纳米钨酸锰和氧化铈的超声合成及其性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声波作为一种新的合成方法与传统合成方法相比具有反应温度低、时间短以及条件温和等特点。本论文利用超声波合成法成功制备了MnWO4和CNT-CeO2两种纳米材料并分别研究了它们的性质。
     我们以钨酸盐为先驱物,采用不同的表面活性剂,在超声波条件下成功制备了不同形貌的纳米钨酸锰。本工作研究了在实验中采用不同的表面活性剂对于纳米钨酸锰最终形貌的影响。利用粉末XRD、SEM、EDS、FTIR以及UV-vis等表征技术对所制备的纳米钨酸锰样品进行了表征。基于其良好的光化学性能,本工作开展了纳米钨酸锰对于有机染料罗丹明B的光降解实验。实验结果发现,纳米钨酸锰对于有机染料罗丹明B的光降解具有较好的催化作用,有望在有机染料废水处理领域得到应用。本工作还研究了纳米钨酸锰的电化学性质。实验发现,经MnWO4和壳聚糖(CHIT)修饰的玻碳电极能够增强亚铁离子和铁离子氧化还原反应对之间的电子转移。将此修饰电极MnWO4/CHIT/GCE电极的表面吸附牛血红蛋白(Hb)后即可构成对于H2O2具有良好催化效果的传感器,可用于测定溶液中H2O2的浓度,其线性范围为5.0×10-6 - 4.5×10-4 M,检测限为1.0×10-6 M。
     CNT-CeO2复合纳米材料的合成是以硝酸铈铵为先驱物,以乙二醇作为表面活性剂,在超声波条件下合成纳米CeO2颗粒沉积在碳纳米管载体上得到的。利用粉末XRD、SEM、EDS以及FTIR等表征技术对所制备的CNT-CeO2复合纳米材料进行了表征。基于纳米CeO2的高比表面积和碳纳米管良好的导电性,本工作将其固定在玻碳电极的表面制成CNT-CeO2/CHIT/GCE修饰电极,并利用循环伏安(CV)以及电化学阻抗波谱分析(EIS)研究了此修饰电极的电化学性质。电化学实验结果表明,CNT-CeO2/CHIT/GCE修饰电极具有良好的电化学活性,能够增强亚铁离子和铁离子氧化还原反应对之间的电子转移,在其表面吸附牛血红蛋白后对溶液中H2O2的分解反应具有良好的催化性能,在H2O2浓度为5.0×10-6 - 5.0×10-4 M的范围内,Hb/CNT-CeO2/CHIT/GCE电极的电催化信号与溶液中H2O2浓度呈线性关系。因此,超声法合成的CNT-CeO2复合纳米材料可用于构建一种新型的H2O2传感器,其检测限为1.0×10-6 M。
     另外为促进两种纳米材料在燃料电池领域的应用,本工作采用循环伏安电沉积法将氯铂酸分别沉积在MnWO4/CHIT/GCE复合电极和CNT-CeO2/CHIT/GCE复合电极的表面,形成Pt/MnWO4/CHIT复合膜和Pt/CNT-CeO2/CHIT复合膜,应用线性扫描伏安法检测所制得Pt/MnWO4/CHIT复合膜和Pt/CNT-CeO2/CHIT复合膜对甲醇氧化的催化活性。初步的实验结果表明两种复合膜对甲醇均具有较高的电催化活性。
Different from the routine methods, the new ultrasonic-induced synthesis approach has many advantages, such as low reaction temperature, short reaction time, and mild reaction conditions. In this thesis, MnWO4 nanocrystals and CNT-CeO2 nanocomposites have been successfully achieved by the ultrasonic technique. Their properties and applications have also been studied in our work.
