形貌可控介孔硅的合成与介孔孔道方向控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1992年Mobil公司发现M41s以来,有序介孔材料因在吸附、分离、催化等领域具有重要的应用价值而成为研究者关注的焦点之一;而介孔材料的形貌、尺寸、孔径、介孔孔道方向等功能化控制又对其应用有着重要影响。本论文通过在油-液界面与固-液界面上合成具有特定形貌的介孔二氧化硅,对介孔孔道方向的控制进行了较为深入的研究,主要内容如下:
     以正硅酸乙酯为硅源、P123为介孔模板剂、苯的微乳滴为空心球球核模板,通过溶胶-凝胶法,在苯-水的油-液界面上,水热合成了介孔孔道沿径向垂直穿透球壳的二氧化硅空心球。研究发现,苯对P123胶束的初始定向作用是介孔孔道沿径向分布的原因;球壳上的介孔孔道是互相连通的;以介孔硅空心球为硬模板,糠醇为碳的前驱体,草酸为糠醇聚合催化剂,通过纳米浇铸法,合成了介孔碳空心球
     通过分步向阳极氧化铝膜(AAO)的孔道内加入正硅酸乙酯与P123酸溶液,使正硅酸乙酯与P123酸溶液在AAO孔道内壁上分层分布,并水解、聚合、自组装,在AAO孔道与反应物的固-液界面上合成了介孔孔道垂直穿透管壁的硅纳米管;其形貌取决于AAO的孔道结构,管壁上的介孔孔径约为10 nm,呈平面六方排列。研究发现,吸附在AAO孔道内壁上的正硅酸乙酯与P123酸溶液水解形成的溶胶的量,是决定硅纳米管管壁上介孔孔道方向的原因:当溶胶生成的硅纳米管壁厚小于2个介孔孔道重复周期时,介孔孔道垂直穿透硅纳米管管壁,管壁厚度约为15 nm ;当壁厚大于2个介孔孔道重复周期时,介孔孔道环绕管轴或者平行管轴,管壁厚度约为40-60 nm。在合成介孔孔道垂直穿透管壁的硅纳米管过程中,在硅源中加入助剂苯,可以扩大管壁上的介孔孔径至15nm左右,此时介孔的有序度下降。研究发现,改变正硅酸乙酯与P123酸溶液向AAO孔道中添加的顺序,通过抽滤AAO膜,调节孔道中反应物的摩尔比,同样可以合成具有不同介孔孔道方向的硅纳米管,但是介孔的有序度下降。以正硅酸乙酯在P123酸溶液中预水解形成的SBA-15前驱体在AAO孔道内反应,可以合成介孔孔道方向垂直膜片的致密SiO2-AAO复合膜;盐酸溶解AAO膜,得到介孔孔道平行长轴的SBA-15纳米线。
     在聚碳酸酯膜孔道的内壁上同样可以合成介孔孔道垂直穿透管壁的硅纳米管。通过调变聚碳酸酯膜孔道的直径可以合成具有不同管径的硅纳米管,分别为200、100和50nm。由于聚碳酸酯膜孔道曲率的影响,硅纳米管管壁上介孔有序度随着管径的减小而降低,逐渐从平面六方排列趋向不规则。
Ordered mesoporous materials have been studied extensively in the fields of adsorption, separation, catalysis and so on, since the discovery of M41s by Mobil in 1992. Methods to tune the morphology, pore and particle size of the mesoporous materials, as well as control the direction of the nanochannels of mesopores have become a hot issue for the purpose of practical applications. Current work mainly focused on the synthesis of mesoporous materials with particular morphology at the interface of oil-liquid and solid-liquid, especially on the direction control of the nanochannels of mesopores. The details are as follows:
     Hollow silica spheres with a mesoporous shell perforated by hexagonally-arrayed cylindrical nanochannels have been synthesized by sol-gel method with TEOS as silica source, P123 as template agent, and benzene microemulsion droplets as a core template for hollow sphere. The initial orientation of P123 micelles determined by the role of benzene decides the direction of the nanochannels of mesopores which perforate the shell along radial direction. The nanochannels are inter-connected. Hollow carbon spheres with a mesoporous shell are synthesized via nano-casting method using mesoporous hollow silica spheres as hard templates, furfuryl alcohol as carbon precursor, and oxalic acid as polymerization catalyst.
