多孔炭材料制备及电容性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级电容器作为新型储能元件,由于循环寿命长,可逆性良好,能量密度和功率密度高等的优点,一经问世便受到广泛关注。其中,电极材料作为超级电容器的重要组成部分,很大程度上决定了超级电容器的性能。研究表明,具有大比表面积,高电导率,适当孔径分布和规则孔道结构,化学性质稳定的多孔炭材料能够成为理想的电极材料。本文采用水蒸汽活化废轮胎热解炭黑,模板-水热法,模板-溶剂蒸发法制备出具有不同孔道结构的碳质多孔材料,并考察了其在水系电解液(6MKOH)中的电化学性能。论文主要研究内容与结果如下:
     (1)采用水蒸汽活化处理纯化后的热解炭黑制备活性炭。随着活化温度,活化时间的增加,活性炭的产率逐渐减小,比表面积和孔体积逐渐增加,微孔体积逐渐减小,说明活化过程中炭与水蒸汽发生氧化反应,使孔径不断扩大。综合考虑活化过程中炭材料的产率及所得炭材料的孔道结构特点,选取AC-800-4和AC-850-2炭材料进行进一步的电化学性能研究。研究结果表明,所制备的活性炭材料具有良好的电化学可逆性,其中AC-800-4的比电容较高(110Fg-1),等效串联电阻较小(0.34Ω),但电荷转移电阻和频率的响应时间增加。原因可能是水蒸汽活化处理过程中,AC-800-4炭材料具有较窄的孔道结构和较高的官能团含量。其中,窄的孔道结构不利于电解液在材料内部的扩散传输,使频率的响应时间增加;材料表面含氧官能团增加,一方面,改善材料表面润湿性,使电化学反应过程中等效串联电阻降低,另一方面,其氧化还原反应产生赝电容,使整体比电容提高,但同时使电荷转移电阻增加。
     采用浓硝酸对AC-800-4进行表面改性处理,改性后活性炭的形貌、孔道结构和石墨微晶结构基本保持不变,含氧官能团含量增加,电化学性能明显提高,比电容从110Fg-1提高到140Fg-1,且循环性能良好。这主要是由于引入的含氧官能团可以增加材料表面的极性,改善材料表面润湿性,增加电极材料与电解液的有效接触面积;同时在充放电过程中发生氧化还原反应,形成赝电容,从而增加电极材料的比电容。
     (2)分别以葡萄糖和酚醛树脂为碳源,Si02溶胶为模板,采用水热方法制备具有不同结构特征和表面化学组成的碳空心球
     以葡萄糖为碳源合成的碳空心球g-CHS形状规则,大小均一,表面光滑,分散性良好,具有介孔/大孔核及微孔壳构成的多级孔道结构,且材料表面连有一定的含氧官能团。以酚醛树脂为碳源合成的碳空心球p-CHS表面粗糙,壁厚不均匀,团聚现象严重。球壁内部丰富的微孔,空心球核和空心球团聚形成介孔和大孔结构,构成材料的多级孔道结构。与g-CHS材料相比,p-CHS材料的微孔含量增加,石墨化程度降低,表面官能团含量增加。
     电化学性能研究结果显示:g-CHS电极材料显示了较为优越的电化学性能,具有较高的质量比电容和面积比电容(266F g-1和40.4μFcm-2),且循环性能稳定,倍率性能良好。这主要是由于,与g-CHS相比,p-CHS材料因具有较高的微孔率,不利于电解液离子在电极材料中的扩散与传输,使电解液与电极表面的接触电阻增加,材料的有效接触面积降低,材料的比电容减小,尤其在大电流密度下的充放电性能变差;较高的官能团含量,使p-CHS电极材料呈现混合电容特征,一方面由于赝电容的存在,材料的比电容有所提高,另一方面电荷转移电阻增加,循环过程中官能团易发生不可逆反应,导致容量衰减。
     (3)以葡萄糖为碳源,SiO2溶胶为模板,采用更为简单的溶剂蒸发方法制备蜂窝状的多孔炭材料g-HHPC。所得g-HHPC材料由相互连接的中大孔孔道及较短的微孔孔道构成,具有部分石墨化结构,表面连有一定的含氧官能团。
     对比具有相似比表面积,孔体积及石墨化程度的碳空心球g-CHS,g-HHPC电极材料具有较高的质量比电容(272Fg-1)和面积比电容(41.5μF cm-2),良好的倍率性能,电极的响应时间短,说明g-HHPC材料内部相互连接的介孔/大孔结构,使电解液极易进入孔道,有利于电解液离子在材料内部的快速传输,较短的微孔孔道结构使电解液在材料内部的扩散距离减小,有效接触面积增加。但g-HHPC电极材料的电容衰减率相对较大(22%),说明含氧稍高的表面官能团,虽然有利于改善材料的表面润湿性,提高材料的比电容,但循环过程中不稳定易发生不可逆的还原反应造成比电容的衰减。
     总之,电极材料的电化学性能是材料孔道结构和表面化学组成等几个方面综合作用的结果。材料的孔道结构中,大孔和介孔有利于电解质离子的扩散传输,微孔有利于提高电解液离子与电极的有效接触面积。材料的表面含氧官能团,一方面改善材料的润湿性,提高电极表面对电解液离子的吸附,降低材料的等效串联电阻,另一方面,引入的含氧官能团可能与水分子结合,空间位阻增加,使材料的孔径减小,阻碍电解液离子在孔道内的传输,同时由于发生氧化还原反应,使电极等效串联电阻及电荷转移电阻增加。
As new energy storge devices, supercapacitors have received extensive attention because of their unique including long cycle life, superior reversibility, and high energy and power density. In general, the electrode material, as an important part of the supercapacitor, is crucial to ensure a good performance of the supereapacitor. Among the exploration of supercapacitor electrode materials, porous carbon materials are considered as the main candidate for supercapacitors in terms of large surface area, high conductivity, suitable pore size distribution and regular structure, long-term cycle stablity, as well as electrochemical reproducibility.
