介孔TiO_2的水热法合成及吸附和光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源的枯竭、环境污染的不断加剧是我们全人类所面临的重大问题。目前国内外学者对废水处理方法做了大量的研究工作,在众多处理方法中,吸附法由于处理量大,反应时间短,无毒害物质生成,是目前较为理想的废水脱色方法。近年来,介孔TiO2由于具有优良的光学、电学、以及光催化性能,使其在水处理、空气净化、太阳能电池、催化剂载体、生物材料等方面表现出广阔的应用前景而备受瞩目。另外,由于介孔TiO2具有较大的比表面积、介孔孔容等特点,可以作为一种很好的吸附材料,然而在废水处理中将介孔TiO2作为吸附剂却未见报道。
     本论文围绕介孔TiO2材料的制备与应用展开了研究。在合成出介孔材料并加以表征之后,也研究了其对一些主要环境污染物的吸附性能,以期能在环境治理方面能得以应用,为环境的可持续发展做出贡献。
     本论文以十六烷基三甲基溴化铵(CTAB)为模板剂,采用水热法制备了具有优良可见光光催化活性和吸附性能的介孔TiO2材料,研究了制备条件对介孔TiO2光催化活性的影响,并首次探究了其对六价铬离子、染料甲基橙、氟离子的吸附性能,结果表明:
     所制备的介孔TiO2为不规则的球状形貌,其最可几孔径为5.2 nm,孔容为0.33 cm3·g-1,比表面积为161.2 m2·g-1。
     介孔TiO2对Cr(Ⅵ)的吸附性能比非介孔TiO2明显优越,且其吸附速率符合Bangham吸附速率方程;随着Cr(Ⅵ)浓度的增大,介孔TiO2对Cr(Ⅵ)的吸附量增大并逐渐趋于饱和;其最大吸附量为33.9 mg·g-1。
     介孔TiO2对甲基橙的吸附性能明显优于非介孔的TiO2,其极限吸附量为454.5 mg·g-1,属于放热吸附。吸附量也随着甲基橙溶液pH值的升高而降低,但降低的幅度不明显。甲基橙在介孔TiO2上的吸附可用Langmuir和Freundlich等温方程来描述。介孔TiO2对甲基橙的吸附主要是由介孔TiO2和甲基橙界面的静电力和氢键同时作用引起的。
     介孔TiO2对F-表现出了很好的去除效果,其最大吸附量为27.0 mg·g-1。当氟初始浓度为10 mg·L-1时,吸附率达90%,处理后的水F-含量符合饮用水的水质标准。
Both energy depletion and environment pollution problems are becoming more and more serious to people in the world. Up to now, extensive studies have been performed for the treatment of wastewater, and many kinds of water treatment methods have been developed. Among these methods, adsorption is an ideal method for the treatment of wastewater due to its large removal ability, short reaction time, easy operation,and low cost. In recent years, due to its versatility in optical, electrical, and photochemical properties, TiO2 has been used in many different applications, including photocatalysts, sensors, photovoltaics, biomaterials, photocatalysts, solar cells, etc. In addition,mesoporous TiO2 is a promising adsorbent for its high surface area and large pore volume. On the other hand, extensive studies on the adsorption properties of mesoporous TiO2 have not been performed so far.
     In this paper, mesoporous TiO2 was synthesized and its adsorption capacities for several pollutants in industrial wastewater were investigated, so as to provide a more reliable theoretical data for the treatment of wastewaters.
     Mesoporous TiO2 was synthesized by hydrothermal method using cationic surfactant cetyltrimethylammonium bromide (CTAB) as the template with Ti(SO4)2 as Ti precursor, effects of different reaction conditions on the photocatalytic performance for methyl orange of the samples were discussed and its adsorption capacities for Cr(Ⅵ), and F- were investigated for the first time. The as-prepared mesoporous TiO2 are non-regular spherical particles and they possess a mesoporous structure with a pore diameter of 5.2 nm, pore volume of 0.33 cm3·g-1, and a surface area of 161.2 m2·g-1. When calcined at 400°C, the sample shows a surface area of 134.4 m2·g-1 and a pore diameter of 4.5 nm, and possess the best photocatalytic activity.
