纤维素碳微球的水热法制备及电化学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在众多形式各异、功能独特的碳材料中,碳微球以其结构形貌规整、导热系数高、耐热性能良好、物理与化学性能稳定等优越性,引起研究人员的广泛关注,在电磁学、生物、物理、化学化工、材料学等多个领域具有巨大的应用价值。因此,碳微球的制备与研究工作具有重要意义。在众多的制备方法中,水热法具有原料价廉易得、成本投入低、生产能耗少、工艺绿色环保、设备简单易操作等优点,成为近年来制备碳微球的研究热点。
     本论文以纤维素为原料,分别以去离子水和添加不同质量分数的乙醇溶液为分散剂,采用水热法成功制备了碳微球材料。通过单因素实验,研究了碳化温度、反应时间、原料投料比以及助剂(无水乙醇)添加量等参数对碳微球微观形貌、晶态结构及表面官能团的影响规律,同时对纤维素水热碳化的机理作了分析和探讨,并对添加乙醇助剂所得碳微球的电化学性能进行了初步测试。
     研究工作得出的主要结果如下:
     (1)选取纤维素棉浆为原料、去离子水作分散剂,采用水热法制备得到微米级的碳微球,通过碳化温度和反应时间可调节微观形貌、晶态结构及粒径尺寸。碳化起始温度为230℃,此后随温度升高纤维素转变为无定形的碳粉末材料;随着反应时间的延长,产物的球化趋势随之增大,碳微球的形貌良好,但同时球颗粒的粒径均匀度降低。
     (2)以纤维素为碳源、乙醇水溶液为分散剂,利用水热碳化法制得碳微球材料。最佳反应参数为:原料与分散剂的投料比为1.Og/25mL、助剂乙醇的质量分数为60wt%、碳化温度为320℃、保温时间为24h。在此实验条件下,可合成出形貌良好、粒径均匀、成球率高的碳微球。
     (3)利用水热法制得的碳微球,其表面可直接生成羟基、羰基、羧基、醛基及末端炔基等官能团,且反应过程有一定的芳构化。即:碳化过程与表面功能化改性可一步完成,省却了传统碳材料制备工艺中的表面修饰和改性工作。
     (4)添加乙醇助剂制得的碳微球材料呈现一定的石墨化,在循环伏安性能测试中表现出可逆电容量的改善和提高。乙醇百分量达到60%时,碳微球材料的电容量和充放电时间达到最佳。同时发现,成球数量越高,石墨化度越大,电极材料的比容量的衰减程度越低。
In recent years, much attention has been attracted to the carbonaceous microshperes for many investigators, owing to the trim structure, morphology, unique thermodynamical properties, physical and chemical stabilities. Compared to different forms of functional carbonaceous materials, carbon microspheres have been motivated by the potential applications in various fields ranging from electromagnetism, biological sciences, physics, chemical industry, and materialogy. Accordingly, the synthesis of carbon spheres attracts considerable significance for both academic and industrial fields. A process, termed hydrothermal carbonization (HTC), appears especially important contributed to the low cost, renewable resource, simplicity facility, economic and environmental procedure, and has generated widespread interest recently.
     The thesis focused on the preparation of carbonaceous spheres materials via hydrothermal carbonization. Cellulose as raw materials was dispersed in deionized water and different mass percents of ethanol solution, respectively. The effects of various reaction parameters on superficial morphology, crystalline structure and functional group were evaluated, including carbonization temperature, reaction time, rate of charge and additive amount. Meanwhile, the carbonization mechanism of cellulose and electrochemical performance of carbon spheres through alcohol additions preliminarily were investigated.
     The main conclusions are summarized as follows:
     (1) Using cellulose as precursor and deionized water as dispersant agent, carbon microspheres were synthesized by means of hydrothermal process. Superficial morphology, crystalline structure and partical size were modulated through carbonization temperature and reaction time. The result suggest the onset of hydrothermal reaction occurred at around230℃. In the wake of reaction time lengthening, the spheroidization and morphology of products became well, whereas the partical homogeneity got low.
     (2) Carbonaceous spheres materials were prepared via hydrothermal method, with cellulose was dispersed in ethanol solution. The optimal reaction parameter was as follows:the ratio of charge was1.0g/25mL, mass fraction of ethanol was60wt%, carbonization temperature was320℃and time was24h. In this condition, regular morphology and uniform grain size could be synthesized successfully.
