穿心莲内酯衍生物抑制糖苷酶的3D-QSAR及多羟基酚类化合物的抗氧化理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的研究工作分为两个部分,第一部分研究了新型穿心莲内酯类衍生物抑制α-葡萄糖苷酶活性的三维定量构效关系(3D-QSAR),建立了糖和糖苷酶抑制剂数据库。第二部分讨论了白英中化学成分的提取分离和结构鉴定,研究了白英提取物中多羟基酚类化合物的结构与抗氧化活性的关系。
     一.新型穿心莲内酯衍生物抑制α-葡萄糖苷酶的3D-QSAR研究
     在测定穿心莲内酯衍生物的α-葡萄糖苷酶的抑制活性时,使用的α-葡萄糖苷酶的三维晶体结构还未见报道,所以选用同源建模的方法来构建该α-葡萄糖苷酶的三维结构。首先在NCBI的GenBank数据库中查得该α-葡萄糖苷酶的氨基酸序列,它由584个氨基酸构成。用蛋白质多序列比对程序BLAST在PDB数据库中进行序列相似性搜索,获得序列同源性达38%的蛋白1UOK。使用Insight Ⅱ软件中的Modeler模块以1UOK为模板对实验使用的α-葡萄糖苷酶进行同源模建。使用Profile-3D模块对已构建的α-葡萄糖苷酶的三维结构模型进行可靠性分析,发现模板与模建分子的α碳原子之间的标准偏差为0.42(?),构建的三维结构得分为237.9分,远远高于临界得分120.2分,略低于理想得分267.2分。因此,说明模建得到的α-葡萄糖苷酶的三维结构在现有理论水平下是可靠的。使用Binding Site模块对蛋白的活性位点进行分析。使用Cerius~2软件的LigandFit模块完成穿心莲内酯衍生物与α-葡萄糖苷酶的对接,讨论了它们之间的相互作用模式,研究表明,形成氢键和静电相互作用是抑制剂与受体相互作用的重要特征。利用Cerius~2软件中的QSAR模块获得了穿心莲内酯衍生物抑制α-葡萄糖苷酶的三维定量构效关系(3D-QSAR),通过MFA分析得到的QSAR方程的交叉验证相关系数为0.901,常规相关系数为0.996,说明方程的可信度相当高。该研究为设计新型穿心莲内酯类α-葡萄糖苷酶抑制剂提供了有力的帮助。
     基于MDL ISIS/BASE数据库平台,建立了糖和糖苷酶抑制剂穿心莲内酯衍生物分子数据库,已收录糖分子288、穿心莲内酯衍生物238,以利于新合成化合物的分类,虚拟筛选,综合利用。
     二.白英中化学成分的提取分离及提取物中多羟基酚类化合物的结构与抗氧化活性的关系研究
     对白英采用系统溶剂提取法对其化学成分进行了提取。选用乙醇为提取溶剂,乙醇提取液浓缩成浸膏,依次用氯仿、乙酸乙酯、正丁醇萃取。对萃取得到的浸膏采用葡聚糖LH-20、硅胶柱层析和制备薄层层析进行分离纯化,乙酸乙酯部位和正丁醇部位各分得化合物4个,经波谱(NMR、MS、IR)方法鉴定了它们的结构,分别为3-甲氧基-5-[(8′S)-3′-甲氧基-4′-羟基-苯丙醇]-E-苯丙烯醇-4-O-β-D-葡萄糖苷、芹菜素
This thesis consists of two parts. The first part deals with the 3D-QSAR studies on andrographolide derivatives inhibiting α-glucosidase and foundation of the database of glucides and inhibitors of glucosidase. The second part includes discussions on extraction processes, separation methods and structural identifications of chemical constituents in Solynum Larytum Thunb., as well as studies on the structure-activity relationship of the polyhydroxyphenol compounds in Solarium Lyratum Thunb. I. The 3D-QSAR studies on andrographolide derivatives inhibiting α-glucosidase
    So far there have been no reports on the three-dimensional structure of the a-glucosidase, which has been used in the test of the inhibiting its activity by andrographolide derivatives, it is important to build the three-dimensional structure of the a-glucosidase with the homology methods. The sequence of a-glucosidase was obtained from the databank of the National Center for Biotechnology Information (NCBI code: P38158), and it is composed of 584 amino acids. The homology was searched from the PDB databank with BLAST program, and 1U0K was found. Their sequence identity between 1U0K and a-glucosidase is as high as 38%. The Modeler module of the Insight II software was used to build the a-glucosidase model. The final structure was further checked with Profile-3D, and root mean square deviation (RMSD) value between 1U0K and P38158 is 0.42 A. The self-compatibility score for this protein is 237.9 which is higher than the low score 120.2 and close to the top score 267.2. The above results indicate that the homology model is reliable in the current test standard. Protein active sites were analyzed by the Binding Site module. Then, we docked andrographolide derivatives into a-glucosidase with the LigandFit module of the Cerius2 software, investigated their interaction modes. This study suggests that hydrogen bonding and electrostatic interaction are the important characteristic of the interaction between the inhibitors and the a-glucosidase. In the end, three-dimensional quantitative structure- activity relationship(3D-QSAR) between andrographolide derivatives and a-glucosidase was established with the QSAR module. The QSAR model was generated by using MFA method, which has a r2cv (cross-validated) of 0.901 while its r2 (conventional) value is 0.996. The higher r2cv and r2 show that QSAR model is reliable. The conclusions of this study will
引文
[1] LIPKOWITZ, K. B., and BOYD, D. B. Reviews in Computational Chemistry, 1990, Vol. 1, viioxii. VCH Publishers. New York.
    [2] James B. Foresman, Aeleen Frisch, Exploring Chemistry with Electronic Structure Method (Second Edition), 1996, Gaussian, Inc, Pittsburgh, PA
    [3] C. Chang, M. Pelissier, Ph. Durand. Phys. Scr., 34: 394, 1986.
    [4]. E. van Lenthe, E. J. Baerends, J. G. Snijders. Relativistic regular two-component Hamiltonians J. Chem. Phys., 99: 4597, 1993.
    [5] 徐光宪,黎乐民.《量子化学——基本原理和从头计算法》.北京:科学出版社,1999
    [6]. Stewart J J P. A semipirical Molecular Orbital Program. J Compt-aided Mol Des, 1990, 4: 1
    [7]. Dewar M J S. The semipirical Approach to Chemistry. Int J Quantum Chem, 1992, 44: 427
    [8]. Pople J A, Santry D P, Segal G. A. Approximate Self-consistent Molecular Orbital Theory. Ⅰ. Invariant Procedures. J Chem Phys 1965, 43: S129
    [9]. Pople J A, Gordon M. Approximate Self-consistent Molecular Orbital Theory. Ⅲ. Complete Neglect of Differential Overlap Results for AB2 and AB3 Systems. J Chem Phys 1966, 44: 3289
    [10]. Hohenbeg P, Kohn W. Inbomogeneous Electron Gas. Phys Rev, 1964 136: B864
    [11]. Andrews D H. The Relation Between the Raman Spectra and the Structure of Organic Molecules Phys Rev, 1930, 36: 544
    [12]. Westheimer F H, Meyer J E. The Theory of the Racemization of Optically Active Derivatives of Biphenyl. J Chem Phys, 1946, 14: 733
    [13]. Baton D H R. Interaction Between Non-bonded Atoms, and the Structure ofcis-Decalin, J Chem Soc, 1948, 70: 340
    [14]. Westheimer F H. Steric Effect in Organic Chemistry, 1956 John Wiley and Sons, New York
    [15].陈凯先,蒋华良,嵇汝运.《计算机辅助药物设计—原理,方法及应用》,上海:上海科学技术出版社,2000
    [16].徐筱杰,候廷军,乔学斌,章威.《计算机辅助药物分子设计》,北京:化学工业出版社,2004[1] 徐筱杰,候廷军,乔学斌等.《计算机辅助药物分子设计》.北京:化学工业出版社,2004
    [2] 陈凯先,蒋华良,嵇汝运.《计算机辅助药物设计--原理,方法及应用》.上海:上海科学技术出版社,2000
    [3] Horii S, Fukase H. Synthesis of α-glucosidase inhibitory activity of N-substituted valio lam ine derivatives as potential oral antidiabetic agents [J]. J. Med. Chem. 1986, 29:1038~ 1046.