     The adsorption capacity of mesoporous TiO2 for Cr(Ⅵ) is considerably higher than that of non-mesoporous TiO2; the adsorption rate of Cr(Ⅵ) on the mesoporous TiO2 fits well with the Bangham equation. In the low concentration region, the adsorption capacity for Cr(VI) linearly increases with the increase of initial concentration of Cr(VI); and then the increase is retarded in the high concentration region. The maximum adsorption capacity of the mesoporous TiO2 for Cr(VI) is determined to be 33.9 mg·g-1.
     The adsorption ability of mesoporous TiO2 for is obviously superior to non-mesoporous TiO2. The adsorption capacity for methyl orange decreases with temperature incresment, showing that the adsorption of methyl orange on mesoporous TiO2 is exothermic. However, the adsorption for methyl orange is slightly influenced by pH of the solutions. The methyl orange adsorption data can be well depicted using Langmuir and Freundlich isotherms and the maximum adsorption capacity is estimated to be 454.5 mg·g-1 from Langmuir isotherm. The study on adsorption mechanism suggests that methyl orange is adsorbed on mesoporous TiO2 via electrostatic attraction and hydrogen bond formation.
     Compared to non-mesoporous TiO2, the mesoporous TiO2 exhibits better removal ability for F- with the maximum adsorption capacity of 27.0 mg·g-1. When the initial concentration of F- is 10 mg·L-1, the adsorption percentage of F- reaches as high as 90%, and the concentration of F- in treated water decreases to a value that is quite lower than the standard for drinking water.
引文
[1] Gregg S J, Sing K W. Adsorption, Surface Area and Porosity [M].New York, Academic Press, 1982:42-44.
    [2] Kresge C T, Leonowicz M E, Roth W J. Ordered Mesoporous Molecular Sieves Synthesized By A Liquid Crystal Template Mechanism [J].Nature,1992,359:710-712.
    [3] Znaidi L, Se raphimova R A Semi-continuous Process For the Synthesis of Nano-sized TiO2 Powders and Their Use as Photocatalysts [J].Materials Research Bulletin,2001,36:800-825.
    [4] Bae H S, Lee M K Dispersion Properties of TiO2 Nano-powder Synthesized by Homogeneous Precipitation at Low Temperatures [J]. Colloids and Surfaces A,2003,220: 169-177.
    [5] Antoneli. D. M, Ying. J. Y. , Synthesis of hexagonally peaked mesoporous TiO2 by a modified Sol-Gel method [J]. Angewandte Chemie (International Edition in English), 1995, 34(18): 2014-2017
    [6] Dai Q, He N, Guo Y, et al. High photocatalytic activity of pure TiO2 mesoporous molecular sieves for the degradation of 2,4,6-trichlorophenol [J]. Chem Lett.1998,11:1113
    [7] Saadoun L, Ayllon J A. Jimenez B J, et al. Synthesis and photoeatalytic activity of mesoporous anatase prepared from tetrabuty lammonium-titania composites [J]. Mater Res Bull. 2000, 35:19 3~ 197
    [8] Anders H. , Michael G. Molecular photovoltaics. [J]. Acc Chem Ras. 2000,33(5):269
    [9] Michael G. Molecular photovoltaics that mimic photosynthesis [J]. Pure Appl. Chem. 2001, 73(3): 459-463