     Silica nanotubes with a mesoporous wall are synthesized in the channel of Anodic alumina oxide membrane (AAO) by sol-gel method using TEOS as silica source and P123 solution as template agent which are added to the channels one after another. The morphology of the silica nanotube depends on the pore structure of AAO. The thickness of the gel formed via the hydolysis of TEOS and acid solution of P123 on the channel surface of AAO determines the direction of the nanochannels of mesopores in the silica nonotube wall. When the thickness of the gel is less than two repeat distances of mesopores, the nanochannels of the mesopores perforate the silica nanotube wall vertically; when the thickness of the gel is thicker than two repeat distances of mesopores, the nanochannels of the mesopores surround the nanotube axis or parallel to the axis. And the thickness of the nanotube wall is about 15 and 40-60 nm respectively. The size of the hexagonally-arrayed mesopores in the silica nanotube wall is about 10 nm. Adding benzene to TEOS can expand the diameter of mesopores to 15 nm, and the arrangement of the mesopores is less ordered. SiO2-AAO composite membrane with perpendicular nanochannels of mesopores can be synthesized with precursor solution of SBA-15 formed via pre-hydrolysis of TEOS in the acid solution of P1 23. After the dissolution of Anodic alumina oxide membrane by hydrochloric acid, silica nanorods with nanochannels of mesopores parallel to the long axis are obtained.
     Silica nanotubes with mesopores perforating the wall vertically are also synthesized on the channel surface of polycarbonate membranes. The diameter of the silica nanotube is determined by the diameter of the pores of polycarbonate membranes, which is about 200, 100,50 nm respectively. Due to the curvature impact of the silica nanotube, the order degree of the mesopores in the wall reduces with the decreasing of the nanotube diameter, namely, hexagonally-arrayed mesopores trend to arrange irregularly.
引文
[1]Sing K S W, Everett D H, Mouscou H L. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity Pure and Applied Chemistry,1985,57:603.
    [2]II R K. The Chemistry of Silica. New York:Wiley,1971.
    [3]Yanagisawa T, Shimizu T, Kuroda K, et al. The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. Bulletin of the Chemical Society of Japan,1990,63:988-992.
    [4]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature,1992,359:710-712.
    [5]Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society,1992, 114:10834-10843.
    [6]Vartuli J C, Schmitt K D, Kresge C T, et al. Effect of Surfactant/Silica Molar Ratio on the Formation of mesoporous molecular sieves:Inorganic mimicry of surfactant liquid-crystal phase and mechanistic implications. Chemistry of Materials,1994, 6:2317-2326.
    [7]Chen C Y, Burkett S L, Li H X, et al. Studies on mesoporous materials Ⅱ. Synthesis mechanism of MCM-41. Microporous Materials,1993,2:27-34.
    [8]Firouzi A, Kumar D, Bull L M, et al. Cooperative Organization of Inorganic-Surfactant and Biomimetic Assemblies. Science,1995,267:1138-1143.
    [9]Huo Q, Margolese D I, Ciesla U, et al. Organization of organic-molecules with inorganic molecular-species into nanocomposite biphase arrays. Chemistry of Materials,1994, 6:1176-1191.
    [10]Huo Q S, Margolese D I, Ciesla U, et al. Generalized synthesis of periodic surfactant inorganic composite-materials. Nature,1994,368:317-321.
    [11]徐如人,庞文琴.分子筛与多孔材料化学.北京:科学出版社557.
    [12]Stucky G D, Huo Q S, Firouzi A, et al. Designed synthesis of organic/inorganic nanocomposite structures. Progress in Zeolite and Microporous Materials,1997,3-28.
    [13]Israelanchvili J N, Mitchell D J, Ninham B W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions.2,1976,72:1525-1568.
    [14]Israelanchvili J N. Intermolecular&Surface Forces. London:Academic Press,1991.
    [15]Anderson M T, Martin J E, Odinek J G, et al. Surfactant-templated silica mesophases formed in water:Cosolvent mixtures. Chemistry of Materials,1998,10:311-321.
    [16]Tanev P T, Pinnavaia T J. Mesoporous silica molecular sieves prepared by ionic and neutral surfactant templating:A comparison of physical properties. Chemistry of Materials, 1996,8:2068-2079.
