氮化钒工艺技术及工艺设备关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钒以其超强的晶粒细化和沉淀强化作用,已经成为高强度钢的首先合金添加元素。因为钒和氮的结合比钒和碳的结合更加稳固、更加均匀,从而加强了钒的晶粒细化和沉淀强化作用,故钒的存在不再是钢中力图去除的有害元素,而是希望增加的有益元素。钢中直接加入钒和氮的最可靠方法是添加氮化钒。
     制备氮化钒的关键技术包括:氮化钒的工艺技术和工艺设备关键技术。氮化钒的工艺技术包含氮化钒的工艺温度技术、工艺气氛技术和工艺配方技术,它对提高氮化钒产品的氮质量百分比和钒质量百分比至关重要,而工艺设备关键技术是实现氮化钒工艺过程的重要保障。因此,本文针对氮化钒的工艺技术和工艺设备关键技术展开了研究工作。主要工作和研究内容如下:
     1.用热力学方法研究了常压条件下五氧化二钒与碳粉还原成氮化钒的反应机理。重点分析了各级碳化还原反应的开始温度与体系内一氧化碳气体分压的关系,研究了体系内氧气气体分压对碳化还原反应的影响,以及体系内氮气气分压对氮化反应截止温度的影响,体系内氧气气体分压对氮化产物氧化反应截止温度的影响。
     2.研究了常压条件下五氧化二钒与碳粉烧结反应过程的动力学问题。具体分析了各级反应温度与反应速率的关系,为解决五氧化二钒碳热还原氮化钒工艺中的氮质量百分比和钒质量百分比偏低的问题提供了理论依据。
     3.针对配碳系数、添加剂数量、氮化时间等三个因子,开展了影响对产品氮质量百分比、钒质量百分比的正交试验,通过正交试验统计和方差分析的方法,实现了氮化钒工艺配方和氮化时间的优化。
     4.研究了氮化钒工艺设备的关键技术。设计了氮化钒烧结工艺的时间—温度关系曲线和时间—气氛关系曲线,通过对烧结设备低温段、升温段和恒温段介质分析,以及热力学计算,设计了相应的温度场下,满足工艺条件的烧结设备内衬。
     总之,论文针对氮化钒工艺技术及工艺设备关键技术开展了氮化钒的工艺温度技术、工艺气氛技术、工艺配方技术及工艺设备内衬技术的研究,解决了常压条件下五氧化二钒碳热还原氮化钒工艺的氮质量百分比和钒质量百分比偏低和工艺设备的内衬腐蚀问题,试验证明常压条件下五氧化二钒碳热还原氮化钒工艺技术在工程上是合理可行的。
Vanadium, with its strong grain refinement and precipitation strengthening effects, has become the primary alloy additive for high strength steel. As the integration between vanadium and nitrogen is more stable and homogeneous than that between vanadium and carbon, which intensifies the grain refinement and precipitation strengthening effects of vanadium, therefore the purpose of adding vanadium is no longer to eliminate harmful elements in steel but to increase beneficial elements hopefully. The most reliable way of adding vanadium and nitrogen into steel is adding vanadium nitride.
     Key technologies of vanadium nitride preparation include process technology of vanadium nitride and key technology of processing equipment. The former includes process temperature technology, process atmosphere technology and process formulation technology of vanadium nitride, which is very important for improving mass percentage of nitrogen and vanadium in vanadium nitride products; while the latter is a critical guarantee to the realization of process procedures of vanadium nitride. Main work and studying contents of the article are as follows:
     1. Using thermodynamic method to study the reaction mechanism of reducing vanadium pentoxide and carbon powder into vanadium nitride under normal pressure, focusing on analyzing the relationship between starting temperature of all levels of carbonization reduction reactions and partial pressure of carbon monoxide in the system, impact of oxygen partial pressure in the system to carbonization reduction reaction, impact of nitrogen partial pressure in the system to closing temperature of nitriding reaction and impact of oxygen partial pressure in the system to closing temperature of oxidation reaction of nitriding products.
     2. Studying the dynamics of sintering reaction between vanadium pentoxide and carbon powder under normal pressure, including analyzing the relationship between all levels of reaction temperature and reaction velocity, which provides theoretical basis for resolving the issue of low mass percentage of nitrogen and vanadium during the reduction of vanadium nitride.
     3. Conducting orthogonal tests that impact mass percentage of nitrogen and vanadium in product according to carbon adding coefficient, additive dosage and nitriding time and optimizing processing formulation and nitriding time of vanadium nitride via orthogonal test statistics and variance analysis.
     4. Studying key technology of processing equipment of vanadium nitride. The time-temperature relationship curve and time-atmosphere relationship curve of sintering vanadium nitride are designed and lining of sintering equipment that meets processing conditions is designed via media analysis to low-temperature section, heating section and high-temperature section of sintering equipment and thermodynamic calculations.
     In summary, the article studies process temperature technology, process atmosphere technology, process formulation technology and lining technology of process equipment with regard to process technologies and key technology of process equipment for vanadium nitride and resolves the issue of low mass percentage of nitrogen and vanadium in the reduction of vanadium nitride under normal pressure and the corrosion of lining of process equipment. Tests show that the process technology of reducing vanadium pentoxide and carbon powder into vanadium nitride under normal pressure is reasonable and feasible in engineering.
引文
[1]Vanadium-market upate, analysis & outlook, England:roskill information service Ltd,1995.
    [2]孙朝晖,等.攀钢氮化钒技术的发展及市场前景[J],钢铁钒钛,2001,22(4):57-60.
    [3]陈博时,等.钒和氮微合金化的高强低碳锰钢[J],上海钢研,1999, (2):58-60.
    [4]R·兰纳伯格,等,杨才福,等;译.钒在微合金化钢中的作用[J],钢铁研究总院,2000,(8): 5-79.