    [4] Ostrander G K, Scribner N K. Inhibit ion of V-fins-induced tummor growth in nudemice by castamo spermine [J]. Cancer Res. 1988, 48: 1091~1094.
    [5] Gruters R A, Nessfjes J J. Interference with H/V-induced syncytiun format ion and viral infectivity by inhibitors of trimming glucosidase [J]. Nature, 1987, 330: 74~77.
    [6] Schmidt D D, Frommer W, Junge B, Muller L, Wingender W, Truscheit E, Schafer D. α-Glucosidase inhibitor. New complex oligosaccharides of microbial origin. Naturwissenchaften, 1977, 64(10): 535~536
    [7] Kim H S, Kim Y H, Hong Y S, Paek N S, Lee H S, Kim T H, Kim K W, Lee J J. Alpha2Glucosidase inhibitors from Commelina communis. Planta Med. 1999, 65(5): 437~439
    [8] Toda M, Kawabata J, Kasai T. Inhibitory effects of ellagi2 and gallotannins on rat intestinal alpha2glucosidase complexes. Biosci. Biotechnol. Biochem. 2001, 65(3): 542~547
    [9] 刘新光,梁念慈,马涧泉.Tyrphostin AG213对重组人蛋白激酶CK2全酶的抑制动力学.生物化学与分子生物学报.2002,18(3):373~378
    [10] 陈海敏,严小军,林伟.α-葡萄糖苷酶抑制剂的构效关系.生物化学与分子生物学报.2003,19(6):780~784
    [11] 上海穿心莲科研协作组.水溶性穿心莲内酷的研究.中草药通讯.1976,3(10):18[12] 苏州中药厂,南京药学院.穿心莲内酯与亚硫酸氢钠加成的工艺研究.中草药通讯.1976,11(6):10
    [13] 苏州中药厂,南京药学院.穿心莲内酯琥珀酸半酯单钾盐及其注射液研究,中草药通讯.1978,13(8):1
    [14] Nanduri S, Rajagopal S, Akella V. Preparation of andrographolide derivatives for pharmacy- eutical use in the treatment of a variety of disorders, such as cancer and HIV infection. Int. Appl. WO: 2001085709, 2001-11-15.
    [15] Nanduri S, Pothukuchi S, Rajagopal S, Process for the preparation of andrographolide derivatives and pharmaceutical compositions conaining them for use as novel anticancer agents. Appl. WO: 20 01085710, 2001-11-15.
    [16] Nanduri S, Rajagopal S, Pothukuchi S. Preparation and antitumor activity of andrographolide derivatives. Int. Appl. WO: 2001057026, 2001-8-9
    [17] Misbah A. F B, Rajesh K. G, Aanjay K. S et al. A novel diterpenoid lactone-based scaffold for the generation of combinatorial libraries. Tetrahedron Lett. 2001, 42: 7119: 7121
    [18] 张春滨,曲光.β-环糊精衍生物包合脱水穿心莲内酯的工艺研究.中医药信息.2002,5(19):56-57
    [19] 侯文阁等,环糊精包合穿心莲内酯的方法及药用制剂.中国专利,03111128.9,2003.08.2
    [20] W. A Boorsma: Med's lands Plant 1896, 18: 63
    [21] Takakuni Matauda, Masanori Kuroyanagi, Chem. Pharm. Bull. 1994, 42(6): 1216~1225
    [22] 徐国钧,中国药材学.北京:医药科技出版社,1993,1581
    [23] 梁龙,戴静,杨大坚.穿心莲防治心血管疾病的研究进展.中草药.1996,27(1):52
    [24] 陈敏武等,RP-HPLC法测定不同产地及收期的穿心莲中穿心莲内酯和脱水穿心莲内酯的含量.中国药科大学学报.1999,30(4):291-293
    [25] 徐路珊等.中国药材学(下册).北京:中国医药科技出版社,1996:1580
    [26] Lee larasaee A, et al. Undetectable anti-bacterial activity of Andrographis paniculata. J. Med. Assoc. Thai. 1990, 73: 299
    [27] 邓文龙,等.脱水穿心莲内酯琥珀酸半酯药理作用研究Ⅰ.抗炎作用.药学学报,1980,15(10):590
    [28] Shen YC, et al. Suppression of rat neutrophil reactive oxygen species production and adhesion by the diterpenoid lactone andrographolide. Planta Meal. 2000, 66(4): 314
    [29] Shen YC, et, al. Andrographolide prevents oxygen radical production by human neutrophils: possible mechanism(s) involved in its anti-inflammatory effect, Br. J. Pharmacol. 2002, 135(2): 399
    [30] Chang RS, et al. 14-deoxyandrographolide sucinic acid monoester as an inhibitor against the human immunodeficiency vim. Proc. Soc. Exp. Biol. Med. 1991, 197: 59
    [31] 吴俊,穿珀宁注射液治疗小儿急性呼吸系统感染200例效果观察。中西医结合使用临床急救,1997,400~447
    [32] 宋云鹃等.注射用穿琉宁治疗病毒性下呼吸道感染30例疗效观察.中医药信息,2000,17(3):8
    [33] Ajoy BASAK, et al. Inhibition of proprotein convertases-1,7 and furin by diterpines of Andrographis paniculate and their sueeinoyl esters. Bioehem. J. 1999, 338: 10
    [34] Hallenberger S, et al. Inhibition of fufin-mediated cleavage activation of HIV-1??glycoprotein gp160. Nature, 1992, 360(26): 358
    [35] Jean F et al. a-Antitrypsin Portland, a bioengineered serpin highly selective for furin: Application as an antipathogenic agent. Proc. Natl. Acad. Sci. USA, 1998, 95: 7293
    [36] Ajoy Basak, et al. Implication of the proprotein converases furin, PC5 and PC7 in the cleavage of surface glycoproteins of HongKong, Ebola and respiratory syncytial viruses: a comparative analysis with fluorogenic prptides. Biochem. J. 2002, 353: 357
    [37] Calabrese C, et al. A phase I trial of andrographolide in HIV positive patients and normal volunteers. Phytother Res. 2000, 14(5): 333
    [38] 左建平:赵维民等.穿心莲内酯及衍生物的医学用途.中国专利,03129127.9,2003.11.
    [39] 徐立春等.莲必治对肿瘤细胞直接杀伤与协同作用研究.中国实用临床医药学.成都:四川科技出版社,1999,4:57
    [40] 孙振华等.莲必治促进人淋巴细胞生长的实验研究.中国现代实用医药.成都:成都科技大学出版社.1999,108
    [41] CA 109 23698z
    [42] 陈平圣等,穿心莲抗癌作用的实验研究.实用中西医药杂志.1991,104:176
    [43] 陈立春等,莲必治注射液治疗恶性肿瘤的临床观察.江苏麟临床医学杂志,2000,4(4):277
    [44] 孙振华等,莲必治并用生物、化学疗法抑制体内肿瘤生长的试验研究.浙江中西医结合杂志.2001,11(2):88
    [45] 王坤,黄兰青,周利元,等.穿心莲对环磷酞胺抗肿瘤的增效作用.右江民族医学院学报,1994,16(4):8
    [46] 吴基良,郑敏,刘叔珍,等.穿心莲根总酮对实验性心肌缺血的影响.中药药理与临床,1996,12(5):17.
