, Xiong S, et al. Novel electrochemical method for sensitivedetermination of homocysteine with carbon nanotube-based electrodes.Biosensors and Bioelectronics,2004,20(2):253-259
    [47] Xu J, Wang Y, Xian Y, et al. Preparation of multiwall carbon nanotubes filmmodified electrode and its application to simultaneous determination ofoxidizable amino acids in ion chromatography. Talanta,2003,60(6):1123-1130
    [48] Zhang M, Gorski W. Electrochemical sensing based on redox mediation at carbonnanotubes. Analytical Chemistry,2005,77(13):3960-3965
    [49] Zhang M, Gorski W. Electrochemical sensing platform based on the carbonnanotubes/redox mediators-biopolymer system. Journal of the AmericanChemical Society,2005,127(7):2058-2059
    [50] Antiochia R, Lavagnini I, Magno F. Electrocatalytic oxidation of nadh atsingle-wall carbon-nanotube-paste electrodes: Kinetic considerations for use of aredox mediator in solution and dissolved in the paste. Analytical andBioanalytical Chemistry,2005,381(7):1355-1361
    [51] Liu A, Watanabe T, Honma I, et al. Effect of solution pH and ionic strength on the stability of poly(acrylic acid)-encapsulated multiwalled carbon nanotubes aqueous dispersion and its application for nadh sensor. Biosensorsand Bioelectronics,2006,22(5):694-699
    [52] Zeng J, Gao X, Wei W, et al. Fabrication of carbon nanotubes/poly(1,2-diaminobenzene) nanoporous composite via multipulse chronoamperometric electropolymerization process and its electrocatalytic property toward oxidationof nadh. Sensors and Actuators B: Chemical,2007,120(2):595-602
    [53] Wang Q, Tang H, Xie Q, et al. Room-temperature ionic liquids/multi-walledcarbon nanotubes/chitosan composite electrode for electrochemical analysis ofnadh. Electrochimica Acta,2007,52(24):6630-6637
    [54] Tang H, Chen J, Nie L, et al. Electrochemical oxidation of glutathione atwell-aligned carbon nanotube array electrode. Electrochimica Acta,2006,51(15):3046-3051
    [55] Zhang R, Wang X, Chen C. Electrochemical biosensing platform using carbonnanotube activated glassy carbon electrode. Electroanalysis,2007,19(15):1623-1627
    [56] Sun D, Xie X, Cai Y, et al. Voltammetric determination of Cd2+based on thebifunctionality of single-walled carbon nanotubes–nafion film. AnalyticaChimica Acta,2007,581(1):27-31
    [57] Tsai Y C, Chen J M, Marken F. Simple cast-deposited multi-walled carbonnanotube/nafion thin film electrodes for electrochemical stripping analysis.Microchimica Acta,2005,150(3):269-276
    [58] Zhang H, Wu K. Sensitive adsorption stripping voltammetric determination ofreserpine by a glassy carbon electrode modified with multi-wall carbonnanotubes. Microchimica Acta,2005,149(1):73-78
    [59] Wu K, Wang H, Chen F, et al. Electrochemistry and voltammetry of procaineusing a carbon nanotube film coated electrode. Bioelectrochemistry,2006,68(2):144-149
    [60] Zhu Y H, Zhang Z L, Zhao W, et al. Voltammetric behavior and determination ofphenylephrine at a glassy carbon electrode modified with multi-wall carbonnanotubes. Sensors and Actuators B: Chemical,2006,119(1):308-314
    [61] Karthikeyan S, Balasubramanian R. Interlaboratory study to improve the qualityof trace element determinations in rainwater. Analytica Chimica Acta,2006,576(1):9-16
    [62] Zheng L, Song J. Voltammetric behavior of urapidil and its determination atmulti-wall carbon nanotube paste electrode. Talanta,2007,73(5):943-947
    [63] Chicharro M, Bermejo E, Moreno M, et al. Adsorptive stripping voltammetricdetermination of amitrole at a multi-wall carbon nanotubes paste electdrode.Electroanalysis,2005,17(5-6):476-482
    [64] He J B, Lin X Q, Pan J. Multi-wall carbon nanotube paste electrode foradsorptive stripping determination of quercetin: A comparison with graphite pasteelectrode via voltammetry and chronopotentiometry. Electroanalysis,2005,17(18):1681-1686
    [65] Xu G R, Kim S H. Selective determination of quercetin using carbonnanotube-modified electrodes. Electroanalysis,2006,18(18):1786-1792
    [66] Zeng B, Wei S, Xiao F, et al. Voltammetric behavior and determination of rutin ata single-walled carbon nanotubes modified gold electrode. Sensors and ActuatorsB: Chemical,2006,115(1):240-246
    [67] Li C. Voltammetric determination of2-chlorophenol using a glassy carbonelectrode coated with multi-wall carbon nanotube-dicetyl phosphate film.Microchimica Acta,2007,157(1):21-26
    [68] Profumo A, Fagnoni M, Merli D, et al. Multiwalled carbon nanotube chemicallymodified gold electrode for inorganic as speciation and bi(iii) determination.Analytical Chemistry,2006,78(12):4194-4199
    [69] Du H, Li B, Kang F, et al. Carbon aerogel supported Pt–Ru catalysts for using asthe anode of direct methanol fuel cells. Carbon,2007,45(2):429-435
    [70] Han S, Yun Y, Park K W, et al. Simple solid-phase synthesis of hollow graphiticnanoparticles and their application to direct methanol fuel cell electrodes.Advanced Materials,2003,15(22):1922-1925
    [71] Wang Y, Su F, Lee J Y, et al. Crystalline carbon hollow spheres, crystallinecarbon SnO2hollow spheres, and crystalline SnO2hollow spheres: Synthesisand performance in reversible li-ion storage. Chemistry of Materials,2006,18(5):1347-1353
    [72] Zhang F B, Li H L. Synthesis of hollow carbon microspheres in ionic liquids andtheir electrochemical capacitance characteristics. Materials Chemistry andPhysics,2006,98(2-3):456-458
    [73] Huang H, Remsen E E, Kowalewski T, et al. Nanocages derived from shellcross-linked micelle templates. Journal of the American Chemical Society,1999,121(15):3805-3806
    [74] Gill I, Ballesteros A. Encapsulation of biologicals within silicate, siloxane, andhybrid sol-gel polymers: An efficient and generic approach. Journal of theAmerican Chemical Society,1998,120(34):8587-8598
    [75] Tamai H, Sumi T, Yasuda H. Preparation and characteristics of fine hollowcarbon particles. Journal of Colloid and Interface Science,1996,177(2):325-328
    [76] Wu C, Zhu X, Ye L, et al. Necklace-like hollow carbon nanospheres from thepentagon-including reactants: Synthesis and electrochemical properties.Inorganic Chemistry,2006,45(21):8543-8550
    [77] Zhu G, Gai P, Yang Y, et al. Electrochemical sensor for naphthols based on goldnanoparticles/hollow nitrogen-doped carbon microsphere hybrids functionalizedwith sh-β-cyclodextrin. Analytica Chimica Acta,2012,723(0):33-38
    [78] Herring A M, Mckinnon J T, Mccloskey B D, et al. A novel method for thetemplated synthesis of homogeneous samples of hollow carbon nanospheres fromcellulose chars. Journal of the American Chemical Society,2003,125(33):9916-9917
    [79] Xia Y, Yang Z, Mokaya R. Mesostructured hollow spheres of graphitic n-dopedcarbon nanocast from spherical mesoporous silica. The Journal of PhysicalChemistry B,2004,108(50):19293-19298
    [80] Xia Y D, Mokaya R. Ordered mesoporous carbon hollow spheres nanocast usingmesoporous silica via chemical vapor deposition. Advanced Materials,2004,16(11):886-891
    [81] Yoon S B, Sohn K, Kim J Y, et al. Fabrication of carbon capsules with hollowmacroporous core/mesoporous shell structures. Advanced Materials,2002,14(1):19-21
    [82] Jang J W, Lee C E, Lyu S C, et al. Structural study of nitrogen-doping effects inbamboo-shaped multiwalled carbon nanotubes. Applied Physics Letters,2004,84(15):2877-2879
    [83] Charlier J C, Terrones M, Baxendale M, et al. Enhanced electron field emissionin b-doped carbon nanotubes. Nano Letters,2002,2(11):1191-1195
    [84] Miyamoto Y, Cohen M L, Louie S G. Theoretical investigation of graphiticcarbon nitride and possible tubule forms. Solid State Communications,1997,102(8):605-608
    [85] Gong K, Du F, Xia Z, et al. Nitrogen-doped carbon nanotube arrays with highelectrocatalytic activity for oxygen reduction. Science,2009,323(5915):760-764
    [86] Ewels C P, Glerup M. Nitrogen doping in carbon nanotubes. Journal ofNanoscience and Nanotechnology,2005,5(9):1345-1363
    [87] Lao J Y, Li W Z, Wen J G, et al. Boron carbide nanolumps on carbon nanotubes.Applied Physics Letters,2002,80(3):500-502
    [88] Lee C J, Lyu S C, Kim H W, et al. Synthesis of bamboo-shaped carbon–nitrogennanotubes using C2H2-NH3-Fe(CO)5system. Chemical Physics Letters,2002,359(1–2):115-120
    [89] Walden, P. Bull. Acad. Imp. Sci. St Petersbourg1914,8,405.