     (3) The shell of carbonaceous microspheres possessed directly reactive functional group, such as hydroxyl, carbonyl, carboxyl and aldehyde. Even it generated aromatization in the core. That is, not only carbonization but also functional modification could be achieved concurrently. It dispensed with the surface modification treatment in the traditional preparation of carbon materials.
     (4) Carbon micro-spheres which were produced by means of ethanol additives displayed graphitization and presented the improvement of reversible electric capacity in cyclic voltammetry. The electric capacity and charge-discharge time attained optimum while mass fraction of ethanol was60wt%. Meanwhile the result showed specific capacity attenuation weakened with carbon spheres got more and the degree of graphitization became higher.
引文
[1]胡勇胜,徐庆,陈文.新型碳材料的研究现状[J].材料导报,2001,15(5):50-51.
    [2]林凤龙,章文贡,俞海莉,等.新型棒状碳材料的制备与表征[J].化学工程与装备,2008,2:11-13.
    [3]梁吉雷,吴明铂,刘以红,等.生物质水热合成炭微球研究进展[J].化工新型材料,2011,39(4):1-4.
    [4]程立强,刘应亮,张静娴,等.球形碳材料的研究进展[J].化学进展,2006,18(10):1298-1302.
    [5]马艾丽,王晓敏,李天保,等.高性能碳微球的合成与结构表征[J].电子显微学报,2006,25(6):485-489.
    [6]李同起,王成扬.中间相炭微球研究进展[J].炭素技术,2002,3:24-29.
    [7]许斌,陈鹏.中间相碳微珠(MCMB)的开发、性质和应用[J].新型碳材料,1996,11(3):4-8.
    [8]沈曾民.新型碳材料[M].北京:化学工业出版,2003:241-242.
    [9]马晓军,赵广杰.新型生物质碳材料的研究进展[J].林业科学,2008,3(44):147-150.
    [10]李泽胜,李庆余,王红强,等.活性中间相碳微球在不同电解液中电化学性能[J].电源技术,2010,34(5):147-150.
    [11]黄可龙,兆翔,刘素琴.锂离子电池原理与关键技术[M].北京:化学工业出版社,2008:21-23.
    [12]曹阳.碳、ZnO/碳多孔微球制备及其在锂离子电池负极上的应用研究[D].湖北:华中师范大学,2009.
    [13]王成扬,李鹏,郑嘉明.原生QI成核中间相炭微球的结构[J].新型炭材料,2000,15(4):9-12.
    [14]李同起,王成扬,郑嘉明,等.非均相成核中间相炭微球的形成过程及其结构演变[J].新型炭材料,2004,19(4):281-288.
    [15]Tokumitsu Katsuhisa, Hiroyuki Fujimoto, Mabuchi Akihiro, et al. High capacity carbon anode for Li-ion battery a theoretical explanation [J]. Carbon,1999,37:1599-1605.
    [16]Kim J.S., Yoon W.Y., Kwang Soo Yoo, et al. Charge-discharge properties of surface-modified carbon by resin coating in Li-ion battery [J]. Journal of Power Sources,2002, 104:175-180
    [17]Sun Xiaoming, Li Yadong. Ga2O3 and GaN semiconductor hollow spheres[J]. Angewandte Chemie International Edition,2004,43:3827-3831.
    [18]Sun Xiaoming, Liu Junfeng, Li Yadong. Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres[J]. Chemistry-A European Journal,2006,12:2039-2047.
    [19]李新贵,黄美荣.高性能中间相沥青基炭微球及碳片[J].材料科学与工艺,1997,5(3):92-96.
    [20]徐常威,刘应亮,沈培康.乙醇在炭微球负载催化剂上的电化学氧化[J].电池,2006,36(5):364-366.
    [21]Liu Yicheng, Qiu Xinping, Huang Yuqing, et al. Methanol electro-oxidation on meso-carbon supported Pt catalysts. Carbon,2002,40:2375-2380.
    [22]Yang Ruizhi, Qiu Xinping, Zhang Huairuo, et al. Monodispersed hard carbon spherules as a catalyst support for the electrooxidation of methanol. Carbon,2005,43:11-16.
    [23]Conway B.E. Transition from "supercapacitor" to "battery" behavior in electrochemical energy storage[J]. Journal of the Electrochemical Society,1991,138:1539-1548.
    [24]张治安,邓梅根,汪斌华,等.电化学混合电容器[J].电池,2004,34(4):295-297.