     MnWO4 nanostructures with different morphologies have been prepared using inorganic salts as precursors via sonochemical process. In this work, the influence of the different surfactants on the morphology-control of MnWO4 nanostructures was investigated. The as-prepared MnWO4 nanocrystals were characterized by X-ray diffraction(XRD), scanning election microscopy(SEM), energy dispersive spectroscopy (EDS), fourier transform infrared(FT-IR), UV-vis spectroscopy and other techniques. Because of its good photocatalytic property, the as-synthesized MnWO4 had been introduced for the photodegradation of rhodamine B (RhB). The results indicated that MnWO4 had excellent photocatalytic property for the degradation of RhB and it had potential applications in the organic dyestuff and water treatment region. The electrochemical property of MnWO4 nanocrystals had also been studied. It is indicated that the glass carbon electrode (GCE) moditied with MnWO4 nanocrystals and CHIT could enhance electron transfer for its heme Fe(III) to Fe(II) redox couple. The MnWO4/CHIT/GCE electrode was further used as efficient supports for the immobilization of hemoglobin (Hb) to fabricate a novel biosensor. The biosensor showed an excellent bioelectrocatalytic activity towards H2O2 with a linear range from 5.0×10-6 to 4.5×10-4 M, and the detection limit of the sensor was 1.0×10-6 M at 3σ.
     CNT-CeO2 nanocomposites has been achieved by a cheap and simple ultrasonic technique using (NH4)2Ce(NO3)6 as precursors and the ethylene glycol (EG)-assisted. The as-prepared CNT-CeO2 nanocomposites were characterized by X-ray diffraction(XRD), scanning election microscopy(SEM), Energy Dispersive Spectroscopy (EDS), fourier transform infrared(FT-IR), and other techniques. Because of the high surface area of CeO2 and the good electrical conductivity of CNTs, they were immobilized on glass carbon electrode (GCE) to fabricate CNT-CeO2 /CHIT/GCE electrode. Then the electrochemical property of this modified electrode was studied by cyclic voltammetry and electrochemical impedance spectroscopy. The electrochemical results indicated that CNT-CeO2/CHIT/GCE electrode could enhanced electron transfer for its heme Fe(III) to Fe(II) redox couple. When Hb was cast on its surface, the modified electrode showed good electrocatalytic activity towards H2O2 reduction. The catalytic reduction peak current of Hb/CNT-CeO2/CHIT/GCE film increased linearly with the concentration of H2O2 in a linear range from 5.0×10-6 to 5.0×10-4 M. Hence, CNT-CeO2 nanocomposites achieved by ultrasonic technique can be fabricated a novel biosensor to H2O2. Its detection limit was 1.0×10-6 M at 3σ.
     Moreover, in order to study the potential applications of these materials in fuel cell, H2PtCl6 was electrodeposited on the MnWO4/CHIT/GCE electrode and CNT-CeO2 /CHIT/GCE electrode by cyclic voltammetry to form MnWO4/CHIT film and CNT-CeO2 /CHIT film. The electrochemical oxidation of methanol on the MnWO4/CHIT film and CNT-CeO2 /CHIT film was studied by cyclic voltammetry respectively. The primary results demonstrated that these two films had a good electorcatalytic activity for the methanol oxidation reaction.
引文
[1]张金中,王中林,刘俊等著,曹茂盛,曹传宝译,自组装纳米结构,北京:化学工业出版社,2005,106-137
    [2]施尔畏,夏长泰,王步国等,水热法的应用与发展,无机材料学报,1996,11:193-206
    [3]N. Chen, W. Zhang, W. Yu, Y. Qian, Synthesis of nanoerystalline NiS with different morphologies[J], Mater.Lett, 2002, 55(4): 230-233
    [4]Z..Liu, S. Peng, Q. Xie, Z. Hu, et. al, Large-Scale Synthesis of Ultralong Bi2S3 Nanoribbons via a Solvothermal Proeess[J], Ady. Mater, 2003(15): 936-940
    [5]W. Wang, Y. D. Li, Rational Synthesis of Metal Nanotubes and Nanowires from Lamellar Structures[J], Ady. Mater, 2003(15):445-447
    [6]X. Wang, X. M. Sun, D. P. Yu, et. al, Rare Earth Compound Nanotubes[J], Ady. MateL, 2003(15):1442-1445
    [7]S. Fullam, D. Cottell, H. Rensmo, et. al, Carbon nanotube templated self-assembly and thermal proeessing of gold nanowires[J], Ady. Mater, 2000, 12: 1430-1432
    [8]Y. Lei, L. D. Zhang,G. W. Meng,GH.Li, et. al, PreParation and photolumineseence of highly ordered TiO2 nanowire arrays[J], Appl. Phys. Lett, 2001(78): 1125-1127
    [9]X. E. Duan, C. M. Lieber, General synthesis of compound semiconduetor nanowires[J], Adv. Mater, 2000(12): 298-302
    [10]C. C. Chen, C. C. Yeh, Large-scale catalytic synthesis of crystalline gallium nitride nanowires[J], Adv. Mater, 2000(12): 738-741
    [11]Z. W. Pan, Z. R. Dai, Z. L. Wang, Nanobelts of Semieondueting Oxides, Seience, 2001(291): 1947-1949.