     Based on the consideration, a series of carbon materials with different surface areas and pore structures were prepared by steam activation from the industrial pyrolytic char, tenplate-solvothermal method and tenplate-solvent evaporation method. And the electrochemical performances of the carbons as supercapacitor electrode materials were investigated in6M KOH electrolyte. The main results are shown as follows:
     (1) Activated carbons (ACs) derived from the industrial pyrolytic tire char were prepared by steam activation and first evaluated as potential electrode materials for supercapacitor. With the activation temperature and time increasing, the surface areas and pore volumes of ACs increase gradually, while the micropore volume decreases. This suggests a continuous widening of pores featured in the development of mesopores and macropore at the expense of micropores and surface area. Base on the yield and textural properties, the ACs obtained at800℃for4h (AC-800-4) and850℃for2h (AC-850-2) are selected to study the electrochemical performances as supercapacitor electrode material. The results demonstrate that the obtained ACs display good eletrochemical properties. Compared to the AC-850-2electrode, the AC-800-4electrode has a higher capacitance (110F g-1), lower equivalent series resistance (0.34Ω), but processes a larger charge transfer resistance and time constant, which could be attributed to less pore size and higher content of oxygen-containing functional groups.
     The AC-800-4was further modified by concentrated nitric acid (labeled as m-AC) and then used as electrode material for supercapacitors. It is found that the morphology, porous texture and localized graphitic structure for the AC-800-4and m-AC have little difference, but the oxygen content increases and the functional groups change after acid treatment. The electrochemical results demonstrate that the m-AC electrode displays higher specific capacitance (140F g-1), better stability and cycling performance, which can be attributed to the increase of surface oxygen-containing functional groups introduced by acid treatment. These groups can improve the wettability of the electrode to enhance the utilization efficiency of the surface area and bring stable pseudocapacitance, leading to a notable improvement of the specific capacitance and the cycle performance.
     (2) Carbon hollow-spheres with different structure and surface chemical properties were prepared by hydrothermal treatment directly using colloidal silica as template, glucose and phenolic resol as carbon source (marked as g-CHS and p-CHS), respectively.
     The carbon hollow-spheres using glucose as carbon source (g-CHS) have regular shape, uniform size, smooth surface and homogeneous dispersion. In the meantime, the as-prepared sample possesses a hierarchical porous structure with micropore shell and meso/macropore core and moderate oxygen functional groups. While, the carbon hollow-spheres using phenolic resol as carbon source (p-CHS) have rough surface, nonuniform wall thickness and serious partical agglomeration. Compared with the g-CHS, the p-CHS have more micropore structure, lower degree of graphitization and higher oxygen content.
     On the comparison study for the electrochemical performances as supercapacitor electrode materials, it shows that the g-CHS electrodes possess higher specific capacitance (about266F g-1at1A g-1in KOH aqueous electrolyte), longer cyclic life and more excellent rate capability, which can be attributed to the higher ratio of mesopores/macropores, facilitating fast ion diffusion and offering a good charge accommodation. Furthermore, the p-CHS show the characteristics of the hybrid capacitor due to the high oxygen content, which enhance the specific capacitance but negatively influence the cycle stability.
     (3) Honeycomb hierarchical porous carbon was prepared by an easy solvent evaporation method directly using colloidal silica as template, glucose as carbon source (marked as g-HHPC). The as-prepared sample possesses three-dimensionally honeycomb-like sturcture with interconnected meso/macropore and abundant micropore, low degree of graphitization and moderate oxygen functional groups.
     Compared with the g-CHS with similar specific surface area, pore volume and degree of graphitization, the obtained HHPC as an electrode material exhibits better capacitive performances with higher specific capacitances (about292F g-1and44.5μF cm-2at1A g-1in KOH aqueous electrolyte), better electrochemical stability and rate capability, and less time constant, which can be mainly attributed to the unique three-dimensional hierarchical porous structure, not only promoting the mass transfer/diffusion of ions into the pores effectively but also offering a good environment for charge accumulation. While, the higher capacitance loss of22%could be due to the slow reduction of functional groups during cycling in a non-reversible way.
     In summary, the electrochemical properties of the electrode materials depend upon several parameters, for instance, the porous structure and the surface chemical properties. And the effects of these parameters are interlinked and revealed in combination. For the porous structure, mesopores and macropores can promote the mass transfer/diffusion of ions into the pores, while micropores can yield a higher surface area for charge accumulation. For the surface oxygen-containing functional groups, on the one hand, these groups can improve the wettability of the electrode to enhance the utilization efficiency of the surface area and bring pseudocapacitance, leading to a notable improvement of the capacitive performance. On the other hand, the introduced functional groups may result in pore obstruction and increase the charge transfer resistance due to the redox reaction of the functional groups.