    [17]Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science,1998,279:548-532.
    [18]Zhao D, Huo Q, Feng J, et al. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. Journal of the American Chemical Society,1998,120:6024-6036.
    [19]Corma A, Kan Q B, Navarro M T, et al. Synthesis of MCM-41 with different pore diameters without addition of auxiliary organics. Chemistry of Materials,1997,9:2123-2126.
    [20]Yamada T, Zhou H, Asai K, et al. Pore size controlled mesoporous silicate powder prepared by triblock copolymer templates. Materials Letters,2002,56:93-96.
    [21]Huo Q S, Margolese D I, Stucky G D. Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chemistry of Materials,1996,8:1147-1160.
    [22]Khushalani D, Kuperman A, Ozin G A, et al. Metamorphic materials:Restructuring siliceous mesoporous materials. Advanced Materials,1995,7:842-846.
    [23]Sun J H, Moulijn J A, Jansen K C, et al. Alcothermal synthesis under basic conditions of an SBA-15 with long-range order and stability. Advanced Materials,2001,13:327-331.
    [24]Fan J, Yu C Z, Lei J, et al. Low-Temperature Strategy to Synthesize Highly Ordered Mesoporous Silicas with Very Large Pores. Journal of the American Chemical Society,2005, 127:10794-10795.
    [25]Ulagappan N, Rao C N R. Evidence for supramolecular organization of alkane and surfactant molecules in the process of forming mesoporous silica. Chemical Communications, 1996,24:2759-2760.
    [26]Blin J L, Otjacques C, Herrier G, et al. Pore size engineering of mesoporous silicas using decane as expander. Langmuir,2000,16:4229-4236.
    [27]Blin J L, Su B L. Tailoring pore size of ordered mesoporous silicas using one or two organic auxiliaries as expanders. Langmuir,2002,18:5303-5308.
    [28]Schmidt-Winkel P, Lukens W W, Zhao D, et al. Mesocellular siliceous foams with uniformly sized cells and windows. Journal of the American Chemical Society,1999,121:254-255.
    [29]Lettow J S, Han Y J, Schmidt-Winkel P, et al. Hexagonal to mesocellular foam phase transition in poymer-templated mesoporous silicas. Langmuir,2000,16:8291-8295.
    [30]Zhao D Y, Sun J Y, Li Q Z, et al. Morphological control of highly ordered mesoporous silica SBA-15. Chemistry of Materials,2000,12:275-279.
    [31]Jana S K, Nishida R, Shindo K, et al. Pore size control of mesoporous molecular sieves using different organic auxiliary chemicals. Microporous and Mesoporous Materials,2004, 68:133-142.
    [32]Cai Q, Lin W Y, Xiao F S, et al. The preparation of highly ordered MCM-41 with extremely low surfactant concentration. Microporous and Mesoporous Materials,1999,32:1-15.
    [33]Kim J M, Kim S K, Ryoo R. Synthesis of MCM-48 single crystals. Chemical Communications, 1998,2:259-260.
    [34]Kaneda M, Tsubakiyama T, Carlsson A, et al. Structural study of mesoporous MCM-48 and carbon networks synthesized in the spaces of MCM-48 by electron crystallography. Journal of Physical Chemistry,2002,106:1256-1266.
    [35]Kong L D, Liu S, Yan X W, et al. Synthesis of MCM-48 single crystals with cube morphology. Chemistry Letters,2005,34:568-569.
    [36]Yu C Z, Tian B Z, Fan J, et al. Nonionic block copolymer synthesis of large-pore cubic mesoporous single crystals by use of inorganic salts. Journal of the American Chemical Society,2002,124:4556-4557.
    [37]Zhang F Q, Gu D, Yu T, et al. Mesoporous carbon single-crystals from organic-organic self-assembly. Journal of the American Chemical Society,2007,129:7746-7747.
    [38]Che S, Sakamoto Y, Terasaki 0, et al. Control of crystal morphology of SBA-1 mesoporous silica. Chemistry of Materials,2001,13:2237-2239.
    [39]Chen B C, Chao M C, Lin H P, et al. Faceted single crystals of mesoporous silica sba-16 from a ternary surfactant system:Surface roughening model. Microporous and Mesoporous Materials,2005,81:241-249.