    [90] Grubbs R H, Burk P L, Carr D D. Mechanism of the olefin metathesis reaction.Journal of the American Chemical Society,1975,97(11):3265-3267
    [91] Wilkes J S, Zaworotko M J. Air and water stable1-ethyl-3-methylimidazoliumbased ionic liquids. Journal of the Chemical Society, Chemical Communications,1992,13):965-967
    [92]顾彦龙等.科学通报,2004,49(6):515
    [93] Seki S, Kobayashi Y, Miyashiro H, et al. Lithium secondary batteries usingmodified-imidazolium room-temperature ionic liquid. The Journal of PhysicalChemistry B,2006,110(21):10228-10230
    [94] Chakrapani V, Rusli F, Filler M A, et al. Quaternary ammonium ionic liquidelectrolyte for a silicon nanowire-based lithium ion battery. The Journal ofPhysical Chemistry C,2011,115(44):22048-22053
    [95] Zheng H, Zhang H, Fu Y, et al. Temperature effects on the electrochemicalbehavior of spinel LIMN2O4in quaternary ammonium-based ionic liquidelectrolyte. The Journal of Physical Chemistry B,2005,109(28):13676-13684
    [96] Kuang D, Wang P, Ito S, et al. Stable mesoscopic dye-sensitized solar cells basedon tetracyanoborate ionic liquid electrolyte. Journal of the American ChemicalSociety,2006,128(24):7732-7733
    [97] Freemantle M. New gel for solar cell. Chemical&Engineering News Archive,2002,80(51):6
    [98] Shi D, Cao Y, Pootrakulchote N, et al. New organic sensitizer for stabledye-sensitized solar cells with solvent-free ionic liquid electrolytes. The Journalof Physical Chemistry C,2008,112(44):17478-17485
    [99] Wang P, Zakeeruddin S M, Moser J-E, et al. A new ionic liquid electrolyteenhances the conversion efficiency of dye-sensitized solar cells. The Journal ofPhysical Chemistry B,2003,107(48):13280-13285
    [100]Kim T Y, Lee H W, Stoller M, et al. High-performance supercapacitors based onpoly(ionic liquid)-modified graphene electrodes. ACS Nano,2010,5(1):436-442
    [101]Wang R, Okajima T, Kitamura F, et al. A novel amperometric O2gas sensor based on supported room-temperature ionic liquid porous polyethylene membrane-coated electrodes. Electroanalysis,2004,16(1-2):66-72
    [102]Wang Z, Lin P, Baker G A, et al. Ionic liquids as electrolytes for the developmentof a robust amperometric oxygen sensor. Analytical Chemistry,2011,83(18):7066-7073
    [103]Alnashef I M, Leonard M L, Matthews M A, et al. Superoxide electrochemistry inan ionic liquid. Industrial&Engineering Chemistry Research,2002,41(18):4475-4478
    [104]Buzzeo M C, Evans R G, Compton R G. Non-haloaluminate room-temperatureionic liquids in electrochemistry-a review. ChemPhysChem,2004,5(8):1106-1120
    [105]Buzzeo M C, Klymenko O V, Wadhawan J D, et al. Kinetic analysis of the reaction between electrogenerated superoxide and carbon dioxide in the room temperature ionic liquids1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and hexyltriethylammonium bis(trifluoromethylsulfonyl)imide.The Journal of Physical Chemistry B,2004,108(12):3947-3954
    [106]Giovanelli D, Buzzeo M C, Lawrence N S, et al. Determination of ammonia based on the electro-oxidation of hydroquinone in dimethylformamide orin the room temperature ionic liquid,1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Talanta,2004,62(5):904-911
    [107]Nádherná M, Opekar F, Reiter J. Ionic liquid–polymer electrolyte foramperometric solid-state NO2sensor. Electrochimica Acta,2011,56(16):5650-5655
    [108]Alnashef I M, Leonard M L, Kittle M C, et al. Electrochemical generation ofsuperoxide in room-temperature ionic liquids. Electrochemical and Solid-StateLetters,2001,4(11): D16-D18
    [109]Broder T L, Silvester D S, Aldous L, et al. Electrochemical oxidation of nitriteand the oxidation and reduction of NO2in the room temperature ionic liquid
    [C2mim][NTf2]. The Journal of Physical Chemistry B,2007,111(27):7778-7785
    [110]Bates E D, Mayton R D, Ntai I, et al. CO2capture by a task-specific ionic liquid.Journal of the American Chemical Society,2002,124(6):926-927
    [111]Jin X, Yu L, Garcia D, et al. Ionic liquid high-temperature gas sensor array.Analytical Chemistry,2006,78(19):6980-6989
    [112]Gupta M K, Khokhar S K, Phillips D M, et al. Patterned silk films cast from ionicliquid solubilized fibroin as scaffolds for cell growth. Langmuir,2006,23(3):1315-1319
    [113]Laszlo J A, Compton D L. Comparison of peroxidase activities of hemin,cytochrome c and microperoxidase-11in molecular solvents and imidazolium-based ionic liquids. Journal of Molecular Catalysis B: Enzymatic,2002,18(1-3):109-120
    [114]Lozano P, De Diego T, Guegan J-P, et al. Stabilization of-chymotrypsin by ionicliquids in transesterification reactions. Biotechnology and Bioengineering,2001,75(5):563-569
    [115]Persson M, Bornscheuer U T. Increased stability of an esterase from bacillusstearothermophilus in ionic liquids as compared to organic solvents. Journal ofMolecular Catalysis B: Enzymatic,2003,22(1-2):21-27
    [116]Baker S N, Mccleskey T M, Pandey S, et al. Fluorescence studies of proteinthermostability in ionic liquids. Chemical Communications,2004,(8):940-941
    [117]Compton D L, Laszlo J A. Loss of cytochrome c Fe(III)/Fe(II) redox couple inionic liquids. Journal of Electroanalytical Chemistry,2003,553(0):187-190
    [118]Kaar J L, Jesionowski A M, Berberich J A, et al. Impact of ionic liquid physicalproperties on lipase activity and stability. Journal of the American ChemicalSociety,2003,125(14):4125-4131
    [119]Liu Y, Wang M, Li J, et al. Highly active horseradish peroxidase immobilized in1-butyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquidbased sol-gel host materials. Chemical Communications,2005,(13):1778-1780
    [120]Liu Y, Shi L, Wang M, et al. A novel room temperature ionic liquid sol-gel matrixfor amperometric biosensor application. Green Chemistry,2005,7(9):655-658
    [121]Compton D L, Laszlo J A. Direct electrochemical reduction of hemin inimidazolium-based ionic liquids. Journal of Electroanalytical Chemistry,2002,520(1-2):71-78
    [122]Wang S-F, Chen T, Zhang Z-L, et al. Direct electrochemistry and electrocatalysisof heme proteins entrapped in agarose hydrogel films in room-temperature ionicliquids. Langmuir,2005,21(20):9260-9266
    [123]Wang G X, Qian Y, Cao X X, et al. Direct electrochemistry of cytochrome c on agraphene/poly (3,4-ethylenedioxythiophene) nanocomposite modified electrode.Electrochemistry Communications,2012,20(0):1-3