引文
[1]S. Guo, S. Dong. Graphene nanosheet:synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev,2011,40 (5):2644-2672
    [2]P. Simon, Y. Gogotsi. Capacitive Energy Storage in Nanostructured Carbon-Electrolyte Systems. Acc Chem Res,2013,46 (5):1094-1103
    [3]M. D. Stoller, R. S. Ruoff. Best practice methods for determining an electrode material's performance for ultracapacitors. Energy Environ Sci,2010,3 (9):1294-1301
    [4]M. Winter, R. J. Brodd. What Are Batteries, Fuel Cells, and Supercapacitors? Chem Rev,2004, 104 (10):4245-4270
    [5]P. Simon, Y. Gogotsi. Materials for electrochemical capacitors. Nat Mater,2008,7 (11): 845-854
    [6]S. G. Kandalkar, D. S. Dhawale, C.-K. Kim, C. D. Lokhande. Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application. Synth Met,2010,160 (11-12): 1299-1302
    [7]C. Largeot, C. Portet, J. Chmiola, P.-L. Taberna, Y. Gogotsi, P. Simon. Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor. J Am Chem Soc,2008,130 (9): 2730-2731
    [8]A. Ghosh, Y. H. Lee. Carbon-Based Electrochemical Capacitors. ChemSusChem,2012,5 (3): 480-499
    [9]P. J. Hall, M. Mirzaeian, S. I. Fletcher, F. B. Sillars, A. J. R. Rennie, G O. Shitta-Bey, G. Wilson, A. Cruden, R. Carter. Energy storage in electrochemical capacitors:designing functional materials to improve performance. Energy Environ Sci,2010,3 (9):1238-1251
    [10]L. L. Zhang, X. S. Zhao. Carbon-based materials as supercapacitor electrodes. Chem Soc Rev, 2009,38 (9):2520-2531
    [11]R. Kotz, M. Carlen. Principles and applications of electrochemical capacitors. Electrochim Acta, 2000,45 (15-16):2483-2498
    [12]H. Jiang, L. Yang, C. Li, C. Yan, P. S. Lee, J. Ma. High-rate electrochemical capacitors from highly graphitic carbon-tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires. Energy Environ Sci,2011,4 (5):1813-1819
    [13]A. G. Pandolfo, A. F. Hollenkamp. Carbon properties and their role in supercapacitors. J Power Sources,2006,157 (1):11-27
    [14]D. S. Su, R. Schlogl. Nanostructured Carbon and Carbon Nanocomposites for Electrochemical Energy Storage Applications. ChemSusChem,2010,3 (2):136-168
    [15]C. Z. Yuan, B. Gao, L. F. Shen, S. D. Yang, L. Hao, X. J. Lu, F. Zhang, L. J. Zhang, X. G. Zhang. Hierarchically structured carbon-based composites:Design, synthesis and their application in electrochemical capacitors. Nanoscale,2011,3 (2):529-545
    [16]G. Wang, L. Zhang, J. Zhang. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev,2012,41 (2):797-828
    [17]B. E. Conway. Electrochemical Supercapacitors:Scientific Fundamentals and Technological Applications. Plenum Publisher:New York,1999.
    [18]P. A. Egelstafff. Introduction to the Liquid State. Academic Press:New York,1967.
    [19]R. P. Marchi, H. Eyring. Application of Significant Structure Theory to Waterl. J Phys Chem, 1964,68 (2):221-228
    [20]H. Wang, H. S. Casalongue, Y. Liang, H. Dai. Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials. J Am Chem Soc,2010,132 (21): 7472-7477
    [21]张治安,杨邦朝,邓梅根,胡永达.超级电容器氧化锰电极材料的研究进展.无机材料学报,2005,(03):529-536
    [22]J. H. Han, S. W. Lee, S. K. Kim, S. Han, C. S. Hwang, C. Dussarrat, J. Gatineau. Growth of RuO2 Thin Films by Pulsed-Chemical Vapor Deposition Using RuO4 Precursor and 5% H2 Reduction Gas. Chem Mater,2010,22 (20):5700-5706
    [23]D. L. Fang, B. C. Wu, A. Q. Mao, Y. Yan, C. H. Zheng. Supercapacitive properties of ultra-fine MnO2 prepared by a solid-state coordination reaction. J Alloys Compd,2010,507 (2):526-530
    [24]S. Y. Wang, K. C. Ho, S. L. Kuo, N. L. Wu. Investigation on Capacitance Mechanisms of Fe3O4 Electrochemical Capacitors. J Electrochem Soc,2006,153 (1):A75-A80
    [25]Q. Liu, M. H. Nayfeh, S. T. Yau. Brushed-on flexible supercapacitor sheets using a nanocomposite of polyaniline and carbon nanotubes. J Power Sources,2010,195 (21): 7480-7483
    [26]S. Toita, K. Inoue. Improved electrical and thermal properties of polypyrrole prepared by the repetition of a combination of chemical polymerization and 2-naphthalenesulfonic acid treatment. Synth Met,2010,160 (5-6):516-518
    [27]H. I. Becker, Low voltage electrolytic capacitor [P]. USP,2800616,1957-7-23
    [28]陈英放,李媛媛,邓梅根.超级电容器的原理及应用.电子元件与材料,2008,(04):6-9
    [29]张杜鹊,欧阳海,胡欢.超级电容器在电动汽车上的应用.汽车工程师,2009,(06):56-58
    [30]许检红,王然,陈经坤,王勇.超级电容器在电动汽车上应用的研究进展.电池工业,2008,(05):344-348
    [31]周新民,孙晖.新型储能元件综述——超级电容及其应用.变频器世界,2009,(06):28-30
    [32]张步涵,王云玲,曾杰.超级电容器储能技术及其应用.水电能源科学,2006,(05):50-52
    [33]刘春娜.超级电容器应用展望.电源技术,2010,(09):979-980
    [34]T. B. Atwater, P. J. Cygan, F. C. Leung. Man portable power needs of the 21st century:I. Applications for the dismounted soldier. II. Enhanced capabilities through the use of hybrid power sources. J Power Sources,2000,91 (1):27-36