    [12]Y. T. Cheng, A. M. Weiner, C. A. Wong, et, al, Stress-induced growth of bismuth nanowires, Appl. Phys. Lett, 2002(81):3248-3250
    [13]Y. B. Li, Y. Bando, T. Sato, et, al, ZnO nanobelts grown on Si substrate, Appl. Phys. Lett, 2002(81): 144-146
    [14]M. Pita, J. M. Abad, C. V. Dominguez, et, al, Colloid Interface Sci, 321(2008)484
    [15]陈海澜,纳米材料在电催化领域的应用与特性分析,科技资讯,2008,(16):9-9
    [16]W. H. Cheng, K. C. Wu, M. Y. Lo, et, al, .Recent advances in nano precious metal catalyst research at Union Chemical Laboratories, ITRI, Catalysis Today, 2007, 97(2-3): 145~151
    [17]李莉,魏子栋,李兰兰,电沉积纳米材料研究现状,电镀与精饰,2004,26(3):9~15
    [18]宁慧森,白国义,纳米金属催化剂的制备方法及其比较,化学推进剂与高分子材料,2007,5(3):15~18
    [19]Chen S, Kueernak A, Fabrieation of Carbon microelectrodes with an effective radius of 1nm, Electroehem,Commun, 2002, 4(l): 80-85
    [20]Chen5.L.,Kueernak A, Overestimation of heterogeneous rate constants of hexaeyanoferrate at nanometer-sized ultramieroeleetrodes, Electroehem. Commun, 2002, 4(1): 24-29.
    [21]McNally M, Wong D. K. Y, An invivo Probe based on mechanieclly strong but structurally small carbon eleetrodes with an appreciable surface area, Anal. Chem, 2001, 73(20): 4793-4800
    [22]Laibins P. E, Whitesides G. M, Allara D. L, et al, Chem. Soc, 1991, 113: 7152
    [23]Samant M. G, Brown C. A, GordonJ. G, Langmuir, 1991, 7: 437
    [24]Ross C. B, Sun L, Crooks R. M, Langmuir, 1993, 9: 632
    [25]Bard A. J, Faulkner L. R, Electroehemical Methods, Wiley, NewYork, 1980
    [26]Flink S. V, Veggek C. J. M, ReinhoudtD. N. J. Phys. Chem. B 1999, 103: 6515
    [27]Diao P, Jiang D. L, Cui X. L, et al, J. Eleehtroanal. Chem, 1999, 464: 61
    [28]Volodin A, Haesenolonck C, Van. Appl. Phys, A[suppl], 2001, 72: 75
    [29]Chen C. W, TakezakoT, Yamamoto K, et al, Colloid and Surfaces A, 2000, 169: 107
    [30]Golabi S. M, Nozad A., J Eleetroanal, Chem, 2002, 521: 161
    [31]尉艳,纳米铈化合物修饰电极的制备与电化学传感器应用,[学位论文],安徽师范大学,2007
    [32]B. D. Menieol, D. A. Rand, K. R. Williams, Direct methanol-air fuel cells for road transportation, J, Power Sources, 1999, 83: 15-31
    [33]Kozma P, Bajgar R, Kozma P. Radiation damage of PbWO4 crystals due to irradiation by 60Co gamma rays[J]. Radiat Phys Chem, 2002, 65: 127-130.
    [34]Wang H, Medina F D, Zhou Y D, Zhang Q N. Temperature dependence of the polarized Raman spectra of ZnWO4 single crystals[J]. Phys ReV B, 1992, 45: 10356-10362.
    [35]Ehrenberg E, Weitzel H, Heid C, et al. Magnetic phase diagrams of MnWO4[J]. J Phys Condens Mater, 1997, 9: 3189-3203.
    [36]Bonanni M, Spanhel L, Lerch M, et al. Conversion of cloolidal ZnO-WO3 heteroaggregates into strongly blue luminescing ZnWO4 xerogels and films[J]. Chem Mater, 1998, 10: 304-310.