    [124]Wei S, Dandan W, Ruifang G, et al. Direct electrochemistry and electrocatalysisof hemoglobin in sodium alginate film on a BmimPF6modified carbon pasteelectrode. Electrochemistry Communications,2007,9(5):1159-1164
    [125]Chen H, Wang Y, Liu Y, et al. Direct electrochemistry and electrocatalysis ofhorseradish peroxidase immobilized in nafion-rtil composite film.Electrochemistry Communications,2007,9(3):469-474
    [126]Sun W, Gao R, Jiao K. Electrochemistry and electrocatalysis of hemoglobin innafion/nano-CaCO3film on a new ionic liquid BPPF6modified carbon pasteelectrode. The Journal of Physical Chemistry B,2007,111(17):4560-4567
    [127]Ding S F, Xu M Q, Zhao G C, et al. Direct electrochemical response ofmyoglobin using a room temperature ionic liquid,1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate, as supporting electrolyte. ElectrochemistryCommunications,2007,9(2):216-220
    [128]Yu P, Lin Y, Xiang L, et al. Molecular films of water-miscible ionic liquidsformed on glassy carbon electrodes: Characterization and electrochemicalapplications. Langmuir,2005,21(20):9000-9006
    [129]Fukushima T, Kosaka A, Ishimura Y, et al. Molecular ordering of organic moltensalts triggered by single-walled carbon nanotubes. Science,2003,300(5628):2072-2074
    [130]Zhang Y, Shen Y, Li J, et al. Electrochemical functionalization of single-walledcarbon nanotubes in large quantities at a room-temperature ionic liquid supportedthree-dimensional network electrode. Langmuir,2005,21(11):4797-4800
    [131]Tao W, Pan D, Liu Q, et al. Optical and bioelectrochemical characterization ofwater-miscible ionic liquids based composites of multiwalled carbon nanotubes.Electroanalysis,2006,18(17):1681-1688
    [132]Liu Y, Zou X, Dong S. Electrochemical characteristics of facile prepared carbonnanotubes–ionic liquid gel modified microelectrode and application inbioelectrochemistry. Electrochemistry Communications,2006,8(9):1429-1434
    [133]Liu Y, Liu L, Dong S. Electrochemical characteristics of glucose oxidaseadsorbed at carbon nanotubes modified electrode with ionic liquid as binder.Electroanalysis,2007,19(1):55-59
    [134]Zhao Y, Gao Y, Zhan D, et al. Selective detection of dopamine in the presence ofascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modifiedelectrode. Talanta,2005,66(1):51-57
    [135]Safavi A, Maleki N, Moradlou O, et al. Simultaneous determination of dopamine,ascorbic acid, and uric acid using carbon ionic liquid electrode. AnalyticalBiochemistry,2006,359(2):224-229
    [136]Maleki N, Safavi A, Tajabadi F. High-performance carbon composite electrodebased on an ionic liquid as a binder. Analytical Chemistry,2006,78(11):3820-3826
    [137]Safavi A, Maleki N, Tajabadi F. Highly stable electrochemical oxidation ofphenolic compounds at carbon ionic liquid electrode. Analyst,2007,132(1):54-58
    [138]Maleki N, Safavi A, Sedaghati F, et al. Efficient electrocatalysis of L-cysteineoxidation at carbon ionic liquid electrode. Analytical Biochemistry,2007,369(2):149-153
    [139]Li C M, Zang J, Zhan D, et al. Electrochemical detection of nitric oxide on aswcnt/rtil composite gel microelectrode. Electroanalysis,2006,18(7):713-718
    [140]Katz E, Willner I, Wang J. Electroanalytical and bioelectroanalytical systemsbased on metal and semiconductor nanoparticles. Electroanalysis,2004,16(1-2):19-44
    [141]Yu C, Irudayaraj J. Multiplex biosensor using gold nanorods. AnalyticalChemistry,2006,79(2):572-579
    [142]Itoh H, Naka K, Chujo Y. Synthesis of gold nanoparticles modified with ionicliquid based on the imidazolium cation. Journal of the American ChemicalSociety,2004,126(10):3026-3027
    [143]Safavi A, Maleki N, Tajabadi F, et al. High electrocatalytic effect of palladiumnanoparticle arrays electrodeposited on carbon ionic liquid electrode.Electrochemistry Communications,2007,9(8):1963-1968
    [144]Sampath S, Lev O. Inert metal-modified, composite ceramic-carbon,amperometric biosensors: Renewable, controlled reactive layer. AnalyticalChemistry,1996,68(13):2015-2021
    [145]Dai Z, Liu S, Ju H, et al. Direct electron transfer and enzymatic activity ofhemoglobin in a hexagonal mesoporous silica matrix. Biosensors andBioelectronics,2004,19(8):861-867
    [146]Roach P, Farrar D, Perry C C. Interpretation of protein adsorption:Surface-induced conformational changes. Journal of the American ChemicalSociety,2005,127(22):8168-8173
    [147]Gooding J J, Wibowo R, Liu, et al. Protein electrochemistry using aligned carbonnanotube arrays. Journal of the American Chemical Society,2003,125(30):9006-9007
    [148]Hartmann M, Vinu A, Chandrasekar G. Adsorption of vitamin E on mesoporouscarbon molecular sieves. Chemistry of Materials,2005,17(4):829-833
    [149]Vinu A, Miyahara M, Ariga K. Biomaterial immobilization in nanoporous carbonmolecular sieves: Influence of solution pH, pore volume, and pore diameter. TheJournal of Physical Chemistry B,2005,109(13):6436-6441
    [150]Lele B S, Murata H, Matyjaszewski K, et al. Synthesis of uniformprotein polymer conjugates. Biomacromolecules,2005,6(6):3380-3387
    [151]Lewis A, Tang Y, Brocchini S, et al. Poly(2-methacryloyloxyethylphosphorylcholine) for protein conjugation. Bioconjugate Chemistry,2008,19(11):2144-2155
    [152]Han Y, Lee S S, Ying J Y. Pressure-driven enzyme entrapment in siliceousmesocellular foam. Chemistry of Materials,2006,18(3):643-649
    [153]Lynch I, Dawson K A. Protein-nanoparticle interactions. Nano Today,2008,3(1-2):40-47
    [154]Zhong J, Song L, Meng J, et al. Bio-nano interaction of proteins adsorbed onsingle-walled carbon nanotubes. Carbon,2009,47(4):967-973
    [155]Zhao Y D, Zhang W D, Chen H, et al. Anodic oxidation of hydrazine at carbonnanotube powder microelectrode and its detection. Talanta,2002,58(3):529-534
    [156]Wang J, Musameh M, Lin Y. Solubilization of carbon nanotubes by nafion towardthe preparation of amperometric biosensors. Journal of the American ChemicalSociety,2003,125(9):2408-2409
    [157]Wang J, Li M, Shi Z, et al. Electrocatalytic oxidation of norepinephrine at aglassy carbon electrode modified with single wall carbon nanotubes.Electroanalysis,2002,14(3):225-230
    [158]Wang Z, Liu J, Liang Q, et al. Carbon nanotube-modified electrodes for thesimultaneous determination of dopamine and ascorbic acid. Analyst,2002,127(5):653-658