    [47] 高福军等,穿心莲的心血管药理作用研究进展.中草药,2000,31(10):附6
    [48] 吴基良,刘叔珍,李立中.穿心莲内酯对大鼠实验性心肌缺血的保护作用.中医药研究,1996,12(4):61
    [49] 郭志凌,赵华月,郑信华,等.穿心莲根提取液抗心肌缺血一再灌注心肌细胞损伤与氧自由基的关系.中药药理与临床。1993,9(4):17
    [50] 郭志凌,赵华月,郑信华等.穿心莲提取物对缺血一再灌注心肌细胞K+,Na+,Ca~+、Mg+的作用.同济医科大学学报.1994,23(3):205
    [51] 郭志凌,赵华月,郑信华等.穿心莲提取物对心肌缺血一再灌注心肌细胞膜三磷酸腺昔酶活性的作用.中国循环杂志,1995,10(8):487.
    [52] 郭志凌,赵华月,郑信华,等穿心莲有效成分的抗心肌缺血一再灌注损伤作用.中国循环杂志,1995,10(11):683.
    [53] 彭光勇,周峰,丁如宁等.莲必治注射液对免疫功能的调节作用.中国中药杂志,2002,27(2):147
    [54] 王浴生等,中药药理与应用(第二版).北京:人民卫生出版社,1998:866
    [55] Akbarsha Ma, et al. Aspects if the male reproductive toxicity/male antifertility property. of andrographolide in albino rats: effect on the testis and the cauda epididymidal spermatozoa. Phytother Res. 2000, 14(4): 432
    [56] 黄泰康.常用中药成分与药理手册(下册).北京:中国医药科技出版社,1999
    [57] Kapil A, et al. Antihepatotoxic effects of majors diterenoid constituents of Andrographis paniculata. Bio. Chem.. Pharmacol. 1993, 46(12): 182[58] LAI Lu-Hua. Protein Molecular Structure Prediction and Design [M], Beijing: Peking University Publishing Company, 1993
    [59] Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25: 3389-3402
    [60] http://www.ebi.ac.uk/swissprot/
    [61] http://www.rcsb.org/
    [62] Ktmihiko Watanabe, Yasuo Hata, Hidekazu Kizaki, et al. The Refined Crystal Structure of Bacillus cereus Oligo-1,6-glucosidase at 2.0AE Resolution: Structural Characterization of Proline- substitution Sites for Protein Thermostabilization, J. Mol. Biol. 1997, 269: 142±153
    [63] Yuzuru S, Toyotsgu Y, Takashi K, et al. Biochem. et Biophys. Acta. 1976, 445: 386~397.
    [64] Yuzuru S, Yukiko V, Norihisa N, et al. Biochem. et Biophys. Acta. 1979, 566: 62~66.
    [65] Yuzuru S, Ritsuko A, Hirotaka H. Biochem. et Biophs. Acta. 1982, 704: 476~483.
    [66] Yuzuru S, Kazumi O, Hajime N, et al. Appl. Microbiol. Biotechmol. 1987, 26: 546~551.
    [67] Yuzuru S, Yoshihiro T. Eur. J. Biochem. 1986, 158: 77~83.
    [68] Kunihiko W, Kazuhisa K, Hide K I. et al. Eur. J. Biochem. 1990, 192: 609~620.
    [69] Kunihiko W, Kazuhisa K, Yuzuru S. Appl. Environ. Microbiol. 1996, 6: 2066~2073.
    [70] Kunihiko W, Hide K I, Atsuhiko, et al. J. Bacteriol. 1989, 2: 1219~1222.
    [71] Svensson, B. Protein engineering in the a-amylase family: catalytic mechanism, substrate specifcity, and stability. Plant Mol. Biol. 1994, 25, 141~157.
    [72] Hansch C. Structure-Activity Relationships [M]. New York: Pergmon Elmsford, 1973
    [73] Kamlet MJ, Doherty RM, Abbound J, et al. Linear solvation energy relationships Molecular properties governing solubility of organic nonelectrolytes in water[J].T. Pham. Sci. 1986, 75(4): 339.
    [74] Kierl B, Hall L H. Molecular Connectivity in Chemistry and Drug research [M]. New York: Academic Press, 1976.
    [75] 刘次全.量子生物学及其应用.北京:高等教育出版社,1990:95—120
    [76] Kubinyi H. 3D-QSAR in Drug Design: Theoretical Methods and Applications. Leiden: ESCOM, 1993
    [77] 王红武,陈凯先等.三维定量构效关系的研究与应用.国外医学(药学分册),1993,20:325
    [78] Hopfinger A J. A QSAR Investigation of Dihydrofolate Reductase Inhibition by Backer Tri- azines Based upon Molecular Shape Analysis. J. Am. Chem. Soc. 1980, 102(8): 7196
    [79] Hopfinger A J. A General QSAR for Dihydrofolate Reductase Inhibition by 2, 4-diamino- triazines Based upon Molecular Shape Analysis. Arch. Biochem. Biophy. 1981, 206(1): 153
    [80] Battershell V, Malhotra D, Hopfinger A J. Inhibitions of Dihydrofolate Reductase: Structure-activity Correlation of Quinazolines Based upon Molecular Shape Analysis. J. Med. Chem.1981, 24: 812
    [81] Hopfinger A J. Inhibitions of Dihydrofolate Reductase: Structure-activity Relationships of 2,4-diamino-5-benzylpyrimidines Based upon Molecular Shape Analysis. J. Med. Chem. 1981, 24(7): 818
    [82] Mabilia M. Molecular Shape Analysis and Energitics-based Intermolecular Modeling of Benzylpyrimidine Dihydrofolate Reductase Inhibitors. Eur. J. Med. Chem. 1985, 20(2): 163[83] Hopfinger A J. Theory and Application of Molecular Potential Energy Fields in Molecular Shape Analysis: A Quantitative Structure-activity Relationships Study of 2,4-diamino-5-benzylpyrimidines as Dihydrofolate Reductase Inhibitors. J. Med. Chem. 1983, 26(8): 990
    [84] Hopfinger A J, Burke B J. Molecular Shape Analysis of Structure-activity Tables. Prog. Cin. Biol. Res.1989, 291: 151
    [85] Cripper G M. Distance Geometry and Conformational Calculation. In: Baldwin D, ed. Chemometric Research Studies. Chichester: Wiley, 1987
    [86] Cripper G M. J. Comput. Chem. 1987, 8(7): 943
    [87] Ghose A K. General Distance Geometry. 7. Three-dimensional Receptor Model for Diverse Dihydrofolate Reductase Inhibitors. J. Med. Chem. 1984, 27(7): 901
    [88] Boulu L G, Cripper G M, Barton H A, et al. Voronoi Binding Site Model of a Polycyclic Aromatic Hydrocarbon Binding Protein. J. Med. Chem. 1990, 33(2): 771
    [89] Ghose A K, Cripper G M. Use of Physicochemical Parameters in Distance Geometry and Related Three-dimensional Quantitative Structure-activity Relationships : A Demonstration Using Escherichia coli Dihydrofolate Reductase Inhibitors. J. Med. Chem. 1985, 28(2): 333