    [25]陈勇平.利用多糖制备无机纳米材料及其性能研究[D].江苏:南京航空大学,2007.
    [26]Schmitt.C, Probstle.H, J.Frieke. Carbon-cloth reinforced and activated aerogel films for super-capacitors [J]. Journal of Non-Crystalline Solids,2001,285:277-282.
    [27]张浩,曹高萍,杨裕生,等.电化学双电层电容器用新型炭材料及其应用前景[J].化学进展,2008,20(10):1495-1500.
    [28]Zhang Feibao, Li Hulin. Synthesis of hollow carbon microspheres in ionic liquids and their electrochemical capacitance characteristic[J]. Materials Chemistry and Physics, 2006,98:456-458.
    [29]张琳,刘洪波,张红波.双电层电容器用多孔炭材料的研究与开发[J].炭素,2003,116(4):3-9.
    [30]郭春雨,王成扬,时志强.活性中间相炭微球在超级电容器中的应用[J].电源技术,2007,31(3):179-182.
    [31]苏伟,周亚平,魏留芳,等.微孔结构与表面改性对活性炭吸附储氢能力的影响[J].新型炭材料,2007,22(2):135-140.
    [32]李铁虎,常天杰,冀勇斌,等.活性中间相炭微球的制备及机理研究[J].新型炭材料,2008,23(4):374-377.
    [33]Host J, Block J A, Parvin K, et al. Effect of annealing on the structure and magnetic pro-perties of graphite encapsulated nickel and cobalt nanocrystals[J]. Journal of Applied Physics,1998,3 (2):793
    [34]薛锐生,沈曾民,宋怀河.热缩聚工艺条件对中间相炭微球形成的影响[J].炭素,1999(3):8-14.
    [35]He Wenqi, Xiao Yong, Cheng Jialiang, et al. Preparation and characterization of olivary carbon by pyrolysis of ethanol with the manganese acetate as promoter via solvothermal method[J]. Journal of Materials Science,2011,46:1844-1849.
    [36]Wang Yong, Su Fabing, Lee Jim Yang, et al. Crystalline carbon hollow spheres, crystalline carbon-SnO2 hollowspheres, and crystalline SnO2 hollow spheres:synthesis and performance in reversible Li-Ion storage[J]. Chemistry of Material,2006, 18(5):1347-1353.
    [37]杨云鹏,姬晴,栾珊珊,等.CVD法裂解乙炔/聚丙烯复合碳源合成纳米碳球交联组成的海绵状碳材料[J].化工新型材料,2010,38(11):63-64.
    [38]蒋剑春.生物质能源应用研究现状与发展前景[J].林产化学与工业,2002,22(2):75-80.
    [39]Chen Chuyang, Sun Xudong, Jiang Xuchuan, et al. A two-step hydrothermal synthesis approach to monodispersed colloidal carbon spheres [J]. Nanoscale Research Letters, 2009,4:971-976.
    [40]谭三香,谭绍早,刘应亮,等.载铜活性炭微球的制备及抗菌性能[J].无机材料学报,2010,25(3):299-305.
    [41]Yao Chunhua, Shin Yongsoon, Wang Liqiong, et al. Hydrothermal dehydration of aqueous fructose solutions in a closed system[J]. The Journal of Physical Chemistry C,2007, 111:15141-15145.
    [42]Guiotoku.M, Rambo.C.R., Hansel.F.A.. Microwave-assisted hydrothermal carbonization of lignocellulosic materials[J]. Materials Letters,2009,63:2707-2709.
    [43]Sevilla Marta, Fuertes Antonio. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides[J]. Chemistry-A European Journal,2009,15:4195-4203.
    [44]Wang Qiang, Cao Fangyu, Chen Qianwang, et al. Preparation of carbon micro-spheres by hydrothermal treatment of methylcellulose sol[J]. Materials Letters,2005,59:3738-3741.
    [45]Steven M, Heilmann, Davis Ted, et al. Hydrothermal carbonization of microalgae[J]. Biomass and Bioenergy,2010,34:875-882.
    [46]许宗祥,林敬东,欧延,等.催化裂解C2H2制备空心碳球[J].物理化学学报,2003,19(11):1035-1038.
    [47]徐海锋,唐元洪,林良武,等.无金属催化化学气相沉积制备球形碳[J].功能材料,2010,41(6):935-938.