    [10] Michael T. Molecular sieves in the nanotechnology era [J]. AIChE J. 2002, 48(4):654
    [11] He X, David A. Recent advances in synthesis and applications of transition metal containing mesoporous molecular sieves [J]. Angew Chem Int Ed. 2002,41:214
    [12] Michael R. H., Scot T. M., Choi W., et al. Environmental applications of semiconductor photocatalysis [J]. Chem Rev. 1995, 95: 69
    [13] Anders H, Michael G. Light-induced redox reactions in nanocrystalline systems [J]. Chem Rev. 1995.95:49
    [14] Antonelli D M, Ying J Y. Synihesis of hexagonally paeked mesoporous TiO2 by a modified sol-gel method [J]. Angew Chem Int Ed Engl, 1995, 34(18):2014-2017
    [15] Yoshitkae H, Sugihara T, Tatsmui T. Preparation of wormhole-like mesoporous TiO2 with an extremely large surface area and stabilization of its surface by chemical vapor deposition [J].Chem Mater, 2002, 14(3):1023-1029
    [16]王文宝,陆诚等.TiO2中孔分子筛的合成与X射线衍射分析[J].分析测试学报,2002,21(6):78-80
    [17] Wang Yu-de, Ma Chun-Lai, Sun Xiao-dan,Li Heng-de. Synthesis and characterization of mesoporous TiO2 with Wormhole-like framework structure [J]. Applied Catalysis A: General 2003,24(6):161-170
    [18] Ynag P D, Zhao D Y, Margolese D I. Generalized syntheses of large-Pore mesoporous metal oxides with semicyrstalline frameworks [J]. Nature, 1998, 296:152-153
    [19] Zhao D Y, Feng J L, Huo Q S, et al.Triblock copolymer synthesis of mesoporous silica with periodic 50 to 300 angstorm pores [J]. Scienee, 1998, 279:548-552
    [20] Cardoso da Silva, Olofsson G, Schillen K. Influence of Ionic Surafactants on the Aggregation of Poly (EthyleneOxide)-Poly (Propylene Oxide)-Poly (Ethylene Oxide) Block Copolymers Sutdied by Dieffrential Scanning and Isothermal Titration Calorimetry [J]. J Phys Chem B, 2002, 106: 1239-1246
    [21]苏延磊,郭晨,刘会洲. PEO-PPO-PEO嵌段共聚物胶团化及其应用研究进展[J].化工学报,2003,54(4):489-496
    [22]乐英红,马臻,华伟明等.二氧化钛介孔分子筛的合成和表征[J].化学学报,2000,58(7): 777-780
    [24]郑金云,邱坤元,危岩.有机小分子模板法合成二氧化钛介孔材料[J].高等学校化学学报, 2000, 21(4):647
    [25]丘坤元,危岩,郑金云.有机小分子模板法合成二氧化钛中孔材料[J].高等化学(Chemical Jounal of Chinese Universities), 2000, 21(4):649-747
    [26] Jimmy C Y, Zang L Z, Yuj G. Rapid synthesis of mesoporous TiO2 with high photocatalytic activity by ultra sound-induced agglo metation [J]. New J Chem, 2002, 26(4):416
    [27] Shoivchi T, Ryoji Satoshi S, et al. Stuctural study of mesoporous titania from titanium alkoxide and carboxylic acid [J]. J Sol-Gel Sci Techno1, 2000, 19:711
    [28] Antoneli M, Ying J. Y. , Synthesis of hexagonally packed mesoporous TiO2 by a modified Sol-Gel method [J]. Angew Chem Int Ed Engl,1995,34(18):2014
    [29]刘红霞,杨春.介孔TiO2的合成及光催化性能研究,南京师大学报, 2009,32(1):62-67
    [31]王海滨,贾娜,霍冀川,介孔纳米二氧化钛的制备、表征及光催化性能研究,硅酸盐通报,2006,25(4):97-102
    [32]李书珍,王磊,李林,光催化降解水中苯酚的研究.河南化工, 2005,22:14-18)
    [33]张汝冰.均匀沉淀法制备纳米TiO2及其在环保领域的应用[J].环境化学,1999,18(6): 579-583
    [34]崔鹏,范益群.TiO2负载膜的制备、表征及光催化性能[J].催化学报,2000,21(5):494-496
    [35]张坚亦,肖忠海.不锈钢负载半导体薄膜光催化降解有机污染物的研究[J].湖北化工,2000,17(04):20
    [36]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001, 310