    [159]Wang J, Li M, Shi Z, et al. Electrocatalytic oxidation of3,4-dihydroxyphenylacetic acid at a glassy carbon electrode modified withsingle-wall carbon nanotubes. Electrochimica Acta,2001,47(4):651-657
    [160]Zhao H, Ju H. Multilayer membranes for glucose biosensing via layer-by-layerassembly of multiwall carbon nanotubes and glucose oxidase. AnalyticalBiochemistry,2006,350(1):138-144
    [161]Nguyen C V, Delzeit L, Cassell A M, et al. Preparation of nucleic acidfunctionalized carbon nanotube arrays. Nano Letters,2002,2(10):1079-1081
    [162]Zhao H Y, Zheng W, Meng Z X, et al. Bioelectrochemistry of hemoglobinimmobilized on a sodium alginate-multiwall carbon nanotubes composite film.Biosensors and Bioelectronics,2009,24(8):2352-2357
    [163]Liu C Y, Hu J M. Hydrogen peroxide biosensor based on the directelectrochemistry of myoglobin immobilized on silver nanoparticles doped carbonnanotubes film. Biosensors and Bioelectronics,2009,24(7):2149-2154
    [164]Cao Z, Jiang X, Xie Q, et al. A third-generation hydrogen peroxide biosensor based on horseradish peroxidase immobilized in a tetrathiafulvalene-tetracyanoquinodimethane/multiwalled carbon nanotubes film. Biosensors and Bioelectronics,2008,24(2):222-227
    [165]Xiang C, Zou Y, Sun L, et al. Direct electron transfer of cytochrome c and itsbiosensor based on gold nanoparticles/room temperature ionic liquid/carbonnanotubes composite film. Electrochemistry Communications,2008,10(1):38-41
    [166]Liu Q, Lu X, Li J, et al. Direct electrochemistry of glucose oxidase andelectrochemical biosensing of glucose on quantum dots/carbon nanotub eselectrodes. Biosensors and Bioelectronics,2007,22(12):3203-3209
    [167]Joshi P P, Merchant S A, Wang Y, et al. Amperometric biosensors based on redoxpolymer-carbon nanotube-enzyme composites. Analytical Chemistry,2005,77(10):3183-3188
    [168]Zhang Y, Shen Y, Han D, et al. Carbon nanotubes and glucose oxidasebionanocomposite bridged by ionic liquid-like unit: Preparation andelectrochemical properties. Biosensors and Bioelectronics,2007,23(3):438-443
    [169]Jia F, Shan C, Li F, et al. Carbon nanotube/gold nanoparticles/polyethylenimine-functionalized ionic liquid thin film composites for glucose biosensing.Biosensors and Bioelectronics,2008,24(4):945-950
    [170]Kachoosangi R T, Musameh M M, Abu-Yousef I, et al. Carbon nanotube-ionicliquid composite sensors and biosensors. Analytical Chemistry,2008,81(1):435-442
    [171]Liu Y, Huang L, Dong S. Electrochemical catalysis and thermal stabilitycharacterization of laccase-carbon nanotubes-ionic liquid nanocompositemodified graphite electrode. Biosensors and Bioelectronics,2007,23(1):35-41
    [172]Wu B, Hu D, Kuang Y, et al. Functionalization of carbon nanotubes by anionic-liquid polymer: Dispersion of Pt and PtRu nanoparticles on carbonnanotubes and their electrocatalytic oxidation of methanol. Angewandte ChemieInternational Edition,2009,48(26):4751-4754
    [173]Mu X D, Meng J Q, Li Z C, et al. Rhodium nanoparticles stabilized by ioniccopolymers in ionic liquids: Long lifetime nanocluster catalysts for benzenehydrogenation. Journal of the American Chemical Society,2005,127(27):9694-9695
    [174]Marcilla R, Curri M L, Cozzoli P D, et al. Nano-objects on a round trip fromwater to organics in a polymeric ionic liquid vehicle. Small,2006,2(4):507-512
    [175]Fukushima T, Aida T. Ionic liquids for soft functional materials with carbonnanotubes. Chemistry-A European Journal,2007,13(18):5048-5058
    [176]Tinoco I, Sauer K, Wang J C. Physical chemistry: Principles and applications inbiological sciences. Englewood Cliffs, N.J.: Prentice-Hall,1978
    [177]Wu S, Ju H X, Liu Y. Conductive mesocellular silica-carbon nanocompositefoams for immobilization, direct electrochemistry, and biosensing of proteins.Advanced Functional Materials,2007,17(4):585-592
    [178]Shangguan X, Zhang H, Zheng J. Direct electrochemistry of glucose oxidasebased on its direct immobilization on carbon ionic liquid electrode and glucosesensing. Electrochemistry Communications,2008,10(8):1140-1143
    [179]Zhu L, Yang R, Zhai J, et al. Bienzymatic glucose biosensor based onco-immobilization of peroxidase and glucose oxidase on a carbon nanotubeselectrode. Biosensors and Bioelectronics,2007,23(4):528-535
    [180]Shahrokhian S. Lead phthalocyanine as a selective carrier for preparation of acysteine-selective electrode. Analytical Chemistry,2001,73(24):5972-5978
    [181]Wang W, Rusin O, Xu X, et al. Detection of homocysteine and cysteine. Journalof the American Chemical Society,2005,127(45):15949-15958
    [182]Sp taru N, Sarada B V, Popa E, et al. Voltammetric determination of L-cysteine atconductive diamond electrodes. Analytical Chemistry,2001,73(3):514-519
    [183]Fei S, Chen J, Yao S, et al. Electrochemical behavior of L-cysteine and itsdetection at carbon nanotube electrode modified with platinum. AnalyticalBiochemistry,2005,339(1):29-35
    [184]Rusin O, St. Luce N N, Agbaria R A, et al. Visual detection of cysteine andhomocysteine. Journal of the American Chemical Society,2003,126(2):438-439
    [185]Pfeiffer C M, Huff D L, Gunter E W. Rapid and accurate HPLC assay for plasmatotal homocysteine and cysteine in a clinical laboratory setting. ClinicalChemistry,1999,45(2):290-292
    [186]Tanaka F, Mase N, Barbas Iii C F. Determination of cysteine concentration byfluorescence increase: Reaction of cysteine with a fluorogenic aldehyde.Chemical Communications,2004,(15):1762-1763
    [187]Zen J M, Kumar A S, Chen J C. Electrocatalytic oxidation and sensitive detectionof cysteine on a lead ruthenate pyrochlore modified electrode. AnalyticalChemistry,2001,73(6):1169-1175
    [188]Lee J S, Ulmann P A, Han M S, et al. A DNA-gold nanoparticle-basedcolorimetric competition assay for the detection of cysteine. Nano Letters,2008,8(2):529-533
    [189]Zhang M, Yu M, Li F, et al. A highly selective fluorescence turn-on sensor forcysteine/homocysteine and its application in bioimaging. Journal of the AmericanChemical Society,2007,129(34):10322-10323
    [190]Halbert M K, Baldwin R P. Electrocatalytic and analytical response of cobaltphthalocyanine containing carbon paste electrodes toward sulfhydryl compounds.Analytical Chemistry,1985,57(3):591-595