    [40]Bruinsma P J, KimA Y, Liu J, et al. Mesoporous Silica Synthesized by Solvent Evaporation: Spun Fibers and Spray-Dried Hollow Spheres. Chemistry of Materials,1997,9:2507-2512.
    [41]Wang J, Zhang J, Asoo B Y, et al. Structrue-selective synthesis of mesostructured/ mesoporous silica nanofibers. Journal of the American Chemical Society,2003,125:13966-13967.
    [42]Marlow F, Spliethoff B, Tesche B, et al. The Internal Architecture of Mesoporous Silica Fibers. Advanced Materials,2000,12:961-965.
    [43]Zhang H, Sun J M, Ma D, et al. Unusual Mesoporous SBA-15 with Parallel Channels Running along the Short Axis. Journal of the American Chemical Society,2004,126:7440-7441.
    [44]Yang P D, Zhao D Y, Chmelka B F, et al. Triblock-copolymer-directed syntheses of large-pore mesoporous silica fibers. Chemistry of Materials,1998,10:2033.
    [45]Wakayama H, Fukushima Y. Nanoporous silica prepared with activated carbon molds using supercritical CO2. Chemistry of Materials,2000,12:756-761.
    [46]Q S Huo, J L Feng, F Schuth, et al. Preparation of hard mesoporous silica spheres. Chemistry of Materials,1997,9:14-17.
    [47]Nooney R I, Thirunavukkarasu D, Chen Y, et al. Synthesis of nanoscale mesoporous silica spheres with controlled particle size. Chemistry of Materials,2002,14:4721-4728.
    [48]Cai Q, Luo Z, Pang W, et al. Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium. Chemistry of Materials,2001,13:258-263.
    [49]Fowler C E, Khushalani D, Lebeau B, et al. Nanoscale Materials with Mesostructured Interiors. Advanced Materials,2001,13:649-652.
    [50]Suzuki K, Ikari K, Imai H, et al. Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system. Journal of the American Chemical Society, 2004,126:462-463.
    [51]Luo Q, Li L, Xue Z, et al. Synthesis of Nanometer-sized Mesoporous Silica and Alumina Spheres. Studies in Surface Science and Catalysis,2000,129:37-43.
    [52]Macquarrie D J. Direct preparation of organically modified MCM-type materials. Preparation and characterisation of aminopropyl-MCM and 2-cyanoethyl-MCM. Chemical Communications,1996,16:1961-1962.
    [53]Yang H, Coombs N, Sakolov I, et al. Free-standing and oriented mesoporous silica films grown at the air-water interface. Nature,1996,381:589-592.
    [54]Lu Y F, Ganguli R, Drewien C A, et al. Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating. Nature,1997,389:364-368.
    [55]Sellinger A, Weiss P M, Nguyen A, et al. Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre. Nature,1998,394:256-260.
    [56]Lu Y F, Fan H Y, Doke N, et al. Evaporation-Induced Self-Assembly of Hybrid Bridged Silsesquioxane Film and Particulate Mesophases with Integral Organic Functionality. Journal of the American Chemical Society,2000,122:5258-5261.
    [57]Chen B C, Lin H P, Chao M-C, et al. Mesoporous Silica Platelets with Perpendicular Nanochannels via a Ternary Surfactant System. Advaced Materials,2004,16:1657-1661.
    [58]Walcarius A, Sibottier E, Etienne M, et al. Electrochemically Assisted Self-assembly of Mesoporous Silica Thin Films. Nature Materials,2007,6:602-608.
    [59]Zhao D, Yang P D, Margolese D I, et al. Synthesis of continuous mesoporous silica thin films with three-dimensional accessible pore structures. Chemical Communications,1998, 22:2499-2500.
    [60]Tolbert S H, Schaffer T E, Feng J, et al.A New Phase of Oriented Mesoporous Silicate Thin Films. Chemistry of Materials,1997,9:1962-1967.
    [61]Zhao D, Yang P, Melosh N, et al. Continuous Mesoporous Silica Films with Highly Ordered Large Pore Structures. Advanced Materials,1998,10:1380-1385.
    [62]Yang P, Zhao D, Margolese D I, et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature,1998,396:152-155.
    [63]Zhao D, Yang P, Chmelka B F, et al. Multiphase Assembly of Mesoporous-Macroporous Membranes, Chemistry of Materials,1999,11,1174-1178.