    [90] Ghose A K, Pritchett A, Cripper G M. Atomic Physicochemical Parameters for Three-dimensional Structure Directed Quantitative Structure-activity Relationships III: Modeling Hydrophobic Interactions. J. Chem. Inf. Comput. Sci.1987, 27(1): 21
    [91] Ghose A K, Cripper G M, Revankar G R, et al. Analysis of the in vitro Antiviral Activity of Certain Ribonucleosides Against Parainfluenza Virus Using a Novel Computer Aided Receptor Modeling Procedure. J. Comput. Chem. 1988, 9(1): 80
    [92] Ghose A K, Sanghci Y S, Larxon S B, et al. Structure Studies of the Novel Antitumor Agents 4-amino- and 4-methoxy-8-(β-D-ribofuranosylamino) pyrimido[5,4-d] pyrimidines and Their α-anmoers Using X-ray, Proton NMR and Theoretical Methods. J. Med. Chem. 1989, 32(5): 746
    [93] Cramer III R D. Recent Advances in CoMFA. Quant. Struct-Act. Relat. 1988, 7(1): 18
    [94] Cramer III R D, Paterson D E, Bunce J D. Comparative Molecular Field Analysis (CoMFA). I. Effect of Shape on Binding of Steroids to Carried Proteins. J. Am. Chem. Soc. 1988, 110(18): 5959
    [95] Dunn III W J, Wold S, Edlun U, et al. Multivariate Structure-activity Relationships between Data from a Battery Biological Tests and an Ensemble of Structer Descriptors : The PLS Method. Quant. Struct-Act. Relat.1984, 3: 131
    [96] Marshall G R, Mayer D, Naylor C B, et al. Mechanism-based Analysis of Enzyme Inhibitors of Amide Bond Hydrolysis. Prog. Clin. Biol. Res. 1989, 291:287
    [97] Kim K H. Quant. Struct-Act. Relat. 1992, 11(4): 453
    [98] Kim K H. Quant. Struct-Act. Relat. 1992, 11(2): 1274
    [99] Kim K H. et al. J. Org. Chem. 1991, 56(14): 2723
    [100] Kim K H. Quant. Struct-Act.Relat.1992, 11(3): 309
    [101] Kim K H. Med. Chem. Res.1991, 1(2): 259
    [102] Kim K H, Martin Y C. Direct Prediction of Dissociation Constants (pKa's) of Clonidinelike Imidazolines, 2-substituted Imidazoles, and 1-methyl-2-substituted-imidazoles from 3D Structures Using a Comparative Molecular Field Analysis (CoMFA) Approach. J. Med. Chem. 1991, 34(11): 2056
    [1] http://www.mdl.com
    [2] http://www.neotrident.com
    [3] Hong-Min Liu., Wen Xu, Zhen-Zhong Liu. A new synthetic method for preparing indole derivatives from 2-keto glycosides. Carbohyd. Res., 2001, (331): 229-232[4] Hong-Min Liu, Wen Xu, Zhen-Zhong. Anovel carbonyl transposition reaction led by aromatic amine'snucleophilic addition to 2-oxo glycoside. Chem. J. Chinese U., 2001, 22(10): 1682-1684
    [5] Hong-Min Liu, Wen Xu, Feng Li. Synthesis of indole derivatives from 2-keto glycoside. Chem. Res. Chinese U., 2001, 17(3): 154-155
    [6] Hong-Min Liu, Wen Xu, Zhen-Zhong Liu. Stereo-specific synthesis of 2-deoxy-2-arylamino allosides. J. Xiamen U.(Natural Science), 1999, 38: 158
    [7] Hong-Min Liu, Wen Xu, Zhen-Zhong Liu T. Maitani. Abstract of the ⅩⅤ International Symposium on Glycocojugates. Glycoconjugate J., 1999, 16(4): 167
    [8] Feng-Wu Liu, Hong-Min Liu,. A facile approach to anhydrogalactosucrose derivatives from chlorinated sucrose. Carbohydr. Res, 2004, 39(16): 2651-2656
    [9] Feng-wu Liu, Yan-Bing Zhang, Hong-Min Liu. Preparation of αandβ-anomers of 1,2,3,6-tetra-O-acety-4-chloro-4-deoxy-D-galactopyranose Based upon anomerization and kinetic acetylation. Carbohydr. Res. 2005, 340(3): 489-495
    [10] Hong-Min Liu, Feng-Wu Liu, Da-Peng Zou. Asymmetric synthesis of novel tetrahydroquinoline derivatives with asugar building block and their bioactivities. Bioorg. Med. Chem. Lett. 2005, 15(7): 1821-1824.
    [11] 刘丰五,张京玉,刘宏民等.三种缩水蔗糖衍生物的NMR研究及结构确证,波谱学杂志,2005,22(2),149-154
    [12] Zhang Hong-Yu, Zhang Yan-Bing, Xu Wei-Chao. Synthesis for new azasugars from ketosugars. Chinese J. Org. Chem. 2004, 24: 353
    [13] 邹大鹏,许卫超,张红雨.新型高碳糖苷胺基衍生物的合成研究.有机化学.2004,24:355
    [14] Hong-Min Liu, Da-Peng Zou, Fuyi Zhang. Stereoselective Synthesis of New Higher Carbon Sugars from D-Xylose. Eur. J. Org. 2004, 10: 2103-2106
    [15] Da-Peng Zou, Shu-Xia Cao, Wei-Chao Xu. structural characterization of higher-carbon amino spiro-sugars by electrospray ionization MSn mass spectrometry. Carbohyd. Res. 2005, 340(15): 2411-2421
    [16] Hong-Min Liu, Fuyi Zhang, Da-Peng Zou. stereposelective synthesis of 2,2-bis (C-branched-chain)glucopyranosid-3-ulose via an-Michael addition reaction. Chem. Commun. 2003, 2044-2045[17] 邹大鹏,许卫超,张红雨.新型高碳糖苷胺基衍生物的合成研究.有机化学,2004,24:355
    [18] Zhang Hong-Yu, Zhang Yan-Bin, Xu Wei-Chao. Synthesis for new azasugars from ketosugar. Chinese J. Org. Chem, 2004, 353
    [19] 刘宏民,许卫超,邹大鹏,新型CIO高碳糖胺基衍生物的合成及波谱分析.郑州大学学报,2005
    [20] 邹大鹏,莫娟,张慧君.新型烯醇醚高碳糖的自动氧化及晶体结构.ChineseJ.Org.Chem.2003,23:373
    [21] 邹大鹏.新型高碳糖及其胺基衍生物和高碳糖氮苷的设计与合成研究.郑州大学博士论文,2004.
    [22] 张红雨.以5—位氧化葡萄糖为原料氮杂吡喃型糖苷酶抑制剂的合成与研究.郑州大学硕士论文,2005.
    [23] 莫娟.3—位脱氧氨基糖和分枝糖的立体选择性和成研究.郑州大学硕士论文.2004.
    [24] 许卫超.新型C10高碳糖核苷类化合物及其胺基衍生物的合成研究.郑州大学硕士论文.2005.
    [25] 张福义.分枝糖及胺基糖的立体选择性和成研究.郑州大学博士论文.2003.
    [26] 刘丰五.基于蔗糖的新型有机分子的合成研究.郑州大学博士论文.2005.
    [27] 徐纹.2—脱氧氨基糖及分枝糖苷的立体选择性合成.郑州大学硕士论文.2002.