    [35]张琦,王金全.超级电容器及应用探讨.电气技术,2007,(08):67-70
    [36]V. Ganesh, S. Pitchumani, V. Lakshminarayanan. New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon. J Power Sources, 2006,158 (2):1523-1532
    [37]S. M. Halpin, R. L. Spyker, R. M. Nelms, R. F. Burch. Application of double-layer capacitor technology to static condensers for distribution system voltage control. IEEE Trans Power Syst, 1996,11 (4):1899-1904
    [38]E. Raymundo-Pinero, F. Leroux, F. Beguin. A High-Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer. Adv Mater,2006,18 (14):1877-1882
    [39]O. Barbieri, M. Hahn, A. Herzog, R. Kotz. Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon,2005,43 (6):1303-1310
    [40]E. Raymundo-Pinero, K. Kierzek, J. Machnikowski, F. Beguin. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon,2006,44 (12):2498-2507
    [41]K. Kierzek, E. Frackowiak, G. Lota, G Gryglewicz, J. Machnikowski. Electrochemical capacitors based on highly porous carbons prepared by KOH activation. Electrochim Acta,2004, 49 (4):515-523
    [42]D. Qu, H. Shi. Studies of activated carbons used in double-layer capacitors. J Power Sources, 1998,74 (1):99-107
    [43]M. Endo, T. Maeda, T. Takeda, Y. J. Kim, K. Koshiba, H. Hara, M. S. Dresselhaus. Capacitance and Pore-Size Distribution in Aqueous and Nonaqueous Electrolytes Using Various Activated Carbon Electrodes. J Electrochem Soc,2001,148 (8):A910-A914
    [44]G Salitra, A. Soffer, L. Eliad, Y. Cohen, D. Aurbach. Carbon Electrodes for Double-Layer Capacitors I. Relations Between Ion and Pore Dimensions. J Electrochem Soc,2000,147 (7): 2486-2493
    [45]H. Shi. Activated carbons and double layer capacitance. Electrochim Acta,1996,41 (10): 1633-1639
    [46]Y. Guo, J. Qi, Y. Jiang, S. Yang, Z. Wang, H. Xu. Performance of electrical double layer capacitors with porous carbons derived from rice husk. Mater Chem Phys,2003,80 (3): 704-709
    [47]P. Azai's, L. Duclaux, P. Florian, D. Massiot, M. A. Lillo-Rodenas, A. Linares-Solano, J. P. Peres, C. Jehoulet, F. Beguin. Causes of supercapacitors ageing in organic electrolyte. J Power Sources, 2007,171 (2):1046-1053
    [48]M. Seredych, D. Hulicova-Jurcakova, G Q. Lu, T. J. Bandosz. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon,2008,46 (11):1475-1488
    [49]M. Zhu, C. J. Weber, Y. Yang, M. Konuma, U. Starke, K. Kern, A. M. Bittner. Chemical and electrochemical ageing of carbon materials used in supercapacitor electrodes. Carbon,2008,46 (14):1829-1840
    [50]K. H. An, W. S. Kim, Y. S. Park, J. M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee, Y. H. Lee. Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes. Adv Funct Mater,2001,11 (5):387-392
    [51]J. Huang, B. G. Sumpter, V. Meunier. Theoretical Model for Nanoporous Carbon Supercapacitors. Angew Chem Int Ed,2008,47 (3):520-524
    [52]A. H. Lu, F. Schuith. Nanocasting:A Versatile Strategy for Creating Nanostructured Porous Materials. Adv Mater,2006,18 (14):1793-1805
    [53]Y. Zhai, Y. Dou, D. Zhao, P. F. Fulvio, R. T. Mayes, S. Dai. Carbon Materials for Chemical Capacitive Energy Storage. Adv Mater,2011,23 (42):4828-4850
    [54]X. S. Zhao, F. Su, Q. Yan, W. Guo, X. Y. Bao, L. Lv, Z. Zhou. Templating methods for preparation of porous structures. J Mater Chem,2006,16 (7):637-648
    [55]S. Yoon, J. Lee, T. Hyeon, S. M. Oh. Electric Double-Layer Capacitor Performance of a New Mesoporous Carbon. J Electrochem Soc,2000,147 (7):2507-2512
    [56]R. Ryoo, S. H. Joo, M. Kruk, M. Jaroniec. Ordered Mesoporous Carbons. Adv Mater,2001,13 (9):677-681
    [57]S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki. Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure. J Am Chem Soc,2000, 122 (43):10712-10713
    [58]R. Ryoo, S. H. Joo, S. Jun. Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. J Phys Chem B,1999,103 (37):7743-7746
    [59]J. Lee, S. Yoon, T. Hyeon, S. M. Oh, K. Bum Kim. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors. Chem Commun,1999,0 (21): 2177-2178
    [60]J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna. Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer. Science,2006,313 (5794): 1760-1763
    [61]S. Han, K. T. Lee, S. M. Oh, T. Hyeon. The effect of silica template structure on the pore structure of mesoporous carbons. Carbon,2003,41 (5):1049-1056
    [62]T. Kyotani. Control of pore structure in carbon. Carbon,2000,38 (2):269-286
    [63]A. B. Fuertes. Template synthesis of mesoporous carbons with a controlled particle size. J Mater Chem,2003,13 (12):3085-3088
    [64]W. Xing, S. Z. Qiao, R. G. Ding, F. Li, G. Q. Lu, Z. F. Yan, H. M. Cheng. Superior electric double layer capacitors using ordered mesoporous carbons. Carbon,2006,44 (2):216-224