    [37]Yu S H, Antonietti M, C?lfen H, Giersig M. Synthesis of very thin 1D and 2D CdWO4 nanoparticles with improved fluorescence behavior by polymer controlled crystallization[J].Angew Chen Int Ed, 2002, 41: 2356-2360.
    [38]Kwan S, Kim F, Akana J, Yang P. Synthesis and assembly of BaWO4 nanorods[J]. Chem Commun, 2001, 447-448.
    [39]Hu X L, Zhu Y J. Morphology control of PbWO4 nano- and microcrystals via a simple, seedless, and high-yield wet chemical route, Langmuir[J]. Langmuir, 2004, 20: 1521-1523.
    [40]Sriraman A K, Tyagi A K. A new method of Fe2(WO4)3 preparation and its thermal stability[J]. Thermochim Acta, 2003, 406: 29-33.
    [41]Zhang Q, Chen X, Zhou Y, et al. Synthesis of ZnWO4@MWO4 (M = Mn, Fe) core-shell nanorods with opitical and antiferromagnetic property by oriented attachment mechanism[J]. J Phys Chem C, 2007, 111: 3927-3933.
    [42]Wen F S, Zhao X, Huo H, et al. Hydrothermal synthesis and photoluminescent properties of ZnWO4 and Eu3+-doped ZnWO4[J]. Mater Lett, 2002, 55: 152-157.
    [43]Yu S H, Liu B, Mo MS, et al. General Synthesis of Single-crystal tungstate nanorods/nanowires: A facile low temperature solution approach[J]. Adv Funct Mater, 2003, 13: 639-647.
    [44]Lei S J, Tang K B, Fang Z, et al. Synthesis of MnWO4 nanofibres by a surfactant-assisted complexation–precipitation approach and control of morphology[J]. Nanotechnology, 2005, 16: 2407-2411.
    [45]Mdleleni M M, Hyeon T, Suslick K S. Sonochemical synthesis of nanostructured molybdenum sulfide[J]. J Am Chem Soc, 1998, 120: 6189-6190.
    [46]Gedanken A. Using sonochemistry for the fabrication of nanomaterials[J] Ultrason Sonochem, 2004, 11: 47-55.
    [47]Okitsu K, Yue A, Tanabe S, et al. Sonolytic control of rate of gold(III) reduction and size of formed gold nanoparticles: Relation between reduction rates and sizes of formed nanoparticles[J]. Chem Soc Jpn, 2002, 75: 2289-2296.
    [48] Liu Z P, Li S, Yang Y, et al, Adv. Mater, 2003, 15: 1946
    [49] Vantomme A, Yuan Z Y, Du G H ,et al, Langmuir, 2005, 21: 1132
    [50]Sun Y, Xia Y. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process[J]. Adv Mater, 2002, 14: 833-837.
    [51]Peng X, Manna L, Yang W D, et al. Shape control of CdSe nanocrystals[J]. Nature, 2000, 404: 59-61.
    [52]Lee S M, Cho S N, Cheon J. Anisotropic shape control of colloidal inorganic nanocrystals[J]. Adv Mater, 2003, 15: 441-444.
    [53]Wang Y, Jiang X, Xia Y. A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions[J]. J Am Chem Soc, 2003, 125: 16176-16177.
    [54]Herricks T, Chen J Y, Xia Y N. Polyol synthesis of platinum nanoparticles: control of morphology with sodium nitrate[J]. Nano Lett, 2004, 4: 2367-2371.
    [55]Feldmann C. Polyol-mediated synthesis of nanoscale functional materials[J]. Adv Funct Mater, 2003, 13: 101-107.
    [56]Suslick K S, Hammerton D A, Cline R E. Sonochemical hot spot[J]. J Am Chem Soc, 1986, 108: 5641-5642.
    [57]Joshi P P, Merchant S A, Wang Y D, Schmidtke D W. Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites[J]. Anal Chem, 2005, 77: 3183-3188.
    [58]Hrapovic S, Liu Y L, Male K B, Luong J H T. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes[J]. Anal Chem, 2004, 76: 1083-1088.
    [59]Hamnett A. Mechanism and Electrocatalysis in the Direct Methanol Fuel Cell[J]. Catalysis Today, 1997, 38: 445-457.