    [28] T. R. GovindachariU, G. Suresh, Geetha Gopalakrishan. Antifeedant activity of some diterpenoids. Fitoterapia. 1999, 70: 269—274
    [29] Srinivas Nanduri', Vijay Kumar Nyavanandi, Siva Sanjeeva Rao Thunuguntla. Novel routes for the generation of structurally diverse labdane diterpenes from andrographolide. Tetrahedron lett. 2004, 45: 4883-4886
    [30] Srinivas Nanduri, Vijay Kumar Nyavanandi, Siva Sanjeeva Rao Thunuguntla. Synthesis and structure-activity relationships of andrographolide analogues as novel cytotoxic agents. Bioorg med. chem. lett. 2004, 14: 4711-4717
    [31] Siva Sanjeeva Rao Thunuguntla, Vijay Kumar Nyavanandi and Srinivas Nanduri. A facile route for the synthesis of limonidilactone analogues from andrographolideq. Tetrahedron lett. 2004, 45: 9357-9360
    [32] Misbah A. Farooq Biabani, Rajesh K. Grover, Sanjay K. Singh. A novel diterpenoid??lactone-based scaffold for the generation of combinatorial libraries. Tetrahedron lett. 2001, 42: 7119-7121
    [33] Liang CUI, Feng QIU, Nai Li WANG. A New Glucuronidated Metabolite of Andrographolide in Human. Chinese chem. lett 2005, 16(3): 369-371
    [34] Y. Koteswara Rao, G. Vimalamma, C. Venkata Rao. Flavonoids and andrographolides from Andrographis paniculata. Phytochem. 2004, 65: 2317-2321
    [35] Xiangjiu He, Jiankuan Li, Hao Gao. Four new andrographolide metabolites in rats. Tetrahedron 2003, 59: 6603-6607
    [36] 朱仁发,马翔,何勇等.穿心莲内酯亚硫酸钠的新合成方法.安徽医药 2005,9(4):249
    [37] 韩光,杜钢军,许启泰等.穿心莲内酯三马来酸单酯的合成及其解热抗炎作用研究.中国药学杂志.2005,40(8):628-04
    [38] 王新杨,吴晓明,黄文龙等.穿心莲内酯的选择还原性.中国药物化学杂志。2003,13(5):291
    [39] 王新杨,吴晓明,黄文龙等.3-酮基.12-羟基.13,14-烯2穿心莲内酯的合成.中国药物化学杂志,2004,14(1):36[1] D. Commenges, V. Scotet, S. Renaud, H. Jacqmin-Gadda, P. Barberger=Gateau, J. F. Dartigues, Eur. J. Epidemiol. 16(2000)357
    [2] T. O. Obisesan, R. Hirsh, O. Kosoko, L. Carlson, M. Parrot, J. Am. Ger. Soc. 46(1998) 1
    [3] J. M. Orgogono, J. F. Dartigues, S. Lagont, L. Letemeur, R. Cpmmenges, R. Solomon, et al., Rev. Neurol. 153(1997)185
    [4] 辜红梅 李文武 李伯刚 葡萄属低聚芪清除超氧阴离子自由基作用的研究应用环境生物学报 2000,6(1):83
    [5] 钱建亚Dietmar Mayer Manfred Kuhn荞麦精粉中的黄酮及其自由基清除活性食品与发酵工业2000,Vol26 No.3
    [6] 黄云,胡建安,熊敏如,罗莎菲,陈勇 天然黄酮类抗氧化剂对脂氧合酶介导四种具有苯环结构化合物氧化的影响中国药理学与毒理学杂志 2004.6:18(3):212
    [7] 赵保路 茶多酚的抗氧化作用 科学通报 2002.8 vol47,16
    [8] Gutterid ge J M C. Free Radic Res Commun, 1993, 19: 1412158.
    [9] Halliwell B Gutterid ge JMC. Lancet, 1984: 332: 139621398.
    [10] Wang, M. F.; Li, J. G.; Rangarajan, M.; Shao, Y.; Lavoie, E. J.; Huang, T.. C.; Ho, C. T. J. Agric. Food. Chem. 1998, 46, 4869. L.
    [11] Fang, J. G.; Lu, M.; Chen, Z. H.; Zhu, H. H.; Li, Y.; Yang, L.; Wu, L. M.; Liu, Z. L. Chem. Eur. J. 2002, 8, 41914. L.
    [12] Stojanovic S.; Sprinz H.; Brede O. Arch. Biochem. Biophys. Volume 391,??Number 1, July 2001, pp. 79-89(11)
    [13] M.B.C. Lea~o, A.C. Pava~o, C.A. Taft, J. Mol. Struct. 640 (2003) 163.
    [14] M.B.C. Lea~o, A.C. Pava~o, C.A. Taft, J. Mol. Struct. 719 (2005) 129
    [15] A.M. EI-Mowafy, R.E. White, FEBS Lett. 451(1999) 63
    [16] R. Lu, G. Serrero, J. Cell physiol. 179(1999) 297
    [17] J.p. Basly, F. Marre-Foirmier, J.C. LeBail, G. Habrioux, A.J. Chulia, Life Sci. 66(2000)769
    [18] M. Gentilli, J.X. Mazoit, H. Bouazizz, D. Fletcher, R.F. Casper, C. Benhamou, J.F. Savouret, Life Sci. 68(2001) 1317
    [19] B.D. Gehm, J.M. McAndrews, P.Y. Chien, J.L. Jameson, Proc. Natl Acad. Sci. 94(1997) 14138
    [20] A.Y. Sun, A. Simonyi, G.Y. Sun, Free Radic. Biol. Med. 32(2002)314
    [21] H. Arichi, Y. Kimura, H. Okuda, K. Baba, K. Kozawa, S. Arichi, Chem. Pharm. Bull. 30(1982) 1766
    [22] M. Man-Ying Chan, Biochem. Pharmacol. 63(2002)99
    [23] C.A. Rice-Evans, N.J. Miller, P.G. Bolwell, P.M. Bramley, J.B. Pridham, Free. Radic. Res. 22(1995) 375
    [24] C.R. Pace-Asciok, S. Hjn, E.P. Diamandis, G. Soleas, D.M. Goldberg, Clin. Chem. Acta 235 (1995) 207
    [25] B.P. Laden, T.D. Porter, Nutr. Res. 21(2001) 747
    [26] R. Hattori, H. Otani, N. Maulik, D.K. Das, Am. J. Phys. Heart Circul. Physiol. 282(2002) H1988-H1995
    [27] S. Bastianetto, R. Quvirion, Neurobiol. Aging 23(2002) 891
    [28] G.R. Pettit, M.P. Grealish, M.K. Jung, E. Hamal, R.K. Pettit, J.C. Chapius, J.M. Scdmidt, J. Med. Chem. 45(2002) 2534
    [29] V.R. Roman, C. Bollard, C. Kern, H. Ferry-Dumazet, J.C. Izard, R. Muhammad, D.M. Mossalayi, M. Djavad, J.P. Kalb, Br. J. Haem. 117(2002) 842
    [30] K.F. Gey, Br. Med. Bull. 1993, 49, 679
    [31] Diplock, A. T. Free Radic. Res. 1997, 27, 511
    [32] JiE. N. Frankel, Lancet 341 (1993) 1103.
    [33] S. Chanvitayapongs, Neuroreport 8 (1997) 1499.
    [34] Jang, M.;Cai, L.; Udeani, G. O.;Slowing, K. V.;Thomas, C.;Beecher, C. W. W.; Fong, H. H. S.;Farnsworth, N. R.; Kinghorn, A. D.;Mehta, R. G.:Moon, R. C.;Pezzuto, J. M. Science 1997, 275, 218.