    [64]Alberius P C A, Frindell K L, Hayward R C, et al. General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films. Chemistry of Materials,2002,14:3284-3294.
    [65]Crepaldi E L, Soler-Illia G, Grosso D, et al. Design and post-functionalisation of ordered mesoporous zirconia thin films. Chemical Communications,2001,17:1582-1583.
    [66]Schacht S, Huo Q, Voigt-Martin G, et al. Oil-Water Interface Templating of Mesoporous Macroscale Structures. Science,1996,273:768-771.
    [67]Liu J, Li C M, Yang Q H, et al. Morphological and Structural Evolution of Mesoporous Silicas in a Mild Buffer Solution and Lysozyme Adsorption. Langmuir,2007,23:7255.
    [68]Sun Q Y, Kooyman P J, Grossmann J G, et al. The Formation of Well-Defined Hollow Silica Spheres with Multilamellar Shell Structure. Advanced Materials,2003,15:1097-1100.
    [69]Lin H P, Mou C Y, Liu S B, et al. Hollow spheres of MCM-41 aluminosilicate with pinholes. Chemical Communications,2001,19:1970-1971.
    [70]Lin H P, Cheng Y R, Mou C Y. Hierarchical Order in Hollow Spheres of Mesoporous Silicates. Chemistry of Materials,1998,10:3772-3776.
    [71]Yi-Qi Yeh, Bi-Chang Chen, Hong-Ping Lin, et al. Synthesis of Hollow Silica Spheres with Mesostructured Shell Using Cationic-Anionic-Neutral Block Copolymer Ternary Surfactants. Langmuir,2006,22:6-9.
    [72]Tanev P T, Pinnavaia T. Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies. Science,1996,271:1267-1269.
    [73]Bruinsma P J, KimA Y, Liu J, et al. Mesoporous Silica Synthesized by Solvent Evaporation: Spun Fibers and Spray-Dried Hollow Spheres. Chemistry of Materials,1997,9:2507-2512.
    [74]Singh P S, Kosuge K. Flaky, Ultrathin Mesoporous Silica Laminas. Chemistry Letters, 1998,27:63-64.
    [75]Singh P S, Kosuge K. The Synthesis of Mesoporous Silica Spheres by Octylamine Templating. Chemistry Letters,1998,101-102.
    [76]Lu Y, Fan H, Stump A, et al. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature,1999,398:223-226.
    [77]Brinker C J, Lu Y, Sellinger A, et al. Evaporation-Induced Self-Assembly: Nanostructures Made Easy. Advanced Materials,1999,11:579-585.
    [78]Yu C, Tian B, Fan J, et al. Synthesis of Siliceous Hollow Spheres with Ultra Large Mesopore Wall Structures by Reverse Emulsion Templating. Chemistry Letters,2002,62-63.
    [79]党文修,韩书华,侯万国等.介孔氧化硅材料形貌的研究进展.化学通报,2004,67:1-9
    [80]Lin H P, Mou C Y. Tubules-within-a-tubule hierarchical order of mesoporous molecular sieves MCM-41. Science,1996,273:765-768.
    [81]Lin H P, Mou C Y, Liu S B. Ammonia Hydrothermal Treatment on Mesoporous Silica Structure Synthesized from Acidic Route. Chemistry Letters,1999,28:1341-1342.
    [82]Kleitz F, Wilczok U, Schuth F, et al. Hollow mesoporous silica fibers:tubules by coils of tubules. Physical Chemistry Chemical Physics,2001,3:3486-3489.
    [83]Harada M, Adachi M. Surfactant-Mediated Fabrication of Silica Nanotubes.Advanced Materials,2000,12:839-841.
    [84]Adachi M, Harada T, Harada M, et al. Formation Processes of Silica Nanotubes through a Surfactant-Assisted Templating Mechanism in Laurylamine Hydrochloride/Tetraethoxy-silane System. Langmuir,2000,16:2376-2384.
    [85]Miyaji F, Davis S A, Charmant J P H, et al. Organic Crystal Templating of HollowSilica Fibers. Chemistry of Materials,1999,11:3021-3024.