    [37] Yongfa Zhu, Li Zhang, Wenqing Yao, et al. The chemical states and properties of doped TiO2 film photocatalyst prepared using the Sol-Gel method with TiCl4 as a precursor[J]. Applied Surface Science, 2005, 158:32-37
    [38]赵文宽,覃榆森.水面石油污染物的光催化降解[J].催化学报,1999,20(03): 369-372
    [39] Wen-Chen Wu, Li-Fen Liao, Chih-chung Chuang. Adsorption and photo-oxidation of formamide on powdered TiO2[J]. Journal of Catalysis, 2000, 195:416-419
    [40] John C, Crittendden, Junbiao Liu, et al. Photocatalytic oxidation of chlorinated hydrocarbons in water[J]. Wat.Res., 2001, 31(3):429-438
    [41]谭欣,何振雄,霍爱群.非整比纳米TiO(2-X)膜光催化降解水中微量卤代烃,天津大学学报, 2000,33(3):360-364
    [42] Selli E. Role of Humic Acids in the TiO2-photocatalyzed Degradation of Tetrachloroethene in Water [J].Wat.Res., 2004, 33(8):1827-1836
    [43]武正簧.TiO2薄膜在光催化下处理含铬废水[J].太原理工大学学报,2005, 30(03): 289-290
    [44]金华峰,李文戈. Fe/Ti/Si复合纳米微粒光催化降解NO2[J].化学研究与应用,2001, 13(2):153-156
    [45]高远,徐安武.掺铁TiO2用于NO2光催化降解研究[J].中山大学学报,2006,39(5):44-48
    [46]黄汉生.日本TiO2光催化剂环境净化技术开发动向[J].现代化工, 1998, 18(12):39-42
    [47]祖庸,李晓娥,王训等.纳米TiO2-一种新型的无机抗菌剂[J].现代化工, 1999, 19(8):68
    [48]张梅,杨绪杰,陆路德等.纳米TiO2-一种性能优良的光催化剂[J].化工新型材料, 2000, 28(4):11-13
    [49]梁金生,金宗哲,王静.空气净化功能建筑内墙涂料的研究[J].中国建材科技, 2000, (2):6-8
    [50]丘星林,徐安武.纳米级TiO2光催化净化大气环保涂料的研制[J].中国涂料, 2000, (4):30-32
    [51]肖汉宁,李玉平.纳米二氧化钛的光催化特性及其应用[J].陶瓷学报,2004,22(3):191-195
    [52] Aoyanna Yoshio, Nakanisi Ritsuko, Murai Keiko. Kenkyu Hokokusho-Toyo Shokuhin Kogyo Tanki Daigaku, Toyo Shokuhin Kenkyu Sho, 2005, 35(23):101-108
    [53] D. P. Serrano, G. Calleja, R. Sanz, et al. Preparation of bimodal micro-mesoporous TiO2 with tailored crystalline properties. Chem. Conunun., 2004, 1000-1001
    [54] H. Wang, Y. Wu, B. Q. Xu. Preparation and characterization of nanosized anatase TiO2 cuboids for photocatalysis. Appl. Catal. B: Envlron., 2005, 59:139-146
    [55]于向阳,梁文,杜永娟等.二氧化钛光催化剂材料的应用进展.材料导报. 2000, 14: 38-40
    [56] R. Wang, K. Hashhaoto, A. Fujishima, et al. Photogeneration of highly amphiphilie TiO2 surfaces. Adv. Mater., 1998, 10:135-138
    [57] Y. Paz, A, Heller. Photo-oxidatively self-cleaning transparent titanium dioxide films on soda lime glass: The deleterious effect of sodium contamination and its prevention. J. Mater. Res., 1997, 12:2759-2766
    [58]刘景辉,王立夫,闫肃,赵贺.纳米二氧化钛薄膜在汽车挡风玻璃上的亲水性研究,汽车工艺与材料, 2005, (03): 203-206
    [59] Subbian K, Dinesh P A, Koichi Y, et al. Cathodic electrodeposition of TiO2 thin films for dye-sensitized photo-electrochemical applications[J]. Chem Lett, 2001, 1:78
    [60] Karen L, Frindell, Michael H, et al. Sensitized luminescence of trivalent europium by three-dimensionally arranged anatase nano-crystals in mesostructured titania thin films [ J ]. Angewandte Chemie International Edition, 2002, 41 (6) : 959 - 962.
    [61]范晓星,于涛,邹志刚.介孔TiO2的材料合成及其在光催化领域的应用[J].功能材料,2006, 37 (1):6-10.
    [62]张雪红,罗来涛.室温水解法制备介孔二氧化钛的表征及应用[J].感光科学与光化学, 2005, 23 (1) : 14-20.
    [63]林会亮,周国伟,刘颖,等.介孔TiO2的制备及其对漂白废水中对氯苯酚的降解研究[J].纳米科技, 2006, 3 (3) : 27-30.