    [191]Wang Z, Pang D. Electrocatalysis of metalloporphyrins: Part9. C atalyticelectroreduction of cystine using water-soluble cobalt porphyrins. Journal ofElectroanalytical Chemistry and Interfacial Electrochemistry,1990,283(1–2):349-358
    [192]Reynaud J A, Malfoy B, Canesson P. Electrochemical investigations of aminoacids at solid electrodes: Part i. Sulfur components: Cystine, cysteine, methionine.Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1980,114(2):195-211
    [193]Vandeberg P J, Johnson D C. Pulsed electrochemical detection of cysteine,cystine, methionine, and glutathione at gold electrodes following their separationby liquid chromatography. Analytical Chemistry,1993,65(20):2713-2718
    [194]Hoekstra J C, Johnson D C. Comparison of potential time waveforms for thedetection of biogenic amines in complex mixtures following their separation byliquid chromatography. Analytical Chemistry,1998,70(1):83-88
    [195]Safavi A, Maleki N, Farjami E, et al. Simultaneous electrochemical determinationof glutathione and glutathione disulfide at a nanoscale copper hydrox idecomposite carbon ionic liquid electrode. Analytical Chemistry,2009,81(18):7538-7543
    [196]Gong K, Zhu X, Zhao R, et al. Rational attachment of synthetic triptyceneorthoquinone onto carbon nanotubes for electrocatalysis and sensitive detectionof thiols. Analytical Chemistry,2005,77(24):8158-8165
    [197]Ndamanisha J C, Bai J, Qi B, et al. Application of electrochemical properties ofordered mesoporous carbon to the determination of glutathione and cysteine.Analytical Biochemistry,2009,386(1):79-84
    [198]Sudeep P K, Joseph S T S, Thomas K G. Selective detection of cysteine andglutathione using gold nanorods. Journal of the American Chemical Society,2005,127(18):6516-6517
    [199]Brenet J P. Electrochemical behaviour of metallic oxides. Journal of PowerSources,1979,4(3):183-190
    [200]Gong K, Yu P, Su L, et al. Polymer-assisted synthesis of manganesedioxide/carbon nanotube nanocomposite with excellent electrocatalytic activitytoward reduction of oxygen. The Journal of Physical Chemistry C,2007,111(5):1882-1887
    [201]Xie X, Gao L. Characterization of a manganese dioxide/carbon nanotubecomposite fabricated using an in situ coating method. Carbon,2007,45(12):2365-2373
    [202]Xiong Y, Xie Y, Li Z, et al. Growth of well-aligned γ-MnO2monocrystallinenanowires through a coordination-polymer-precursor route. Chemistry-AEuropean Journal,2003,9(7):1645-1651
    [203]Luo X L, Xu J J, Zhao W, et al. A novel glucose enfet based on the specialreactivity of mno2nanoparticles. Biosensors and Bioelectronics,2004,19(10):1295-1300
    [204]Herszage J, Dos Santos Afonso M, Luther G W. Oxidation of cysteine andglutathione by soluble polymeric MnO2. Environmental Science&Technology,2003,37(15):3332-3338
    [205]Andrabi S, Khan Z. Reactivity of some sulphur-and non-sulphur-containingamino acids towards water soluble colloidal MnO2. A kinetic study. Colloid&Polymer Science,2007,285(4):389-396
    [206]Bai Y H, Xu J J, Chen H Y. Selective sensing of cysteine on manganese dioxidenanowires and chitosan modified glassy carbon electrodes. Biosensors andBioelectronics,2009,24(10):2985-2990
    [207]Ajayan P M, Stephan O, Redlich P, et al. Carbon nanotubes as removabletemplates for metal oxide nanocomposites and nanostructures. Nature,1995,375(6532):564-567
    [208]Satishkumar B C, Govindaraj A, Vogl E M, et al. Oxide nanotubes prepared usingcarbon nanotubes as templates. Journal of Materials Research,1997,12(03):604-606
    [209]Wang J L, Yang J, Xie J Y, et al. Sulfur-carbon nano-composite as cathode forrechargeable lithium battery based on gel electrolyte. ElectrochemistryCommunications,2002,4(6):499-502
    [210]Dong X, Shen W, Gu J, et al. MnO2-embedded-in-mesoporous-carbon-wallstructure for use as electrochemical capacitors. The Journal of PhysicalChemistry B,2006,110(12):6015-6019
    [211]Luo X L, Xu J J, Du Y, et al. A glucose biosensor based on chitosan-glucoseoxidase–gold nanoparticles biocomposite formed by one-step electrodeposition.Analytical Biochemistry,2004,334(2):284-289
    [212]Yi H, Wu L Q, Bentley W E, et al. Biofabrication with chitosan.Biomacromolecules,2005,6(6):2881-2894
    [213]Ding Y S, Shen X F, Gomez S, et al. Hydrothermal growth of manganese dioxideinto three-dimensional hierarchical nanoarchitectures. Advanced FunctionalMaterials,2006,16(4):549-555
    [214]Bai Y H, Xu J J, Chen H Y. Selective sensing of cysteine on manganese dioxidenanowires and chitosan modified glassy carbon electrodes. Biosensors andBioelectronics,2009,24(10):2985-2990
    [215]Nico P S, Zasoski R J. Importance of Mn(III) availability on the rate of Cr(III)oxidation on-MnO2. Environmental Science&Technology,2000,34(16):3363-3367
    [216]Nico P S, Zasoski R J. Mn(III) center availability as a rate controlling factor inthe oxidation of phenol and sulfide on-MnO2. Environmental Science&Technology,2001,35(16):3338-3343
    [217]Chen Z, Zheng H, Lu C, et al. Oxidation of L-cysteine at a fluorosurfactant-modified gold electrode: Lower overpotential and higher selectivity. Langmuir,2007,23(21):10816-10822
    [218]Zhou M, Ding J, Guo L P, et al. Electrochemical behavior of L-cysteine and itsdetection at ordered mesoporous carbon-modified glassy carbon electrode.Analytical Chemistry,2007,79(14):5328-5335
    [219]Chen S M, Chen J Y, Thangamuthu R. Electrochemical preparation of brilliant-blue-modified poly(diallyldimethylammonium chloride) and nafion-coated glassy carbon electrodes and their electrocatalytic behavior towards oxygen and L-cysteine. Electroanalysis,2008,20(14):1565-1573
    [220]Lima P R, Santos W J R, Luz R D C S, et al. An amperometric sensor based onelectrochemically triggered reaction: Redox-active AR–NO/AR–NHOH from4-nitrophthalonitrile-modified electrode for the low voltage cysteine detection.Journal of Electroanalytical Chemistry,2008,612(1):87-96
    [221]Deng C, Chen J, Chen X, et al. Electrochemical detection of L-cysteine using aboron-doped carbon nanotube-modified electrode. Electrochimica Acta,2009,54(12):3298-3302
    [222]Xiao Y, Guo C, Li C M, et al. Highly sensitive and selective method to detectdopamine in the presence of ascorbic acid by a new polymeric composite film.Analytical Biochemistry,2007,371(2):229-237