    [86]Wang L, Tomura S, Ohashi F, et al. Hydrogen adsorption characteristics of Li-dispersed silica nanotubes. Journal of materials science,2001,11:1465-1468.
    [87]Yang S M, Sokolov I, Coombs N, et al. Formation of Hollow Helicoids in Mesoporous Silica: Supramolecular Origami. Advanced Materials,1999,11:1427-1431.
    [88]Wu X, Ruan J, Ohsuna T, et al. A Novel Route for Synthesizing Silica Nanotubes with Chiral Mesoporous Wall Structures. Chemistry of Materials,2007,19:1577-1583.
    [89]Yu Y, Qiu H, Wu X W, et al. Synthesis and Characterization of Silica Nanotubes with Radially Oriented Mesopores. Advanced Functional Materials,2008,18:541-550.
    [90]Chen C C, Liu Y C, Wu C H, et al. Preparation of Fluorescent Silica Nanotubes and Their Application in Gene Delivery. Advanced Materials,2005,17:404-407.
    [91]Yang Z L, Niu Z W, Cao X Y, et al. Template Synthesis of Uniform ID Mesostructured Silica Materials and Their Arrays in Anodic Alumina Membranes. Angewandte Chemie International Edition,2003,42:4201-4203.
    [92]Wu Y Y, Cheng G S, Katsov K, et al. Composite mesostructures by nano-confi nement. Nature Materials,2004,3:816-822.
    [93]Liang Z J, Susha A S. Mesostructured Silica Tubes and Rods by Templating Porous Membranes. Chemistry A European Journal,2004,10:4910-4914.
    [94]Yang H, Coombs N, Ozin G A. Morphogenesis of shapes and surface patterns in mesoporous silica. Nature,1997,386:692-695.
    [95]Ozin G A, Yang H, Sokolov I, et al. Shell mimetics. Advanced Materials,1997,9 (8): 662-667.
    [96]Yang H, Ozin G A, Kresge C T. The Role of Defects in the Formation of Mesoporous Silica Fibers, Films, and Curved Shapes. Advanced Materials,1998,10 (11):883-887.
    [97]Sokolov I, Yang H, Ozin G A, et al. Radial Patterns in Mesoporous Silica. Advanced Materials,1999,11:636-642.
    [98]Yang S M, Yang H, Coombs N, et al. Morphokinetics:Growth of Mesoporous Silica Curved Shapes. Advanced Materials,1999,11:52-55.
    [99]Feng J, Huo Q, Petroff P M, et al. Morphology definition by disclinations and dislocations in a mesostructured silicate crystal. Applied Physics Letters,1997,71: 620-622.
    [100]Lin H P, Wong S T, Mou C Y, et al. Extensive Void Defects in Mesoporous Aluminosilicate MCM-41. The Journal of Physical Chemistry B,2000,104:8967-8975
    [101]Caruso F, Shi X, Caruso R A, et al. Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core Particles. Advanced Materials.2001,13:740-744.
    [102]Bourlinos B, Karakassides M A, Petridis D. Synthesis and characterization of hollow clay microspheres through a resin template approach. Chemical Communications.2001: 1518-1519.
    [103]Janssen A H, Voort P V D, Ravikovitch P I, et al. A 3D-TEM study of the shape of mesopores in SBA-15 and modified SBA-15 materials. Chemical Communications.2002: 1010-1012.
    [104]徐如人,庞文琴。 分子筛与多孔材料化学.北京:科学出版社569.
    [105]Ravikovitch P I, Neimark A V. Density Functional Theory of Adsorption in Spherical Cavities and Pore Size Characterization of Templated Nanoporous Silicas with Cubic and Three-Dimensional Hexagonal Structures. Langmuir.2002,18:1550-1560.
    [106]罗永明,侯昭胤,郑小明。低浓度液体酸介质中快速合成SBA-15分子筛。化学学报,2007,1481-1486。
    [107]Lettow J S, Han Y, Schmidt-Winkel J P, et al. Hexagonal to mesocellular foam phase transition in polymer-templated mesoporous silicas. Langmuir,2000,16:8291-8295.
    [108]Lu A-H, Schuth F. Nanocasting:A versatile strategy to create nanostructured porous materials, Advanced Materials.2006,18:1793-1805.
    [109]Lu A-H, W Li, Schmidt W, et al. Easy synthesis of an ordered mesoporous carbon with a hexagonally packed tubular structure. Carbon.2004,42:2939-2948.