    [64]岂兴红.[D].长春理工大学,2008, 23-24
    [65] Bemd Smarsly,David Grosso,Torsten Brezesinski et al.[J]. Chem Mater, 2004, 16: 2948-2952
    [66]成思危.铬盐生产工艺[M].北京:化学工业出版社,1988, 374-382
    [67]朱建华.不同价态铬的毒性及其对人体影响[J].环境与开发,1997,12( 3):47-49
    [68]张东,苏会东,高虹.钛酸锶钡纳米粉体的制备及其对铬(Ⅵ)和铬(Ⅲ)吸附性能[J].冶金分析,2007,27(4):7-10.
    [69] Dakiky M,Khamis M,Manassar A, et a1. Selective adsorption of chromium in industrial wastewater using low-cost abundantly available adsorbents [J]. Advances in Environmental Research,2002,6(4): 533-540.
    [70] Peter A Lay,Chromium in Biology - Toxicology and Nutritional Aspects [J].Journal of Inorganic Biochemistry.Australia,2003,96.
    [71] Ministry of Environmental Protection of China (Editing Committee for Analysis Methods of Water and Waste Water).Monitoring and Analysis Methods for Water and Waste Water,4th Edn [M]. Beijing:China Environmental Science Press,2001
    [72]王英滨,靳昕,林智辉. MCM-41中孔分子筛吸附水中Cr(VI)的动力学研究[J].硅酸盐学报,2007,35(2): 197-201.
    [73]李增新,李俊,王国明等.天然沸石负载壳聚糖去除水中砷的研究[J].现代化工,2007,27(2): 196-197.
    [74] Dastgheib S A,Rockstraw D A. A model for the adsorption of single metal solutes in aqueous solution onto activated carbon produced from pecan shells [J]. Carbon,2002,41(11): 1843-1851.
    [75] Michael G. Molecular photovoltaics that mimic photosynthesis. Pure Appl. Chem. 2001,73(3): 459-463
    [76]张东云,测定水中六价铬分析方法的改进,内蒙古环境保护,2006, 18(2):39
    [77]杜立功,介孔材料的制备及其吸附性能研究[D].山东大学,2007
    [78] Chibowski S., Paszkiewicz M., Adsorpt. Sci. Technol. [J]. 2001, 19(5): 397-407
    [79]王萍,李国昌.Keggin离子改性凹凸棒石对废水中六价铬的吸附研究,非金属矿,2006,29(6):46-49
    [80]谢志刚,吉芳英,邱雪敏,黄鹤,柑橘渣吸附剂对六价铬的吸附性能[J].重庆大学学报,2009,32(2):195
    [81]王亚军,朱琨,腐殖酸对六价铬在沙土中吸附行为的影响研究[J].兰州交通大学学报,2005. 24(4):69
    [82]唐文青,曾荣英,冯泳兰等,碳羟基磷灰石除废水中六价铬的吸附性能研究[J].无机盐工业,2009,41(1):46-48
    [83]李家珍,染料、染色工业废水处理,北京,[M].1996, pp. 23-25.
    [84] Kalpana C. Maheria and Uma V. Chudasama, Sorptive Removal of Dyes Using TitaniumPhosphate [J]. Ind. Eng. Chem. Res. 2007, 46, 6852-6857
    [85] Dinesh Mohan, Kunwar P. Singh, Gurdeep Singh, and Kundan Kumar, Removal of Dyes from Wastewater Using Flyash, a Low-Cost Adsorbent [J]. Ind. Eng. Chem. Res. 2002, 41, 3688-3695
    [86] Xin Zhuang, Ying Wan, Cuimiao Feng, Ying Shen, and Dongyuan Zhao,Highly Efficient Adsorption of Bulky Dye Molecules in Wastewater on Ordered Mesoporous Carbons [J]. Chem. Mater. 2009, 21, 706–716
    [87] Q. H. Hu, S. Z. Qiao, F. Haghseresht, M. A. Wilson, and G. Q. Lu, Adsorption Study for Removal of Basic Red Dye Using Bentonite [J]. Ind. Eng. Chem. Res. 2006, 45, 733-738