    [65]A. B. Fuertes, F. Pico, J. M. Rojo. Influence of pore structure on electric double-layer capacitance of template mesoporous carbons. J Power Sources,2004,133 (2):329-336
    [66]Y. Meng, D. Gu, F. Zhang, Y. Shi, H. Yang, Z. Li, C. Yu, B. Tu, D. Zhao. Ordered mesoporous polymers and homologous carbon frameworks:amphiphilic surfactant templating and direct transformation. Angew Chem Int Ed Engl,2005,44 (43):7053-7059
    [67]Y. Meng, D. Gu, F. Zhang, Y. Shi, L. Cheng, D. Feng, Z. Wu, Z. Chen, Y. Wan, A. Stein, D. Zhao. A Family of Highly Ordered Mesoporous Polymer Resin and Carbon Structures from Organic-Organic Self-Assembly. Chem Mater,2006,18 (18):4447-4464
    [68]Y. G Wang, H. Q. Li, Y. Y. Xia. Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance. Adv Mater,2006,18 (19):2619-2623
    [69]Y. Yan, Q. Cheng, G. Wang, C. Li. Growth of polyaniline nanowhiskers on mesoporous carbon for supercapacitor application. J Power Sources,2011,196 (18):7835-7840
    [70]Y. S. Choi, S. H. Joo, S.-A. Lee, D. J. You, H. Kim, C. Pak, H. Chang, D. Seung. Surface Selective Polymerization of Polypyrrole on Ordered Mesoporous Carbon:Enhancing Interfacial Conductivity for Direct Methanol Fuel Cell Application. Macromolecules,2006,39 (9):3275-3282
    [71]X. Dong, W. Shen, J. Gu, L. Xiong, Y. Zhu, H. Li, J. Shi. Mn02-Embedded-in-Mesoporous-Carbon-Wall Structure for Use as Electrochemical Capacitors. J Phys Chem B,2006,110 (12):6015-6019
    [72]S. Zhu, H. Zhou, M. Hibino, I. Honma, M. Ichihara. Synthesis of MnO2 Nanoparticles Confined in Ordered Mesoporous Carbon Using a Sonochemical Method. Adv Funct Mater,2005,15 (3): 381-386
    [73]J. Huang, B. G Sumpter, V. Meunier. A Universal Model for Nanoporous Carbon Supercapacitors Applicable to Diverse Pore Regimes, Carbon Materials, and Electrolytes. Chem Eur J,2008,14 (22):6614-6626
    [74]D. W. Wang, F. Li, M. Liu, G. Q. Lu, H. M. Cheng.3D Aperiodic Hierarchical Porous Graphitic Carbon Material for High-Rate Electrochemical Capacitive Energy Storage. Angew Chem Int Ed,2009,48 (9):1525-1525
    [75]H. Yamada, H. Nakamura, F. Nakahara, I. Moriguchi, T. Kudo. Electrochemical Study of High Electrochemical Double Layer Capacitance of Ordered Porous Carbons with Both Meso/Macropores and Micropores. J Phys Chem C,2006,111 (1):227-233
    [76]Q. Li, R. Jiang, Y. Dou, Z. Wu, T. Huang, D. Feng, J. Yang, A. Yu, D. Zhao. Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor. Carbon,2011,49 (4):1248-1257
    [77]H. K. Song, Y. H. Jung, K. H. Lee, L. H. Dao. Electrochemical impedance spectroscopy of porous electrodes:the effect of pore size distribution. Electrochim Acta,1999,44 (20): 3513-3519
    [78]G. J. Lee, S. I. Pyun. Theoretical Approach to Ion Penetration into Pores with Pore Fractal Characteristics during Double-Layer Charging/Discharging on a Porous Carbon Electrode. Langmuir,2006,22 (25):10659-10665
    [79]R. Brandt, R. Petricevic, H. Probstle, J. Fricke. Acetic Acid Catalyzed Carbon Aerogels. J Porous Mater,2003,10 (3):171-178
    [80]S. W. Hwang, S. H. Hyun. Capacitance control of carbon aerogel electrodes. J Non-Cryst Solids, 2004,347 (1-3):238-245
    [81]D. Wu, R. Fu, S. Zhang, M. S. Dresselhaus, G Dresselhaus. Preparation of low-density carbon aerogels by ambient pressure drying. Carbon,2004,42 (10):2033-2039
    [82]W. Li, G. Reichenauer, J. Fricke. Carbon aerogels derived from cresol-resorcinol-formaldehyde for supercapacitors. Carbon,2002,40 (15):2955-2959
    [83]Y. Zhu, H. Hu, W. C. Li, X. Zhang. Cresol-formaldehyde based carbon aerogel as electrode material for electrochemical capacitor. J Power Sources,2006,162 (1):738-742
    [84]R. Zhang, Y. Lu, L. Zhan, X. Liang, G. Wu, L. Ling. Monolithic carbon aerogels from sol-gel polymerization of phenolic resoles and methylolated melamine. Carbon,2003,41 (8): 1660-1663
    [85]H. Tamon, H. Ishizaka, T. Yamamoto, T. Suzuki. Preparation of mesoporous carbon by freeze drying. Carbon,1999,37 (12):2049-2055
    [86]H. Probstle, C. Schmitt, J. Fricke. Button cell supercapacitors with monolithic carbon aerogels. J Power Sources,2002,105 (2):189-194
    [87]C. Schmitt, H. Probstle, J. Fricke. Carbon cloth-reinforced and activated aerogel films for supercapacitors. J Non-Cryst Solids,2001,285 (1-3):277-282
    [88]R. Petricevic, M. Glora, J. Fricke. Planar fibre reinforced carbon aerogels for application in PEM fuel cells. Carbon,2001,39 (6):857-867
    [89]G. Lota, K. Fic, E. Frackowiak. Carbon nanotubes and their composites in electrochemical applications. Energy Environ Sci,2011,4 (5):1592-1605