    [48]Wang Peng, Wei Jiyong, Huang Baibiao, et al. Synthesis and characterization of carbon spheres prepared by chemical vapor deposition[J]. Materials Letters,2007,61:4854-4856.
    [49]钟炜,杨君友,段兴凯,等.电弧等离子体法在纳米材料制备中的应用[J].材料导报,2007,21(5):14-16.
    [50]Qiu Jieshan, Lia Yongfeng, Wang Yunpeng, et al. A novel form of carbon micro-balls from coal[J]. Carbon,2003,41:767-772.
    [51]张光辉,闫早学,邹红丽,等.空心碳半球锂离子电池负极的高倍率性能研究[J].电化学,2010,16(2):145一150.
    [52]Song Yanyan, Li Ying, Xia Xinghua. One-step pyrolysis process to synthesize dispersed Pt/carbon hollow nanospheres catalysts for electrocatalysis[J]. Electrochemistry Communications,2007,9:201-205.
    [53]Wu Shuying, Ding Yunsheng, Zhang Xiaomin, et al. Synthesis and characterization of carbon thin wires linked carbon hollow spheres encapsulating Ag nanoparticles[J]. Materials Letters,2008,62:3301-3304.
    [54]Jang Jyongsik, Li Xiang, Joon Hak. Facile fabrication of polymer and carbon nanocapsules using polypyrrole core/shell nanomaterials[J]. Chemical Communications, 2004,2:794-795.
    [55]Luo Tao, Gao Lisheng, Liu Jianwei, et al. Olivary particles:unique carbon microstructure synthesized by catalytic pyrolysis of acetone[J]. The Journal of Physical Chemistry B, 2005,109:15272-15277.
    [56]Yu Shuhong, Liu Bao, Mo M.S, et al. General synthesis of single-crystal tung state nanorods/nanowires:A facile, low-temperature solution approach[J]. Advanced Function Materials,2003,13(8):639-647.
    [57]朱永春,钱逸泰.溶剂热法合成碳纳米材料[J].无机化学学报,2008,24(4):499-504.
    [58]Han Weiqiang, Fan Shoushan, Li Qunqing, et al. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction[J]. Science,1997,277:1287-1289.
    [59]陈惜明,刘娟.绿色反应技术的现状与研究进展[J].淮北煤炭师范学院学报,2006,27(1):34-39.
    [60]张现斌,梁发书,邹长军.超临界流体在有机合成中的应用新进展[J].精细化工中间体,2005,35(3):1-5.
    [61]张东军,帅行明.超临界流体技术在绿色化工中的应用[J].上海化工,2007,32(7):26-30.
    [62]野国中,李正名.超临界流体在有机合成中的应用[J].化学通报,2002,4:221-226.
    [63]施尔畏,夏长泰,王步国,等.水热法的应用与发展[J].无机材料学报,1996,11(2):193-206.
    [64]孙银弟.水热法制备氧化物中空微球[D].黑龙江:哈尔滨工业大学,2008.
    [65]张求慧,赵广杰.我国生物质废料液化及产物利用的研究进展[J].林产化学与工业,2009,29(1):120一126.
    [66]孙振钧.中国生物质产业及发展取向[J].农业工程学报,2004,20(5):1-5.
    [67]曹稳根,段红.我国生物质能资源及其利用技术现状[J].安徽农业科学,2008,36(14):6001-6003.
    [68]陈楚阳.分步水热处理制备单分散胶体碳微球的研究[D].辽宁:东北大学,2008.
    [69]裴立宅,唐元洪,郭池,等.水热法及溶剂热合成法制备Ⅳ族一维无机纳米材料[J].稀有金属,2005,29(2):194-199.
    [70]Wang Qing, Li Hong, Chen Liquan, et al. Monodispersed hard carbon spherules with uniform nanopores[J]. Carbon,2001,39:2211-2214.
    [71]Wang Qing, Li Hong, Chen Liquan, et al. Novel spherical microporous carbon as anode material for Li-ion batteries[J]. Solid State Ionics,2002,152:43-50.
    [72]Sun Xiaoming, Li Yadong. Colloidal carbon spheres and their core/shell struetures with noble-metal nano-partieles[J]. Angewandte Chemie International Edition,2004, 43(5):597-601.
    [73]Li Zhao, Niki Baccile, Silvia Gross, et al. Sustainable nitrogen-doped carbonaceous materials from biomass derivatives [J]. Carbon,2010,48:3778-3787.