    [223]Lane R F, Blaha C D. Detection of catecholamines in brain tissue:Surface-modified electrodes enabling in vivo investigations of dopamine function.Langmuir,1990,6(1):56-65
    [224]Gonon F, Buda M, Cespuglio R, et al. In vivo electrochemical detection ofcatechols in the neostriatum of anaesthetized rats: dopamine or dopac? Nature,1980,286(5776):902-904
    [225]Chen P-Y, Vittal R, Nien P-C, et al. Enhancing dopamine detection using a glassycarbon electrode modified with MWCNTs, quercetin, and nafion. Biosensorsand Bioelectronics,2009,24(12):3504-3509
    [226]Ciszewski A, Milczarek G. Polyeugenol-modified platinum electrode for selectivedetection of dopamine in the presence of ascorbic acid. Analytical Chemistry,1999,71(5):1055-1061
    [227]Gao Z, Huang H. Simultaneous determination of dopamine, uric acid andascorbic acid at an ultrathin film modified gold electrode. Chem Commun,1998,(19):2107-2108
    [228]Kalimuthu P, John S A. Simultaneous determination of ascorbic acid, dopamine,uric acid and xanthine using a nanostructured polymer film modified electrode.Talanta,2010,80(5):1686-1691
    [229]Lin L, Chen J, Yao H, et al. Simultaneous determination of dopamine, ascorbicacid and uric acid at poly (evans blue) modified glassy carbon electrode.Bioelectrochemistry,2008,73(1):11-17
    [230]Huang J, Liu Y, Hou H, et al. Simultaneous electrochemical determination ofdopamine, uric acid and ascorbic acid using palladium nanoparticle-loadedcarbon nanofibers modified electrode. Biosensors and Bioelectronics,2008,24(4):632-637
    [231]Shakkthivel P, Chen S M. Simultaneous determination of ascorbic acid anddopamine in the presence of uric acid on ruthenium oxide modified electrode.Biosensors and Bioelectronics,2007,22(8):1680-1687
    [232]Tang C F, Kumar S A, Chen S M. Zinc oxide/redox mediator compositefilms-based sensor for electrochemical detection of important biomolecules.Analytical Biochemistry,2008,380(2):174-183
    [233]Weng J, Xue J, Wang J, et al. Gold-cluster sensors formed electrochemically atboron-doped-diamond electrodes: Detection of dopamine in the presence ofascorbic acid and thiols. Advanced Functional Materials,2005,15(4):639-647
    [234]Thiagarajan S, Tsai T H, Chen S M. Easy modification of glassy carbon electrodefor simultaneous determination of ascorbic acid, dopamine and uric acid.Biosensors and Bioelectronics,2009,24(8):2712-2715
    [235]Da Silva R P, Lima A W O, Serrano S H P. Simultaneous voltammetric detectionof ascorbic acid, dopamine and uric acid using a pyrolytic graphite electrodemodified into dopamine solution. Analytica Chimica Acta,2008,612(1):89-98
    [236]Sudhakara Prasad K, Muthuraman G, Zen J M. The role of oxygen functionalitiesand edge plane sites on screen-printed carbon electrodes for simultaneousdetermination of dopamine, uric acid and ascorbic acid. ElectrochemistryCommunications,2008,10(4):559-563
    [237]Zhu S, Li H, Niu W, et al. Simultaneous electrochemical determination of uricacid, dopamine, and ascorbic acid at single-walled carbon nanohorn modifiedglassy carbon electrode. Biosensors and Bioelectronics,2009,25(4):940-943
    [238]Deng C, Chen J, Wang M, et al. A novel and simple strategy for selective andsensitive determination of dopamine based on the boron-doped carbon nanotubesmodified electrode. Biosensors and Bioelectronics,2009,24(7):2091-2094
    [239]Ho evar S B, Wang J, Deo R P, et al. Carbon nanotube modified microelectrodefor enhanced voltammetric detection of dopamine in the presence of ascorbate.Electroanalysis,2005,17(5-6):417-422
    [240]Kumar S A, Wang S F, Yang T C K, et al. Acid yellow9as a dispersing agent forcarbon nanotubes: Preparation of redox polymer-carbon nanotube composite filmand its sensing application towards ascorbic acid and dopamine. Biosensors andBioelectronics,2010,25(12):2592-2597
    [241]Liu A, Honma I, Zhou H. Simultaneous voltammetric detection of dopamine anduric acid at their physiological level in the presence of ascorbic acid using poly(acrylic acid)-multiwalled carbon-nanotube composite-covered glassy-carbonelectrode. Biosensors and Bioelectronics,2007,23(1):74-80
    [242]Poh W C, Loh K P, De Zhang W, et al. Biosensing properties of diamond andcarbon nanotubes. Langmuir,2004,20(13):5484-5492
    [243]Su F, Zhao X, Wang Y, et al. Hollow carbon spheres with a controllable shellstructure. J Mater Chem,2006,16(45):4413-4419
    [244]Sun X, Li Y. Ga2O3and gan semiconductor hollow spheres. Angewandte ChemieInternational Edition,2004,43(29):3827-3831
    [245]Wen Z, Wang Q, Zhang Q, et al. Hollow carbon spheres with wide sizedistribution as anode catalyst support for direct methanol fuel cells.Electrochemistry Communications,2007,9(8):1867-1872
    [246]Kizuka T, Kato R, Miyazawa K. Structure of hollow carbon nanocapsulessynthesized by resistive heating. Carbon,2009,47(1):138-144
    [247]Li G, Guo C, Sun C, et al. A facile approach for the synthesis of uniform hollowcarbon nanospheres. The Journal of Physical Chemistry C,2008,112(6):1896-1900
    [248]Ni Y, Shao M, Tong Y, et al. Preparation of hollow carbon nanospheres at lowtemperature via new reaction route. Journal of Solid State Chemistry,2005,178(3):908-911
    [249]Xiong Y, Xie Y, Li Z, et al. A novel approach to carbon hollow spheres andvessels from ccl4at low temperatures. Chemical Communications,2003,7):904-905
    [250]Liu J, Shao M, Tang Q, et al. A medial-reduction route to hollow carbon spheres.Carbon,2003,41(8):1682-1684
    [251]Kim N D, Kim W, Joo J B, et al. Electrochemical capacitor performance ofN-doped mesoporous carbons prepared by ammoxidation. Journal of PowerSources,2008,180(1):671-675
    [252]Shao Y, Zhang S, Wang C, et al. Highly durable graphene nanoplatelets supportedPt nanocatalysts for oxygen reduction. Journal of Power Sources,2010,195(15):4600-4605
    [253]Postma A, Yan Y, Wang Y, et al. Self-polymerization of dopamine as a versatileand robust technique to prepare polymer capsules. Chemistry of Materials,2009,21(14):3042-3044
    [254]Vinu A, Sawant D P, Ariga K, et al. Benzylation of benzene and other aromaticsby benzyl chloride over mesoporous alsba-15catalysts. Microporous andmesoporous materials,2005,80(1):195-203