    [90]L. L. Zhang, R. Zhou, X. S. Zhao. Graphene-based materials as supercapacitor electrodes. J Mater Chem,2010,20 (29):5983-5992
    [91]H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, Z. Gu. Growth of Manganese Oxide Nanoflowers on Vertically-Aligned Carbon Nanotube Arrays for High-Rate Electrochemical Capacitive Energy Storage. Nano Lett,2008,8 (9):2664-2668
    [92]E. Frackowiak, K. Jurewicz, S. Delpeux, F. Beguin. Nanotubular materials for supercapacitors. J Power Sources,2001,97-98 (0):822-825
    [93]C. Niu, E. K. Sichel, R. Hoch, D. Moy, H. Tennent. High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett,1997,70 (11):1480-1482
    [94]D. Zilli, P. R. Bonelli, A. L. Cukierman. Effect of alignment on adsorption characteristics of self-oriented multi-walled carbon nanotube arrays. Nanotechnology,2006,17 (20):5136
    [95]E. Frackowiak, F. Beguin. Carbon materials for the electrochemical storage of energy in capacitors. Carbon,2001,39 (6):937-950
    [96]W. Lu, L. Qu, K. Henry, L. Dai. High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes. J Power Sources,2009,189 (2): 1270-1277
    [97]S. Huang, L. Dai. Plasma Etching for Purification and Controlled Opening of Aligned Carbon Nanotubes. J Phys Chem B,2002,106 (14):3543-3545
    [98]E. Frackowiak, F. Beguin. Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon,2002,40 (10):1775-1787
    [99]C. Du, J. Yeh, N. Pan. High power density supercapacitors using locally aligned carbon nanotube electrodes. Nanotechnology,2005,16 (4):350
    [100]H. Zhang, G. P. Cao, Y. S. Yang. Using a cut-paste method to prepare a carbon nanotube fur electrode. Nanotechnology,2007,18 (19):195607
    [101]D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate,0. Tanaike, H. Hatori, M. Yumura, S. Iijima. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater,2006,5(12):987-994
    [102]Q. L. Chen, K. H. Xue, W. Shen, F. F. Tao, S. Y. Yin, W. Xu. Fabrication and electrochemical properties of carbon nanotube array electrode for supercapacitors. Electrochim Acta,2004,49 (24):4157-4161
    [103]E. Raymundo-Pinero, D. Cazorla-Amor6s, A. Linares-Solano, S. Delpeux, E. Frackowiak, K. Szostak, F. Beguin. High surface area carbon nanotubes prepared by chemical activation. Carbon,2002,40 (9):1614-1617
    [104]J. S. Ye, X. Liu, H. F. Cui, W. D. Zhang, F. S. Sheu, T. M. Lim. Electrochemical oxidation of multi-walled carbon nanotubes and its application to electrochemical double layer capacitors. Electrochem Commun,2005,7 (3):249-255
    [105]T. Bordjiba, M. Mohamedi, L. H. Dao. New Class of Carbon-Nanotube Aerogel Electrodes for Electrochemical Power Sources. Adv Mater,2008,20 (4):815-819
    [106]Y. T. Kim, K. Tadai, T. Mitani. Highly dispersed ruthenium oxide nanoparticles on carboxylated carbon nanotubes for supercapacitor electrode materials. J Mater Chem,2005,15 (46): 4914-4921
    [107]L. Su, X. Zhang, C. Yuan, B. Gao. Symmetric Self-Hybrid Supercapacitor Consisting of Multiwall Carbon Nanotubes and Co-Al Layered Double Hydroxides. J Electrochem Soc,2008, 155(2):A110-A114
    [108]Z. Chen, V. Augustyn, X. Jia, Q. Xiao, B. Dunn, Y. Lu. High-Performance Sodium-Ion Pseudocapacitors Based on Hierarchically Porous Nanowire Composites. ACS Nano,2012,6 (5):4319-4327
    [109]Z. Chen, V. Augustyn, J. Wen, Y. Zhang, M. Shen, B. Dunn, Y. Lu. High-Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites. Adv Mater,2011, 23 (6):791-795
    [110]Z. Chen, Y. Qin, D. Weng, Q. Xiao, Y. Peng, X. Wang, H. Li, F. Wei, Y. Lu. Design and Synthesis of Hierarchical Nanowire Composites for Electrochemical Energy Storage. Adv Funct Mater,2009,19 (21):3420-3426
    [111]A. K. Geim, K. S. Novoselov. The rise of graphene. Nat Mater,2007,6 (3):183-191
    [112]A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett,2008,8 (3):902-907
    [113]C. Lee, X. Wei, J. W. Kysar, J. Hone. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science,2008,321 (5887):385-388
    [114]Y. Sun, Q. Wu, G. Shi. Graphene based new energy materials. Energy Environ Sci,2011,4 (4): 1113-1132
    [115]B. Luo, S. Liu, L. Zhi. Chemical Approaches toward Graphene-Based Nanomaterials and their Applications in Energy-Related Areas. Small,2012,8 (5):630-646
    [116]W. Lv, D. M. Tang, Y. B. He, C. H. You, Z. Q. Shi, X. C. Chen, C. M. Chen, P. X. Hou, C. Liu, Q. H. Yang. Low-Temperature Exfoliated Graphenes:Vacuum-Promoted Exfoliation and Electrochemical Energy Storage. ACS Nano,2009,3 (11):3730-3736
    [117]Y. Xu, K. Sheng, C. Li, G Shi. Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process. ACS Nano,2010,4 (7):4324-4330