    [88] Emad N. El Qada, Stephen J. Allen, and Gavin M. Walker, Adsorption of Basic Dyes onto Activated Carbon Using Microcolumns [J]. Ind. Eng. Chem. Res. 2006, 45, 6044-6049
    [89]孙振亚,杜建华,陈和生,龚文琪.氧氢氧化铁对偶氮染料脱色作用的红外光谱研究,光谱学与光谱分析, [J]. 2006, 26(7):1226-1229
    [90] Y. El Mouzdahir, A. Elmchaouri, R. Mahboub, A. Gil, and S. A. Korili. Adsorption of Methylene Blue from Aqueous Solutions on a Moroccan Clay [J]. J. Chem. Eng. 2007, 52, 1621-1625
    [91] Mykola Seredych and Teresa J. Bandosz.Removal of Cationic and Ionic Dyes on Industrial-Municipal Sludge Based Composite Adsorbents [J]. Ind Eng. Chem. Res. 2007, 46, 1786-1793
    [92]王昕,张春丽,任广军等,碳纳米管吸附染料甲基橙的性能研究,当代化工, [J]. 2008.37(4):377
    [93]任广军,宋恩军,张春丽,王昕,二氧化钛柱撑膨润土对染料甲基橙的吸附行为,现代化工, 2005,第25卷增刊,142-146
    [94]刘转年,何婵,赵西成.超细粉煤灰对甲基橙的吸附性能和机理研究[J]. Environmental Science & Technology, 2009,32(2):125-129
    [95] Alok Mittal, Arti Malviya, Dipika Kaur, Jyoti Mittal, Lisha Kurup. Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials [J]. Journal of Hazardous Materials 2007 (148) :229-240
    [96] CHEN Jie , SONG Qize. Organism Spect roscopy Analysis . Beijing : Beijing University of Technology Press, [M].1996. 73.
    [97] TANG Hui-tong. Spect romet ric Identification of Organic Compoud. Beijing : PekingUniversity Press, [M].1992. 87.
    [98]陈国阶,余大富,环境中的氟[M].北京:科学出版社,1990
    [99]刘斐文,肖举强等.含氟水处理过程的“吸附交换”机理,离子交换与吸附[J].1991, 7(5):378-381
    [100]卢建杭,黄克玲,刘维屏,含氟水治理研究进展,化工环保[J].1999,19(6):341
    [101]凌波.铝盐混凝沉淀除氟[M].水处理技术,1990,16(6): 418-421
    [102]黄克怒.饮水氟中毒的防治措施[J].新疆环境保护,1985,(4): 39-46
    [108] Maurice S. Onyango, Yoshihiro Kojima, Ochieng Aoyi et a1., Journal of Colloid and Interface Science[J]. 2004, 279(2):341-350
    [104]焦中志,张昱,杨敏等,稀土铈基无机吸附剂对氟的吸附性能,环境化学[J], 2002, 2l (4):365-370
    [105]周凤鸣,马志毅等,粉煤灰处理含氟工业废水研究,环境科学学报.[J], 1993, 2(6):460
    [106]马刚平,刘振儒,赵春禄.镧氧化膜硅胶吸附除氟性能研究,中国环境科学[J], 1999,19 (4) :345~348
    [107]黄志良,刘羽,王大伟,张术根,陈露军, Sol-Gel法合成HAP的结晶特征及其对F-离子吸附性能研究[J].无机材料学报,2007,16(4):661-667
    [108]顾浩,许昭怡,李丽嫒等,氧化铝负载镧去除水中F-的研究[J].环境科学学报, 2009, 29(3): 589-593
    [109]季桂娟,赵勇胜.活性TiO2的制备与去除地下水中氟离子(F-)性能的研究[J].吉林大学学报,2006,36(1):148-152
    [110]詹予忠,李玲玲,汪永威,杨向东.磷酸铝吸附除水中氟的研究[J].离子交换与吸附, 2006, 22(6):527-535
    [111]国家环保局.水和废水监测分析方法[M].北京:中国环境科学出版社,1991. 300.
    [112]董岁明,载铁改型沸石除氟剂的除氟性能研究[J].西北农林科技大学学报, 2005,33(9):91-95
    [113]王鲁敏,殷军港,邓昌亮,孙燕平,刘翠霞.褐煤型吸附剂对氟离子的吸附[J].烟台大学学报,2003,16(4):293-296
    [114]江霜英,高廷耀.粘土对水中氟离子吸附去除机理的研究[J].化工环保, 2003, 23(4):204-208
    [115]黄志良,刘羽,张昱,曾洁琼,张芳.碳羟磷灰石吸附水溶性的影响因素研究,武汉化工学院学报,2002,24(4):27-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700