    [74]White.Robin J, Markus Antonietti, Maria-Magdalena Titirici. Naturally inspired nitrogen doped porous carbon[J]. Journal of Materials Chemistry,2009,19:8645-8650.
    [75]Mi Yuanzhu, HuWeibing, DanYoumeng, et al. Synthesis of carbon micro-spheres by a glucose hydrothermal method[J]. Materials Letters,2008,62:1194-1196.
    [76]靳秀芝,韩涛,唐艳华.尺寸可控空心碳球的水热合成[J].稀有金属材料与工程,2011,40(1):101-103.
    [77]刘伯洋,贾德昌,董丽华,等.微纳米碳空心球的合成研究及应用进展[J].化学进展,2009,21(7/8):1450-1455.
    [78]陈壹华.碳纳米材料制备方法及其应用特性[J].炭素技术,2008,6(27):28-32.
    [79]彭云云.蔗糖半纤维素的化学结构及其热裂解特性的研究[D].广东:华南理工大学,2010.
    [80]刘治国,高晓月,王淑花,等.纤维素与己内酰胺的接枝共聚反应[J].功能高分子学报,2011,24(1):76-81.
    [81]张永超.碳微球的水热合成及性能研究[D].黑龙江:黑龙江大学,2008.
    [82]李润卿,范国梁,渠荣遴.有机结构波谱分析[M].天津:天津大学出版社,2002:101-104.
    [83]邢其毅,裴伟伟,徐瑞秋,等.基础有机化学[M].第三版.北京:高等教育出版社,2005:182-183.
    [84]詹怀宇,李志强,蔡再生.纤维化学与物理[M].北京:科学出版社,2005:121-123.
    [85]Sevilla.M, Fuertes.A.B. The production of carbon materials by hydrothermal carbonization of cellulose[J]. Carbon,2009,47:2281-2289.
    [86]邓文雅.基于葡萄糖的微/纳球形材料的合成与表征[D].辽宁:大连理工大学,2007.
    [87]徐寿昌.有机化学[M].第二版.北京:高等教育出版社,2006:285-286.
    [88]邢其毅,裴伟伟,徐瑞秋,等.基础有机化学[M].第三版.北京:高等教育出版社,2005:549-550.
    [89]Wan Yong, Min Yulin, Yu Shuhong. Synthesis of silica/carbon-encapsulated core-shell spheres:templates for other unique core-shell structures and applications in in-situ loading of noble-metal nanoparticles[J]. Langmuir,2008,24(9):5024-5028.
    [90]Alcantara.R, Fernandez Madrigal.F.J, Lavela.P, et al. Characterization of mesocarbon microbeads(MCMB) as active electrode material in lithium and sodium cells[J]. Carbon, 2000,38:1031-1041.
    [91]吕永根,凌立成,刘朗,等.中间相炭微球的活化[J].煤炭转化,1999,22(2):66-67.
    [92]Zheng Mingtao, Liu Yingliang, Jiang Kemin, et al. Alcohol-assisted hydrothermal carbonization to fabricate spheroidal carbons with a tunable shape and aspect ratio[J]. Carbon,2010,48:1224-1233.
    [93]崔平,张代林,汪洋,等.热重法在焦炭热失重测定仪中的应用[J].燃料与化工,2004,35(1):12-14.
    [94]王芙蓉,李开喜,吕永根,等.酚醛树脂基活性炭微球的电化学性能Ⅱ作为EDLC电极材料的活性炭微球的制备及电化学性能[J].新型炭材料,2006,21(3):219-224.
    [95]李强,李开喜,王芙蓉,等.针状焦基活性炭的制备及其作为EDLCs电极材料的电化学性能[J].新型炭材料,2005,20(4):335-342.
    [96]翟秀静,符岩,王杰,等.碳纳米粉用于锂离子电池负极材料的研究[J].功能材料与器件学报,2005,11(3):282-286.
    [97]Weng Tochi, Teng Hisisheng. Characterization of high porosity carbon electrodes derived from mesophase pitch for electric double layer capacitors[J]. Journal of Electrochemical Society,2001,148(4):368-373.
    [98]江奇,卢晓英,赵勇,等.碳纳米管微结构的改变对其容量性能的影响[J].物理化学学报,2004,20(5):546-549.
    [99]赵晓峰,江奇,谢德钰,等.碳纳米管/聚苯胺空心球复合材料的制备与电化学性能[J].功能材料,2010,41(11):1936-1939.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700