    [118]Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, M. Zhang, W. Qian, F. Wei. A Three-Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors. Adv Mater,2010,22 (33):3723-3728
    [119]M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff. Graphene-Based Ultracapacitors. Nano Lett, 2008,8 (10):3498-3502
    [120]Y. Zhu, M. D. Stoller, W. Cai, A. Velamakanni, R. D. Piner, D. Chen, R. S. Ruoff. Exfoliation of Graphite Oxide in Propylene Carbonate and Thermal Reduction of the Resulting Graphene Oxide Platelets. ACS Nano,2010,4 (2):1227-1233
    [121]S. R. C. Vivekchand, C. Rout, K. S. Subrahmanyam, A. Govindaraj, C. N. R. Rao. Graphene-based electrochemical supercapacitors. J Chem Sci,2008,120 (1):9-13
    [122]S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang. Graphene Oxide-MnO2 Nanocomposites for Supercapacitors. ACS Nano,2010,4 (5):2822-2830
    [123]J. Yan, T. Wei, B. Shao, F. Ma, Z. Fan, M. Zhang, C. Zheng, Y. Shang, W. Qian, F. Wei. Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors. Carbon,2010,48 (6):1731-1737
    [124]Y. Si, E. T. Samulski. Exfoliated Graphene Separated by Platinum Nanoparticles. Chem Mater, 2008,20 (21):6792-6797
    [125]H. Jiang, C. Li, T. Sun, J. Ma. High-performance supercapacitor material based on Ni(OH)2 nanowire-MnO2 nanoflakes core-shell nanostructures. Chem Commun,2012,48 (20): 2606-2608
    [126]H. Jiang, T. Sun, C. Li, J. Ma. Hierarchical porous nanostructures assembled from ultrathin MnO2 nanoflakes with enhanced supercapacitive performances. J Mater Chem,2012,22 (6): 2751-2756
    [127]H. Jiang, T. Zhao, J. Ma, C. Yan, C. Li. Ultrafine manganese dioxide nanowire network for high-performance supercapacitors. Chem Commun,2011,47 (4):1264-1266
    [128]J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, M. Zhang, F. Wei. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon,2010,48 (2):487-493
    [129]Z. S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H. M. Cheng. Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance. ACS Nano,2010,4 (6):3187-3194
    [130]K. Zhou, Y. Zhu, X. Yang, C. Li. One-pot preparation of graphene/Fe3O4 composites by a solvothermal reaction. New J Chem,2010,34 (12):2950-2955
    [131]Y. Huang, J. Liang, Y. Chen. An Overview of the Applications of Graphene-Based Materials in Supercapacitors. Small,2012,8 (12):1805-1834
    [132]A. Sumboja, X. Wang, J. Yan, P. S. Lee. Nanoarchitectured current collector for high rate capability of polyaniline based supercapacitor electrode. Electrochim Acta,2012,65 (0): 190-195
    [133]Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi. Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films. ACS Nano,2010,4 (4):1963-1970
    [134]J. J. Xu, K. Wang, S. Z. Zu, B. H. Han, Z. X. Wei. Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage. ACS Nano,2010,4 (9):5019-5026
    [135]朱坦,金国平,刘长.我国废旧轮胎循环利用行业的发展情况及建议.环境保护,2008,(20):12-15
    [136]陆永其.我国废橡胶资源综合利用技术进展.再生资源研究,2005,(04):19-22
    [137]刘长.中国轮胎资源循环利用行业发展及政策导向.橡塑技术与装备,2008,(03):5-15
    [138]X. Zhang, T. Wang, L. Ma, J. Chang. Vacuum pyrolysis of waste tires with basic additives. Waste Manag,2008,28 (11):2301-2310
    [139]E. Mui, D. K.o, G. McKay. Production of active carbons from waste tyres—a review. Carbon, 2004,42 (14):2789-2805
    [140]M. Betancur, J. D. Martinez, R. Murillo. Production of activated carbon by waste tire thermochemical degradation with CO2. J Hazard Mater,2009,168 (2-3):882-887
    [141]I. de Marco Rodriguez, M. F. Laresgoiti, M. A. Cabrero, A. Torres, M. J. Chomon, B. Caballero. Pyrolysis of scrap tyres. Fuel Process Technol,2001,72 (1):9-22
    [142]A. Zabaniotou. Pyrolysis of used automobile tires and residual char utilization. J Anal Appl Pyrolysis,2003,70 (2):711-722
    [143]R. Murillo, M. V. Navarro, T. Garcia, J. M. Lopez, M. S. Callen, E. Aylon, A. M. Mastral. Production and Application of Activated Carbons Made from Waste Tire. Ind Eng Chem Res, 2005,44 (18):7228-7233
    [144]R. Helleur, N. Popovic, M. Ikura, M. Stanciulescu, D. Liu. Characterization and potential applications of pyrolytic char from ablative pyrolysis of used tires. J Anal Appl Pyrolysis,2001, 58-59 (0):813-824
    [145]A. Quek, R. Balasubramanian. Removal of copper by oxygenated pyrolytic tire char:kinetics and mechanistic insights. J Colloid Interface Sci,2011,356 (1):203-210
    [146]E. Manchon-Vizuete, A. Macias-Garcia, A. Nadal Gisbert, C. Fernandez-Gonzalez, V. Gomez-Serrano. Adsorption of mercury by carbonaceous adsorbents prepared from rubber of tyre wastes. J Hazard Mater,2005,119 (1-3):231-238
    [147]E. L. Mui, W. H. Cheung, G. McKay. Tyre char preparation from waste tyre rubber for dye removal from effluents. J Hazard Mater,2010,175 (1-3):151-158