    [255]Wang Y, Nepal D, Geckeler K E. Hollow porous carbon nanospheres with largesurface area and stability, assembled from oxidized fullerenes. J Mater Chem,2005,15(10):1049-1054
    [256]Wu C, Zhu X, Ye L, et al. Necklace-like hollow carbon nanospheres from thepentagon-including reactants: Synthesis and electrochemical properties.Inorganic Chemistry,2006,45(21):8543-8550
    [257]Nicholson R S. Theory and application of cyclic voltammetry for measurement ofelectrode reaction kinetics. Analytical Chemistry,1965,37(11):1351-1355
    [258]Jia N, Wang Z, Yang G, et al. Electrochemical properties of ordered mesoporouscarbon and its electroanalytical application for selective determination ofdopamine. Electrochemistry Communications,2007,9(2):233-238
    [259]Zhang M, Gong K, Zhang H, et al. Layer-by-layer assembled carbon nanotubesfor selective determination of dopamine in the presence of ascorbic acid.Biosensors and Bioelectronics,2005,20(7):1270-1276
    [260]Zare H R, Rajabzadeh N, Nasirizadeh N, et al. Voltammetric studies of an oracetblue modified glassy carbon electrode and its application for the simultaneousdetermination of dopamine, ascorbic acid and uric acid. Journal ofElectroanalytical Chemistry,2006,589(1):60-69
    [261]Yogeswaran U, Chen S M. Separation and concentration effect of f-MWCNTs onelectrocatalytic responses of ascorbic acid, dopamine and uric acid at f-mwcntsincorporated with poly (neutral red) composite films. Electrochimica Acta,2007,52(19):5985-5996
    [262]Zhang R, Jin G D, Chen D, et al. Simultaneous electrochemical determination ofdopamine, ascorbic acid and uric acid using poly (acid chrome blue k) modifiedglassy carbon electrode. Sensors and Actuators B: Chemical,2009,138(1):174-181
    [263]Lin K C, Tsai T H, Chen S M. Performing enzyme-free H2O2biosensor andsimultaneous determination for AA, DA, and UA by MWCNT-PEDOT film.Biosensors and Bioelectronics,2010,26(2):608-614
    [264]Musameh M, Wang J, Merkoci A, et al. Low-potential stable nadh detection atcarbon-nanotube-modified glassy carbon electrodes. ElectrochemistryCommunications,2002,4(10):743-746
    [265]Hrapovic S, Majid E, Liu Y, et al. Metallic nanoparticle-carbon nanotubecomposites for electrochemical determination of explosive nitroaromaticcompounds. Analytical Chemistry,2006,78(15):5504-5512
    [266]Chu X, Duan D, Shen G, et al. Amperometric glucose biosensor based onelectrodeposition of platinum nanoparticles onto covalently immobilized carbonnanotube electrode. Talanta,2007,71(5):2040-2047
    [267]Chi Q, Dong S. Flow-injection analysis of glucose at an amperometric glucosesensor based on electrochemical deposition of palladium and glucose oxidase ona glassy carbon electrode. Analytica Chimica Acta,1993,278(1):17-23
    [268]Sakslund H, Wang J, Hammerich O. A critical evaluation of a glucose biosensormade by codeposition of palladium and glucose oxidase on glassy carbon. Journalof Electroanalytical Chemistry,1994,374(1-2):71-79
    [269]Xu L, Zhu Y, Yang X, et al. Amperometric biosensor based on carbon nanotubescoated with polyaniline/dendrimer-encapsulated Pt nanoparticles for glucosedetection. Materials Science and Engineering: C,2009,29(4):1306-1310
    [270]Ravi Shankaran D, Ueheara N, Kato T. A metal dispersed sol-gel biocompositeamperometric glucose biosensor. Biosensors and Bioelectronics,2003,18(5-6):721-728
    [271]Wen D, Zou X, Liu Y, et al. Nanocomposite based on depositing platinumnanostructure onto carbon nanotubes through a one-pot, facile synthesis methodfor amperometric sensing. Talanta,2009,79(5):1233-1237
    [272]Wen Z, Ci S, Li J. Pt nanoparticles inserting in carbon nanotube arrays:Nanocomposites for glucose biosensors. The Journal of Physical Chemistry C,2009,113(31):13482-13487
    [273]Prabhuram J, Zhao T S, Tang Z K, et al. Multiwalled carbon nanotube supportedptru for the anode of direct methanol fuel cells. The Journal of PhysicalChemistry B,2006,110(11):5245-5252
    [274]Hsin Y L, Hwang K C, Yeh C-T. Poly(vinylpyrrolidone)-modified graphitecarbon nanofibers as promising supports for ptru catalysts in direct methanol fuelcells. Journal of the American Chemical Society,2007,129(32):9999-10010
    [275]Jiang K, Eitan A, Schadler L S, et al. Selective attachment of gold nanoparticlesto nitrogen-doped carbon nanotubes. Nano Letters,2003,3(3):275-277
    [276]Zamudio A, Elías A L, Rodríguez-Manzo J A, et al. Efficient anchoring of silvernanoparticles on N-doped carbon nanotubes. Small,2006,2(3):346-350
    [277]Sadek A Z, Zhang C, Hu Z, et al. Uniformly dispersed Pt-Ni nanoparticles onnitrogen-doped carbon nanotubes for hydrogen sensing. The Journal of PhysicalChemistry C,2009,114(1):238-242
    [278]Higgins D C, Meza D, Chen Z. Nitrogen-doped carbon nanotubes as platinumcatalyst supports for oxygen reduction reaction in proton exchange membranefuel cells. The Journal of Physical Chemistry C,2010,114(50):21982-21988
    [279]Chen Y, Wang J, Liu H, et al. Nitrogen doping effects on carbon nanotubes andthe origin of the enhanced electrocatalytic activity of supported Pt forproton-exchange membrane fuel cells. The Journal of Physical Chemistry C,2011,115(9):3769-3776
    [280]Kuo P L, Hsu C H, Wu H M, et al. Controllable-nitrogen doped carbon layersurrounding carbon nanotubes as novel carbon support for oxygen reductionreaction. Fuel Cells,2012,12(4):649-655
    [281]Chen K J, Lee C F, Rick J, et al. Fabrication and application of amperometricglucose biosensor based on a novel PtPd bimetallic nanoparticle decoratedmulti-walled carbon nanotube catalyst. Biosensors and Bioelectronics,2012,33(1):75-81
    [282]López M S-P, Mecerreyes D, López-Cabarcos E, et al. Amperometric glucosebiosensor based on polymerized ionic liquid microparticles. Biosensors andBioelectronics,2006,21(12):2320-2328
    [283]Gholivand M B, Azadbakht A. Fabrication of a highly sensitive glucoseelectrochemical sensor based on immobilization of Ni(II)-pyromellitic acid andbimetallic Au-Pt inorganic-organic hybrid nanocomposite onto carbon nanotubemodified glassy carbon electrode. Electrochimica Acta,2012,76(0):300-311
    [284]Xu L, Zhu Y, Tang L, et al. Biosensor based on self-assembling glucose oxidaseand dendrimer-encapsulated pt nanoparticles on carbon nanotubes for glucosedetection. Electroanalysis,2007,19(6):717-722