    [35] P. Kopp, Eur. J. Endocrinol. 1998, 138, 619
    [36] Mark J. Burkitt, James Duncan, Arch. Biochem. Biophys. 2000, 381, 253
    [37] Mahesh Subramanian, Uma Shadakshari, Subrata Chattopadhyay, Bioorg. Med. Chem. 2004, 12, 1231
    [38] Stivala, L. A.;Savio, M.;Carafoli, F.;Perucca, P.;Bianchi, L.;Maga, G.;Forti, L.;Pagnoni, U. M.;Albini, A.;Prosperi, E.;Vannini, V. J. Biol. Chem. 2001, 276, 22586.
    [39] Sakir Erkoc, Nevin Keskin, Figen Erkoc, -J. Mol. Struct. (Theochem) 2003, 631, 67
    [40] J. Del Nero, C.P. deMelo, Opt. Mater. 2002, 21, 455
    [41] Huai Cao, Xulin Pan, Cong Li, etc, Bioorg Med. Chem. Lett. 2003, 13, 1869
    [42] http://www. accelrys. com
    [43] B. Delley, J. Chem. Phys. 92(1990)508; ibid 94(1991)7245; ibaid 113(2000) 7756
    [44] B. Delley, J. Phys. Chem. 100(1996) 6107
    [45] N. Matsuzawa, J. Seto, and D.A. Dixon, J. Phys. Chem. A. 101(1997) 9391
    [46] Becke, A. D. J. Chem. Phys. 88, 2547 (1988)
    [47] Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B, 37, 786 (1988)
    [48] Bordwell, F. G. Zhang, X. M. Satish, A. V. Cheng, J. P. J. Am. Chem. Soc. 1994, 116, 6605.
    [49] Tomiyama, S.;Sakal, S.;Nishiyama, T.;Yamada, F. Bull. Chem. Soc. Jpn. 1993, 66, 299
    [50] Nagaoka, S. I.;Kuranaka, A.;Tsuboi, H.;Nagashima, U.;Mukai, K. J. Phys. Chem. 1992, 106, 2754
    [51] Wright, J S; Johnson, E R; DiLabio, G A, J. Am. Chem. Soc. 2001, 123, 1173-1183.
    [52] Sandra Stojanovic', Helmut Sprinz, and Ortwin Bredel. Arch. Biochem. Biophys. Vol. 391, No. 1, July 1, pp. 79-89, 2001.
    [1] Jussi-Pekka Rauhaa, Susanna Remesa, Marina Heinonen b, Anu Hopiab, et al. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compound. Int. J. Food. Microbiol., 2000, 56: 3-12
    [2] Machha Ajaya, Anwar-ul Hassan Gilanib, & Mohd. Rais Mustafaa. Effects of flavonoids on vascular smooth muscle of the isolated rat thoracic aorta. Life. Sci., (2003), 74: 603-612
    [3] 裴凌鹏,惠伯棣,金宗濂等.黄酮类化合物的生理活性及其制备技术研究进展.食品科学.2004,25(2):203-207
    [4] 陈时宏.黄酮类化合物的抗氧化作用及其构效关系.海峡药学.1998,10(4):4-6
    [5] 王丽君,廖矛川,肖培根.中药蒲黄的化学与药理活性.时珍国药研究.1998,9(1):49-50
    [6] 陈时红.黄酮类化合物的抗氧化作用及其构效关系.海峡药学.1998,10 (4):4-6
    [7] Frederique A. A. van Acker, Olga Schouten, Guido R. M. M. Haenen, et al. Flavonoids can replace K-tocopherol as an antioxidant. Febs. Lett., 2000, 473: 145-148
    [8] Wolf Bors, Christa Michel, & Sebastein Schikora. Interaction of flavonoids with Ascorbate And Determination of Their Univalent Redox Potentials: A Pulse Radiolysis study. Free. Radical. Bio. Med., 1995, 19(1): 45-52.
    [9] Hong Wang, &James A. Joseph. Structure-activity relationships of quercetin in antagonizing Hydrogen Peroxide-induced calcium dysregulation in PC 12 Cells Free. Radical. Bio. Med., 1999, 27: 683-694
    [10] M. Lopez, F., Martinez, & C. Del Valle, et al. Study of phenolic compounds as natural antioxidants by a fluorescence method. Talanta, 2003, 60: 609-616
    [11] Sandra Stojanovic, Helmut Sprinz, & Ortwin Brede 1. Efficiency and Mechanism of the Antioxidant Action oftrans-Resvemtrol and Its Analogues in the Radical Liposome Oxidation. Arch. Biochem. Biophys.,. 2001, 391 (1): 79-89,[12] Ulla Justesen, & Pia Knuthsen. composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes. Food. Chem., 2001, 73: 245-250
    [13] Giuseppe Galati, Omid Sabzevari, John X. Wilson, et al. Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics. Toxicology, 2002, 177: 91-104
    [14] 陈琪、王伯初、唐春红等.黄酮类化合物抗氧化性与构效的关系.重庆大学学报.2003,26(11):48-51
    [15] Virginie Aumont, Stephanie Krisa, Eric Battaglia, et al. Regioselective and Stereospecific Glucuronidation of trans- and cis-Resveratrol in Human. Arch. Biochem. Biophys., 2001, 393(2): 281-289
    [16] Wright, J. S., Jonhson, E. R., & DiLabio, G. A. Predicting the activity of phenolic antioxidants: Theoretical method, analysis of substituent effects, and application to majorfamilies of antioxidants. J. Am. Chem. Soc., 2001, 123: 1173-1183.
    [17] 张红雨,王兰芬.茶多酚清除过氧自由基分子机理的量子化学计算研究.淄博学院学报(自然科学与工程版).2002,4(3):5-10
    [18] 岳庆磊、郭效杰、罗宗铭等.黄酮类化合物抗氧化机理及其在医药中的应用 广州化工.2003,31(2):10-12
    [19] 李震宇,贺伟,杨金龙.密度泛函理论及其数值方法新进展.化学进展.2003,17(2):193-201
    [20] S, akir Erkoc,, Figen Erkoc. & Nevin Keskin. Theoreical investigation of quercetin and its radical isomers. J. Mol. Struc-Theochem., 2003, 631: 141-146
    [21] Patrick Trouillas, Catherine Fagn_ere, Roberto Lazzaroni, et al. A theoretical study of the conformational behavior andelectronic structure oftaxifolin correlated with the free radical-scavenging activity. Food. Chem., 2004, 88: 571-582
    [22] 张瑞勤,步宇翔,李述汤.一种选择从头算基函数的有效方法.中国科学(B辑).2000,30(5):419-427
    [23] Marcos Mandado, Ana M. Grana, & Ricardo A. Mosquera. AIM charge density'study of simple natural phenolic antioxidants. Chem. Phys. Lett., 2004, 400, 169-174
    [24] Modesto Redrejo-Rodriguez, Adrian Tejeda-Cano, Maria del Carmen Pinto, et al.??Lipoxygenase inhibition by flavonoids: semiempirical study of the structure-activity relation. J. Mol. Struc-Theochem., 2004, 674: 121-124
    [25] 李涛洪、宋仲容、李聪等.槲皮素分子的几何优化.云南大学学报(自然科学版).2004,26(3):245-250
    [26] 苏克和,魏俊,胡小玲等。优化几何构型对高级别从头算能量的影响.物理化学学报.2000,16(8):718-723
    [27] 王兰芬,孙振令,张红雨.六种天然抗氧化物活性的理论评论.山东理工大学学报(自然科学版).2003,17(4):13-17
    [28] 张红雨,陈德展.酚类抗氧化剂清除自由基活性的理论表征与应用.生物物理学报.2000,16(1):1-9
    [29] 张金桐,宋仰弟.黄酮类化合物的生物活性与电子结构关系的量子化学研究.山西农业大学学报.1993,13(2):137-140
    [30] Tomiyama, S., Sakai, S., Nishiyama, T., et al. B. Chem. Soc. Jpn., 1993, 66, 299.