    [148]F. Lian, F. Huang, W. Chen, B. Xing, L. Zhu. Sorption of apolar and polar organic contaminants by waste tire rubber and its chars in single-and bi-solute systems. Environ Pollut,2011,159 (4): 850-857
    [149]G San Miguel. A study of the characteristics of activated carbons produced by steam and carbon dioxide activation of waste tyre rubber. Carbon,2003,41 (5):1009-1016
    [150]R. Murillo. Activation of pyrolytic tire char with CO2:kinetic study. J Anal Appl Pyrolysis, 2004,71 (2):945-957
    [151]A. Aranda, R. Murillo, T. Garcia, M. S. Callen, A. M. Mastral. Steam activation of tyre pyrolytic carbon black:Kinetic study in a thermobalance. Chem Eng J,2007,126 (2-3):79-85
    [152]R. Pietrzak, K. Jurewicz, P. Nowicki, K. Babel, H. Wachowska. Nitrogen-enriched bituminous coal-based active carbons as materials for supercapacitors. Fuel,2010,89 (11):3457-3467
    [153]R. Pietrzak, K. Jurewicz, P. Nowicki, K. Babel, H. Wachowska. Microporous activated carbons from ammoxidised anthracite and their capacitance behaviours. Fuel,2007,86 (7-8):1086-1092
    [154]G. Gryglewicz, J. Machnikowski, E. Lorencgrabowska, G. Lota, E. Frackowiak. Effect of pore size distribution of coal-based activated carbons on double layer capacitance. Electrochim Acta, 2005,50(5):1197-1206
    [155]W. Chen, H. Zhang, Y. Huang, W. Wang. A fish scale based hierarchical lamellar porous carbon material obtained using a natural template for high performance electrochemical capacitors. J Mater Chem,2010,20 (23):4773
    [156]T. E. Rufford, D. Hulicova-Jurcakova, K. Khosla, Z. Zhu, G. Q. Lu. Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. J Power Sources,2010,195 (3):912-918
    [157]J. Bae, M. K. Song, Y. J. Park, J. M. Kim, M. Liu, Z. L. Wang. Fiber Supercapacitors Made of Nanowire-Fiber Hybrid Structures for Wearable/Flexible Energy Storage. Angew Chem Int Ed, 2011,50 (7):1683-1687
    [158]J. R. Miller, R. A. Outlaw, B. C. Holloway. Graphene Double-Layer Capacitor with ac Line-Filtering Performance. Science,2010,329 (5999):1637-1639
    [159]J. R. Miller, P. Simon. Electrochemical Capacitors for Energy Management. Science,2008,321 (5889):651-652
    [160]R. Liu, S. M. Mahurin, C. Li, R. R. Unocic, J. C. Idrobo, H. Gao, S. J. Pennycook, S. Dai. Dopamine as a Carbon Source:The Controlled Synthesis of Hollow Carbon Spheres and Yolk-Structured Carbon Nanocomposites. Angew Chem Int Ed,2011,50 (30):6799-6802
    [161]A. H. Lu, W. C. Li, G. P. Hao, B. Spliethoff, H. J. Bongard, B. B. Schaack, F. Schuth. Easy Synthesis of Hollow Polymer, Carbon, and Graphitized Microspheres. Angew Chem Int Ed, 2010,49(9):1615-1618
    [162]J. Hu, M. Chen, X. Fang, L. Wu. Fabrication and application of inorganic hollow spheres. Chem Soc Rev,2011,40 (11):5472-5491
    [163]R. Liu, J. Duay, S. B. Lee. Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chem Commun,2011,47 (5):1384-1404
    [164]K. T. Lee, Y. S. Jung, S. M. Oh. Synthesis of Tin-Encapsulated Spherical Hollow Carbon for Anode Material in Lithium Secondary Batteries. J Am Chem Soc,2003,125 (19):5652-5653
    [165]H. J. Liu, W. J. Cui, L. H. Jin, C. X. Wang, Y. Y. Xia. Preparation of three-dimensional ordered mesoporous carbon sphere arrays by a two-step templating route and their application for supercapacitors. J Mater Chem,2009,19 (22):3661-3667
    [166]A. Nieto-Marquez, R. Romero, A. Romero, J. L. Valverde. Carbon nanospheres:synthesis, physicochemical properties and applications. J Mater Chem,2011,21 (6):1664-1672
    [167]C. Liang, N. J. Dudney, J. Y. Howe. Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery. Chem Mater,2009,21(19):4724-4730
    [168]G. He, X. Ji, L. Nazar. High "C" rate Li-S cathodes:sulfur imbibed bimodal porous carbons. Energy Environ Sci,2011,4 (8):2878-2883
    [169]X. Chen, K. Kierzek, Z. Jiang, H. Chen, T. Tang, M. Wojtoniszak, R. J. Kalenczuk, P. K. Chu, E. Borowiak-Palen. Synthesis, Growth Mechanism, and Electrochemical Properties of Hollow Mesoporous Carbon Spheres with Controlled Diameter. J Phys Chem C,2011,115 (36): 17717-17724
    [170]C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier, F. Beguin. Electrochemical energy storage in ordered porous carbon materials. Carbon,2005,43 (6): 1293-1302
    [171]I. Moriguchi, F. Nakahara, H. Furukawa, H. Yamada, T. Kudo. Colloidal Crystal-Templated Porous Carbon as a High Performance Electrical Double-Layer Capacitor Material. Electrochem Solid-State Lett,2004,7 (8):A221-A223
    [172]F. Li, N. v. d. Laak, S. W. Ting, K. Y. Chan. Varying carbon structures templated from KIT-6 for optimum electrochemical capacitance. Electrochim Acta,2010,55 (8):2817-2823

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700