    [285]Li W, Yuan R, Chai Y, et al. Study of the biosensor based on platinumnanoparticles supported on carbon nanotubes and sugar-lectin biospecificinteractions for the determination of glucose. Electrochimica Acta,2011,56(11):4203-4208
    [286]Chu X, Wu B, Xiao C, et al. A new amperometric glucose biosensor based on platinum nanoparticles/polymerized ionic liquid-carbon nanotubes nanocomposites. Electrochimica Acta,2010,55(8):2848-2852
    [287]Lu J, Do I, Drzal L T, et al. Nanometal-decorated exfoliated graphite nanoplateletbased glucose biosensors with high sensitivity and fast response. ACS Nano,2008,2(9):1825-1832
    [288]Lund H. A century of organic electrochemistry. Journal of The ElectrochemicalSociety,2002,149(4): S21-S33
    [289]Buzzeo M C, Hardacre C, Compton R G. Extended electrochemical windowsmade accessible by room temperature ionic liquid/organic solvent electrolytesystems. ChemPhysChem,2006,7(1):176-180
    [290]Lagrost C, Preda L, Volanschi E, et al. Heterogeneous electron-transfer kineticsof nitro compounds in room-temperature ionic liquids. Journal ofElectroanalytical Chemistry,2005,585(1):1-7
    [291]Silvester D S, Wain A J, Aldous L, et al. Electrochemical reduction ofnitrobenzene and4-nitrophenol in the room temperature ionic liquid
    [C4dmim][N(Tf)2]. Journal of Electroanalytical Chemistry,2006,596(2):131-140
    [292]Kroon M C, Buijs W, Peters C J, et al. Decomposition of ionic liquids inelectrochemical processing. Green Chemistry,2006,8(3):241-245
    [293]D Az Aguilar A, Forzani E S, Leright M, et al. A hybrid nanosensor for TNTvapor detection. Nano Letters,2009,10(2):380-384
    [294]Yu L, Huang Y, Jin X, et al. Ionic liquid thin layer eqcm explosives sensor.Sensors and Actuators B: Chemical,2009,140(2):363-370
    [295]Lagrost C, Hapiot P, Vaultier M. The influence of room-temperature ionic liquidson the stereoselectivity and kinetics of the electrochemical pinacol coupling ofacetophenone. Green Chemistry,2005,7(6):468-474
    [296]Liu H, Liu Y, Li J. Ionic liquids in surface electrochemistry. Physical ChemistryChemical Physics,2010,12(8):1685-1697
    [297]Rehman A, Hamilton A, Chung A, et al. Differential solute gas response inionic-liquid-based qcm arrays: Elucidating design factors responsible fordiscriminative explosive gas sensing. Analytical Chemistry,2011,83(20):7823-7833
    [298]Yao C, Pitner W R, Anderson J L. Ionic liquids containing thetris(pentafluoroethyl)trifluorophosphate anion: A new class of highly selectiveand ultra hydrophobic solvents for the extraction of polycyclic aromatichydrocarbons using single drop microextraction. Analytical Chemistry,2009,81(12):5054-5063
    [299]Walker J E, Kaplan D L. Biological degradation of explosives and chemicalagents. Biodegradation,1992,3(2):369-385
    [300]Riskin M, Tel-Vered R, Bourenko T, et al. Imprinting of molecular recognitionsites through electropolymerization of functionalized au nanoparticles:Development of an electrochemical tnt sensor based on π-donor-acceptorinteractions. Journal of the American Chemical Society,2008,130(30):9726-9733
    [301]Tang L, Feng H, Cheng J, et al. Uniform and rich-wrinkled electrophoreticdeposited graphene film: A robust electrochemical platform for tnt sensing.Chemical Communications,2010,46(32):5882-5884
    [302]Wang J, Hocevar S B, Ogorevc B. Carbon nanotube-modified glassy carbonelectrode for adsorptive stripping voltammetric detection of ultratrace levels of2,4,6-trinitrotoluene. Electrochemistry Communications,2004,6(2):176-179
    [303]Zhang H X, Cao A M, Hu J S, et al. Electrochemical sensor for detectingultratrace nitroaromatic compounds using mesoporous SiO2-modified electrode.Analytical Chemistry,2006,78(6):1967-1971
    [304]Bozic R G, West A C, Levicky R. Square wave voltammetric detection of2,4,6-trinitrotoluene and2,4-dinitrotoluene on a gold electrode modified withself-assembled monolayers. Sensors and Actuators B: Chemical,2008,133(2):509-515
    [305]Holmes L C, Dicarlo F J. Nitroglycerin. The explosive drug. Journal of ChemicalEducation,1971,48(9):573
    [306]Caballero A, Lázaro J J, Ramos J L, et al. PnrA, a new nitroreductase-familyenzyme in the TNT-degrading strain pseudomonas putida JLR11. EnvironmentalMicrobiology,2005,7(8):1211-1219
    [307]Zhang H X, Hu J S, Yan C J, et al. Functionalized carbon nanotubes as sensitivematerials for electrochemical detection of ultra-trace2,4,6-trinitrotoluene.Physical Chemistry Chemical Physics,2006,8(30):3567-3572
    [308]Bonh te P, Dias A P, Papageorgiou N, et al. Hydrophobic, highly conductiveambient-temperature molten salts. Inorganic Chemistry,1996,35(5):1168-1178
    [309]Dieter K M, Dymek C J, Heimer N E, et al. Ionic structure and interactions in1-methyl-3-ethylimidazolium chloride-aluminum chloride molten salts. Journalof the American Chemical Society,1988,110(9):2722-2726
    [310]Dutt G B. Influence of specific interactions on the rotational dynamics ofcharged and neutral solutes in ionic liquids containing tris(pentafluoroethyl)trifluorophosphate (FAP) anion. The Journal of Physical Chemistry B,2010,114(27):8971-8977
    [311]Zhao Q, Eichhorn J, Pitner W, et al. Using the solvation parameter modelto characterize functionalized ionic liquids containing the tris(pentafluoroethyl)trifluorophosphate (FAP) anion. Analytical and Bioanalytical Chemistry,2009,395(1):225-234
    [312]Rooney D, Jacquemin J, Gardas R. Thermophysical properties of ionic liquids.Topics in current chemistry,2010,290:185-212
    [313]Ghatee M H, Zare M, Moosavi F, et al. Temperature-dependent density andviscosity of the ionic liquids1-alkyl-3-methylimidazolium iodides: Experimentand molecular dynamics simulation. Journal of Chemical&Engineering Data,2010,55(9):3084-3088
    [314]Marken F, Tsai Y-C, Coles B A, et al. Microwave activation of electrochemicalprocesses: Convection, thermal gradients and hot spot formation at theelectrode|solution interface. New Journal of Chemistry,2000,24(9):653-658
    [315]Sun J J, Guo L, Zhang D F, et al. Heated graphite cylinder electrodes.Electrochemistry Communications,2007,9(2):283-288
    [316]Forzani E S, Lu D, Leright M J, et al. A hybrid electrochemical-colorimetricsensing platform for detection of explosives. Journal of the American ChemicalSociety,2009,131(4):1390-1391

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700