    [31] 王海燕、曾艳丽、孟令鹏等.有关氢键理论研究的现状及前景.河北师范大学学报(自然科学版).2005,29(2):177-181
    [32] Liv Mathiesen, Karl E. Malterud, &Reidar B.Sund. Hydrogen bond formation as basis for radical scavenging activity: A structure-activity study of C-methylated dihydrochalcones from myfica gale and structurally related acetophenones. Free. Radcal. Bio. Med., 1997, 22: 307-311,
    [33] Clifford E. Dykstra. Weak interactions in extend HCN chains J. Mol. Struc-Theochem., 1996, 362: 1-6
    [34] 潘蓄林.黄酮类化合物抗氧化活性的理论研究:硕士学位论文,2003
    [35] Norio Yamamoto, Jae-Hak Moon, Tojiro Tsushida, et al. Inhibitory Effect of Quercetin Metabolites and Their Related Derivatives on Copper Ion-Induced Lipid Peroxidation in Human Low-Density Lipoprotein. Arch. Biochem. Biophys., 1999, 372(2): 347-354,
    [36] Miller N. J., Rice E. C., Davies M. J., et al. A novel methods for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonate. Clin. Sci., 1993, 84: 407-412
    [37] Rice E. C.,Miller N. J.. Total antioxidants status in plasma and body fluids. Methods enzymol, 1994, 234: 279-283
    [38] Monica Leopoldini, Immaculada Prieto Pitarch, Nino Russo, et al. Structure,??Conformation, and Electronic Properties of Apigenin, Luteolin, and Taxifolin Antioxidants. A First Principle Theoretical Study. J. Phys. Chem.A .,2004, 108, 92-96
    [39] Patrick Trouillas, Philippe Marsal, Didier Siri, et al. A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: The specificity of the 3-OH site. Food. Chem., 2006, 97: 679-688
    [40] Abdelghafour Marfak, Patrick Trouillas, Daovy P. Allais, et al. Reactivity of flavonoids with 1-hydroxyethyl radical: a g-radiolysis study.Biochimica et Biophysica Acta, 2004, 1670: 28-39
    [41] 邹耀洪,李桂荣.黄酮类化合物清除活性氧自由基性能的研究.常熟高专学报.2001,15(2)
    [42] D. I. Tsimogiannis, V. Oreopoulou. Free radical scavenging and antioxidant activity of 5,7,3',4'-hydroxy-substituted flavonoids. Innovative Food Science and Emerging eehnologies, 2004, 5: 523-528[1] Stead, Paul. Natural products drug discovery-new technologies and approaches. Drug Discovery Today. 1997, 2(7): 256-259.
    [2] Bindseil, Kai U.; Jakupovic, Jasmin Wolf,; Dietmar; et al. Pure compound libraries; a new perspective for natural product based drug discovery. Drug Discovery Today.2001, 6(16): 840-847.
    [3] 沈保安.《中国常用中草药》,合肥:安徽科学技术出版社.
    [4] Kotaro Murakami, Reiko Saijo, Toshihiro Nhara, et al. Studies on the Constituents of Solanum Plants. I. On the Constituets of the Solanum lyratum Thunb. YAKUGAKU ZASSHI. 1981, 101 (3): 275-279.
    [5] Kotaro Murakami, Hisataka Ezim, Yoshihisa Takaishi, et al. Studies on the Constituents of Solanum Plants. V. The Constituets of S. lyratum Thunb. Ⅱ. Chem Pharm Bull. 1985, 33(1): 67-73.
    [6] Shoji Yahara, Michiko Ohtsuka (nee IKEDA), Kiniko Nakano, et al. Studies on the Constituents of Solanum Plants.ⅩⅢ. A New Steroidal Glucuronide from Chinese Solanum lyratum. Chem Pharm Bull. 1989, 3(7): 1802-1804.
    [7] Shoji Yahara, Naomi Murakami, Masaki Yamasaki, et al. Studies on the constituents of Solanum plants. Part 6. Furostanol glucuronide from Solanum lyratum. Phytochemistry. 1985, 22(11): 2748-2750.
    [8] Shoji Yahara, Mitsuyuki Morooka, Michiko Ikeda et al. Two new steroidal glucuronides from Solanum lyratum; Ⅱ. Planta Med. 1986, 52 (6): 496-8.
    [9] Wen-Cai Ye, Hao Wang, Shou-Xun Zhao, et al. Steroidal glycoside and glycoalkaloid from Solanum lyratum. Biochem Syst Ecol. 2001, 29: 421-423.
    [10] Kang, So Young; Sung, Sang Hyun; Park, Jong Hee; et al. A phenolic glucoside and steroidal sapogenins of Solalum Lyratum. Yakhah Hoechi. 2000, 44(6): 534-538.
    [11] Yung-Yung Lee, Feng-Lin Hsu, Toshihiro Nohara, et al. Two New Soladulcidine Glycosides from Solanum lyratum. Chem Pharm Bull.1997, 45 (8): 1381-1382.
    [12] 杨敬芝,郭贵明,周立新等.白英化学成分的研究.中国中药杂志.2002,27(1):42-43.
    [13] Yu, Su Mi; Kim, Hyoung Ja; Woo, Eun-Rhan; et al. Some sesquiterpenoids and 5a, 8aepidioxy -sterols from Solanum lyratum. Arch Pharmacal Res. 1994, 17(1): 1-4.
    [14] Kang, So Young; Sang, Hyun; Park, Jong Hee; et al. Hepatoprotective activity of scopoletin, a constituent of Solanum lyratum. Arch Pharmacal Res. 1998, 21 (6): 718-722.
    [15] 曹济远,谭湘陵.抗癌中药白毛藤对CHO细胞G2-PC染色体畸变的观察.现代应用药学.1988,6:1.
    [16] 张永健,王耐勤,许树旭等.复方中药注射液对人癌细胞体外杀伤效应及其对细胞??周期的影响.中西医结合杂志.1989,7:416.
    [17] 单长民,胡娟娟,杜冠华.中国临床药理学与治疗学,2001,6(3):200-203.
    [18] 施文荣,刘艳.白英对人急性早幼粒白血病HL-60细胞生长的影响.福建中医学院学报.2002,12(1):36-38.
    [19] Bookyung Kang, Eunhee Lee, Insup Hong, et al. Abolition of anaphylactic shock by Solanum lyratum Thunb. Int. J. Immunopharmac. 1997, 19(11/12): 729-734.
    [20] Kim HM, Lee EJ. Solarium lyratum inhibits anaphylactic reaction and suppresses the expressionof L-histidine decarboxylase mRNA._Immunopharm immunot. 1998, 20(1): 135-146.
    [21] 崔建国,陈小军,孙志良,等.白毛藤生物碱的提取及体外抗茵活性研究.中兽医医药杂志.2004,5:41-42.
    [22] 崔建国,孙志良,陈小军,等.白毛藤生物碱体外抗新城疫病毒作用研究.中兽医学杂志.2004,6:4-7.
    [23] 吴亚林,黄静,潘远江.白毛藤多糖的分离和生物免疫活性研究.浙江大学学报(理学版).2004,31(3):319-321.