    [5]杨才福,等.钒、氮微合金化钢筋的强化机制[J],钢铁,2001, (5):55-57,78.
    [6]夏茂森,等.VN12合金在钒氮微合金化钢中的作用研究[J],钢铁钒钛,2000,(6):23-28.
    [7]苏世怀,等.V-N微合金化HRB400(VN)热轧带肋钢筋的试制[J],钢铁钒钛,2003, (3):46-51.
    [8]杨才福,等.氮在非调质钢中的作用[J],钢铁钒钛,2000, (3):16-22.
    [9]卢向阳,等.VN合金在非调质钢中的应用[J],钢铁钒钛,2000, (3):29-33.
    [10]唐新民,等.非调质钢弯、直臂的开发应用[J],金属热处理,2001, (1):43-45.
    [11]完卫国,等.钒氮微合金化技术的研究与应用综述[J],江西冶金,2004, (5):26-39.
    [12]Downing J H, et al. Vanadium Containing Addition Agent and Process for Producing Same [P].US:3334992,1967.1.27
    [13]Merkert R F, et al. Method of Producing a Composition Containing a Large Amount Of Vanadium and Nitrogen [P].US:4040814,1977.8.9
    [14]王功厚等,.碳化钒、碳氮化钒生产工艺条件下的实验室研究[J],钢铁钒钛,1998,8(2).19-24
    [15]徐先锋等,五氧化二钒制备氮化钒的过程研究[J],钢铁钒钛,2003,24(1):45-58
    [16]徐先锋等,氮化钒制备过程研究[J],武汉科技大学硕士论文,2003.
    [17[日]长崎诚三,平林真.二元合金状态图集[M]刘安生,译.北京冶金工业部出版社,2004,322.
    [18][苏]利亚基舍夫,HΠ钒及其在黑色冶金中的应用[M]崔可忠,译.重庆:科学技术
    文献出版社重庆分社,1987:8-9.
    [19]魏寿昆编著,冶金过程热力学,上海科学技术出版社,1980.
    [20]梁连科金属钒(V)、碳化钒(VC)和氮化钒(VN)制备过程热力学分析[J],钢铁钒钛,2006,20(3):43-46.
    [21]方民宪等,碳热还原法制取VN和V(C,N)的热力学研究[J],矿冶,2007,9(3).47-51.
    [22]张羡夫,用相律指导冶金平衡体系的热力学分析[J],河北理工学院学报,2003,25(1)21-26.
    [23]Swift G. A, koc R. Formation studies of TiC form carbon coated TiO2[J]. Journal of materials science,1999,34(13):3083-3093.
    [24]刘秋生等.V2O5烧成钒氮合金工艺设备研究[J],工业加热,2008,37(2):19-20.
    [25]孙家福等,铁矿、球团还原度的测试方法[J],钢铁研究学报,vo1.9,No.4.Aug.1997.
    [26]天津大学物理化学教研室编.高等教育出版社,工业加热,物理化学,1993.
    [27]高锋,三氧化二钒碳热还原制备氮化钒的基础研究[J],东北大学硕士论文,2006.
    [28]曹慧,水泥窑用耐碱金属盐损毁性镁尖晶石耐火砖的开发[J],国外耐火材料,2001(1):17-22.
    [29]左景伊,腐蚀数据手册[M],北京:化学工业出版社,1982.
    [30]刘秋生等,腐蚀气氛下高温气氛保护窑加热元件的选用和分析[J],电子工业专用设备,2003,106):81-83.
    [31]Rao Yk,cataly in Extrative Metallurgy[J], J.of Meaals,1983,(7):46-50
    [32]刘建荣等,氮化钒和氮化钒铁的制备研究.[D],沈阳:东北大学,2000.
    [33]A. carpenter.Vanadium Carbide process, uspatent,33383196,1968.5.14
    [34]J.B Goddard Preparation of Low-Carbon Vanadium nitride us patent,4562057,1985.10.31
    [35]陈厚生,碳化钒和氮化钒,钢铁钒钛,2000,第21卷.
    [36]J.N Dupont and A.R Marder, The Influence of Nitrogen on the Microstructure and Mechanical Properties of Microalloyed Steels, Lehigh University, Energy Research center, March 2001
    [37]Stanislaw Zajac, Rune Lagneborg and Tadeusz Siweki; The Role of Nitrogen in Microalloyed Steels International Conference on Forging-Prsentation. Only Porto Alegre, Brazil,October.1998.
    [38]High Strengths at lower costs with Nitrovan Vanadium,8. pages, Stratgic Minerals. Corporation,2000
    [39]M.. Korchysky Raw Materials Choices, Ryan's Notes Conference-presentation only, Florda, USA,1997
    [40]高田启督等,日本金属学会会报,1993,32(6):429-431
    [41]Retelsdorf,United states patent, NO:3585610.Teb.1971.75/129
    [42]Vanadium-market upate, analysis and Outlook, England:roskill information services Ltd, 1995
    [43]叶大伦编著,冶金工业出版社,实用无机热力学手册,98
    [44]李文超主编,冶金工业出版社,冶金热力学,1995
    [45]陆文琪编著,铁合金及铁合金添加剂手册,北京:冶金工业出版社,1990(2)
    [46]黄希祜编著,冶金工业出版社,钢铁冶金原理,1990
    [47]王祖滨等,低合金高强度钢,北京:原子能出版社,1996,261-276.
    [48]赵世红等,美国的钒工业,稀有金属,1994,18(3):220-224.
    [49]Swift:G. A, Koc R Formation studies of Tic form carbon coated TiO2[J], Journal of materials science,1999,34(13):3083-3093
    [50]梁连科等著冶金热力学及动力学,沈阳:东北工学院出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700