    [110]Ryoo R, Joo S H, Jun S. Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. The Journal of Physical Chemistry B.1999,103: 7743-7746.
    [111]Arnal P M, Schuth F, Kleitz F. A versatile method for the production of monodisperse spherical particles and hollow particles:Templating from binary core-shell structures. Chemical Communications.2006:1203-1206.
    [112]Walcarius A and Delacote C. Rate of Access to the Binding Sites in Organically Modified Silicates.3. Effect of structure and density of functional groups in mesoporous solids obtained by the co-condensation route. Chemistry of Materials,2003,15:4181-4192.
    [113]Hoppe R, Ortlam A, Rathousky J, et al. Synthesis of titanium-containing MCM-41 mesoporous molecular sieves in the presence of zinc phthalocyanine and rhodamine B. Microporous Materials,1997,8:267-273.
    [114]Munoz B, Ramila A, Perez-Pariente J, et al. MCM-41 organic modification as drug delivery rate regulator. Chemistry of Materials,2003,15:500-503.
    [115]Davis S A, Breulmann M, Rhodes K H, et al. Template-directed assembly using nanoparticle building blocks:A nanotectonic approach to organized materials. Chemistry of Materials, 2001,13:3218-3226.
    [116]Kruk M, Jaroniec M, Ko C H et al. Characterization of the porous structure of SBA-15, Chemistry of Materials,2000,12:1961-1968
    [117]Broekhoff J C P, De Boer J H. Studies on pore systems in catalysts:Ⅹ. Calculations of pore distributions from the adsorption branch of nitrogen sorption isotherms in the case of open cylindrical pores B. Applications. Journal of Catalysis,1967,9:15-27.
    [118]Broekhoff J C P, De Boer J H. Studies on pore systems in catalysts:ⅫⅠ. Pore distributions from the desorption branch of a nitrogen sorption isotherm in the case of cylindrical pores B. Applications. Journal of Catalysis,1968,10:377-390.
    [119]Gregg S J, Sing K S W. In Adsorption, Surface Area and Porosity, Academic Press, New York,1982.
    [120]Yeh Y Q, Chen B C, Lin H P, et al. Synthesis of hollow silica spheres with mesostructured shell using cationic-anionic-neutral block copolymer ternary surfactants. Langmuir,2006, 22:6-9.
    [121]Kruk M, Jaroniec M, Joo S H, et al. Characterization of Regular and Plugged SBA-15 Silicas by Using Adsorption and Inverse Carbon Replication and Explanation of the Plug Formation Mechanism. The Journal of Physical Chemistry B,2003,107:2205-2213.
    [122]Huo Q, Zhao D, Feng J, et al. Room temperature growth of mesoporous silica fibers: A new high-surface-area optical waveguide. Advanced Materials.1997,9:974-978.
    [123]Marlow F, McGehee M D, Zhao D, et al. Doped Mesoporous Silica Fibers:A New Laser Material. Advanced Materials,1999,11:632-636.
    [124]Loerke J, Marlow F. Laser Emission from Dye-Doped Mesoporous Silica Fibers. Advanced Materials,2002,14:1745-1749.
    [125]Fan J, Lei J, Wang L, et al. Rapid and high-capacity immobilization of enzymes based on mesoporous silicas with controlled morphologies. Chemical Communications,2003: 2140-2141.
    [126]刘光宗。流体力学原理与分析方法。北京:高等教育出版社,1992。
    [127]Van Di jk M A, Van den Berg R. Ordering Phenomena in Thin Block Copolymer Films Studied Using Atomic Force Microscopy. Macromolecules,1995,28:6773-6778.
    [128]Huinink H P, Brokken-Zijp J C M, Van Dijk M A. Asymmetric block copolymers confined in a thin film. The Journal of Chemical Physics,2000,112:2452-2462.
    [129]Huo Q, Margolese D I, Ciesla U, et al. Organization of organic-molecules with inorganic molecular- species into nanocomposite biphase arrays. Chemistry of Materials,1994,6: 1176-1191.
    [130]Huo Q, Margolese D I, Ciesla U, et al. Generalized synthesis of periodic surfactant/inorganic composite materials. Nature,1994,368:317-321.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700