    [24] Wu Yalin, Pan Yuanjiang, Sun Cuirong. Isolation, purification and structural investigation of a water-solublepolysaccharide from Solanum lyratum Thunb. Biol Macromol. 2005, 36: 241-245.
    [25] 孙志良,卢向阳,刘自逵,等.白毛藤提取液成份定性分析及抑菌效果.中兽医学杂志,2003,2:11-12.
    [26] 孙志良,卢向阳,易克,等.复方白毛藤注射液对鸡IL-2转录水平的影响.河南科技大学学报.2003,23(3):35-37.
    [27] 孙志良,肖洪波,葛冰等.复方白毛藤注射剂的制备及体外抑菌实验[J].中兽医医学杂志.2003,(3):14-16
    [28] 孙志良,刘丽萍,李虹等.白毒注射液对鸡新城疫的临床疗效实验[J].湖南畜牧兽医.2003,(3):5-6.
    [29] 孙志良,卢向阳,董伟等.复方白毛藤注射剂的抑菌效果及对小鼠免疫功能的影响[J].中国兽医科技.2003,(4):57-58.
    [30] 孙志良,卢向阳,董伟等.复方白毛藤注射剂对仔猪大肠杆菌病的疗效研究[J].畜牧兽医杂志.2003,(4):6-7.
    [31] 孙立新,任靖,王敏伟等.白英抗肿瘤活性部位筛选.沈阳药科大学学报,2005,22(3):210-212.
    [32] 巨勇,杜枚,贾忠建等.防己叶菝葜化学成分研究.中国中药杂志.1993,18(10):611-614.
    [33] 魏太明,阎玉凝,关昕璐,等.垂盆草的化学成分研究(Ⅰ).北京中医药大学学报.2003,26(4):59-61.
    [34] 于德泉,杨峻山.分析化学手册(第七分册).化学工业出版社,1999.
    [35] 莫顺燕,杨永春,石建功.桑黄化学成分研究.中国中药杂志.2003,28(4):339-341.
    [36] 曾诠,刘成基,孟宝华.黄毛豆腐柴茎皮乙酸乙酯部分的化学成分研究.中草药.1990,??21(5): 200.
    [37] Hildeber Wagner, Vedantha Mohan Chari, Johann Sonnenbichler. 13C-NMR-Spektem Naturlieh Vorkommender Flavonoide. Tetrahedro Lett. 1976, 21: 1799.
    [38] 张成刚,李伯刚,顾健.马蹄荷化学成分研究.天然产物研究与开发,2003,15(4):308-310.
    [39] Sethi ML, Taneja SC, Agarwal SG, et al. Isoflavones and stibenes from Juniperus macropoda. Phtochemitry, 1980, 19: 1831.
    [40] 华燕,周建于,倪伟,等.虎杖的化学成分研究.天然产物研究与开发.2001,13(6):16-18.
    [41] Hase T., OhtaniK., KasaiR., Yomaski K., Picheansoonthon C.. Revised structurefor hortensin, a flabonoid from Millingtonia tensie s[J]. Phytochemistry, 1995, 40(1): 287-290.
    [42] 肖崇厚.中药化学.上海科学技术出版社,309.
    [43] XUE Pei-feng, LIANG Hong, WANG Bin, ZHAO Yu-ying. Chemical constituents from Potentilla multifida L.. J Chinese Pharm Sci. 2005, 14(2), 86-88.
    [44] Li TAN, Bin WANG, Yu Ying ZHAO. A Lignan Glueoside from Bupleurum scorzonerifolium. Chinese Chem. Lett. 2004, 15(9), 1053-1056.
    [45] 李忌,陈俊杰,巨勇,等.天然甾体皂苷化合物的抗肿瘤活性.天然产物研究与开发.1999,11(1):14-17.
    [46] 钟璐.槲皮素对NB4、HL-60细胞形态、PML mRNA及蛋白表达的影响.上海医学.2001,24(1):22.
    [47] 谢庆文.槲皮素对NB4细胞株p53及蛋白的影响.上海第二医科大学学报.2001,21(1):8.
    [48] 黄应桂.槲皮素对HL-60细胞c-myc和cyclin D_1基因表达的影响.癌症.2000,19(8):832.
    [49] 李小军.槲皮素对大肠癌细胞SW116增值的影响.成都军区医院学报,2001,3(2):1.
    [50] 白艳婷.槲皮素对人肝细胞SMMC7721增值的影响.解放军药学学报.2001,17(2):64.
    [51] 傅蓓蓓,杜冰.白藜芦醇抗肿瘤机制研究进展.国外医学肿瘤学分册.2003,30(5):357-360.
    [52] 姚新生.天然药物化学.人民卫生出版社(第4版,2003.
    [53] Tanaka S, Akimoto A, tambe Y, et al. Volatile antiallergic principles from a traditional herbal prescription of Kampo medicine. Phytother Res. 1996, 10(3): 238.
    [54] Miyazawa M, Shimamura H, Nakamura S, et al. Antimutagenic activity of (+)-β- Eudesmol and paenonol from Dioscorea. J Agric Food Chem. 1996, 44(7): 1647.
    [55] Bamba D, Bessiere JM, Marion C, et al. Essential oil of Eupatorium odoratum. Planta Med. 1993, 59(2): 184.
    [56] Koezuka Y, Honda G, Tabata M. Genetic control of phenylpropanoids in perilla fruescens. Phytochemistry. 1986, 5(9): 2085.
    [57] Rai RK, Guupta KC, Broophy JL, et al. Insecticidal activity and isolation of active principle from essential oil of Cymbopogan winterianus roots. Chem Environ Res. 1993, 2(3): 167.
    [58] Sharma RN, Tare V, Pawar P, et al. Toxic effects of some plants oils and their common??constituents on the psyllid pest, Heteropsylla cubana (Homoptera:Psyllidae)of social forestry tree leucaena leucocephala. Appl Entompl Zool. 1992, 27(2): 285.
    [59] 刘鹏岩,傅承光.中草药挥发油的分析及应用.河北大学学报(自然科学版).1993,13(1):86-92。
    [60] 中华人民共和国卫生部药典委员会.中华人民共和国药典,广东科技出版社(1995年版),一部.1995.
    [61] 刘杰,侯惠鸣,屠万倩.鹅不食草挥发油成分的GC-MS分析.中草药.2002,33(9):785-786.
    [62] Hou Dongyan, Zhang Weihua, Hui Ruihua. Separation and determination of chemical constituents in the volatile oil of three traditional Chinese crude drugs.Journal of Pharma and Biomed Analy- -sis, 1998, 17(8): 1423-1426.
    [63] 王若曼.棕榈酸[J].大连化工.1991,1:21.
    [64] 刘霞.共轭亚油酸抗癌的安全性、有效异构体及其有效剂量[J].中国临床康复.2005,9(18):212.
    [65] YAN Jian-hui, XIAO Xu-xian, HUANG Ke-long. Component analysis of volatile oil from Illicium Verum Hook. f. Joumal CSUT. 2002, Vol.9(3): 173-176.
    [66] Martin M. F. Choi., Shaomin Shuang, H. Y. Lai, etal. Gas chromatography-mass spectrometric determination oftotalisothiocyanates in Chinese medicinal herbs. Anal Chim Acta. 2004, 516: 155-163.
    [67] Kang, So Young; Sang, Hyun; Park, Jong Hee; et al. Hepatoprotective activity of scopoletin, a constituent of Solanum lyratum. Arch Pharmacal Res. 1998, 21(6): 718-722.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700