    [60]Prabhuram J, Manoharan R, nvestigation of Methanol Oxidation on Unsupported Platinum Electrodes in Strong Alkali and Strong Acid[J], Journal of Power Sources, 1998, 74: 54-61.
    [61]Bianco A, Kostarelos K, Partidos CD, Prato M. Biomedical applications of functionalised carbon nanotubes. Chem Commun 2005(5):571-7.
    [62]Wang JX, Li MX, Shi ZJ, Li NQ, Gu ZN. Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal Chem 2002;74(9):1993-7.
    [63]Valentini F, Amine A, Orlanducci S, Terranova ML, Palleschi G. Carbon Nanotube Purification: Preparation and Characterization of Carbon Nanotube Paste Electrodes. Anal Chem 2003;75(20):5413-21.
    [64]Lin YH, Lu F, Tu Y, Ren ZF. Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett 2004;4(2):191-5.
    [65]Wang J, Dai JH, Yarlagadda T. Carbon nanotube-conducting polymer composite nanowires. Langmuir 2005;21(1):9-12.
    [66]Yang Y, Wang Z, Yang M, Li J, Zheng F, Shen G et al. Electrical detection of deoxyribonucleic acid hybridization base on carbon-nanotubes/nano zirconium dioxide/chitosan-modified electrodes. Anal Chim Acta 2007;584(2):268-274.
    [67]Pompeo F, Resasco DE. Water solubilization of single-walled carbon nanotubes by functionalization with glucosarnine. Nano Lett 2002;2(4):369-73.
    [68]Sun Y, Wilson SR, Rchuster DI. High dissolution and strong light emission of carbon nanotubes in aromatic amine solvents. J Am Chem Soc 2001;123(22):5348-9.
    [69]Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, et al. DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2003;2(5):338-42.
    [70]Guo JX, Zhang X, Li QN, Li WX. Biodistribution of functionalized multiwall carbon nanotubes in mice. Nucl Med Biol 2007;34(5):579-583.
    [71]Guo JX, Zhang X, Zhang S, Zhu Y, Li WX. The The different bio-effects of functionalized multi-walled carbon nanotubes on tetrahymena pyriformis. Curr Nanosci 2008;4(3):240-245.
    [72]Kong J, Chapline MG, Dai H. Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater 2001;13(18):1384-6.
    [73]Choi HC, Shim M, Bangsaruntip S, Dai H. Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes. J Am Chem Soc 2002;124(31)9058-9.
    [74]Chin KC, Gohel A, Chen WZ, Elim HI, Ji W, Chong GL, et al. Gold and silver coated carbonnanotubes: an improved broad-band opitical limiter. Chem Phys Lett 2005;409(1-3):85-8.
    [75]Quinn BM, Dekker C, Lemay SG. Electrodeposition of noble metal nanoparticles on carbon nanotubes. J Am Chem Soc 2005;127(17):6146-7.
    [76]Satishkumar BC, Govindaraj A, Nath M, Rao CNR. Synthesis of metal oxide nanoroads using carbon nanotubes as templates. J Mater Chem 200;10(19):2115-9.
    [77]Min YS, Bae EG, Jeong KS, Cho YJ, Lee JH, Choi WB, et al. Ruthenium oxide nanotube arrays fabricated by atomic layer deposition using a carbon nanotube template. Adv Mater 2003;15(12):1019-22.
    [78]Fu L, Liu Z, Liu Y, Han B, Wang J, Hu P, et al. Coating carbon nanotubes with rare earth oxide multiwalled nanotubes. Adv Mater 2004;16(4):350-2.
    [79]Ye JS, Cui HF, Liu X, Lim TM, Zhang WD, Sheu FS. Preparation and characterization of aligned carbon nanotubes-ruthenium oxide composites for supercapacitors. Small 2005;1(5):56-5.
    [80]Zhu YW, Elim HI, Foo YL, Yu T, Liu YJ, Ji W, et al. Multiwalled carbon nanotubes beaded with ZnO nanoparticles for ultrafast nonlinear optical switching. Adv Mater 2006;18(5):587-92.
    [81]Banerjee S, Wong SS. Synthesis and characterization of carbon nanotube-nanocrystal heterostructures. Nano Lett 2002;2(3):195-200.
    [82]Sainsbury T, Fitzmaurice D. Templated assembly of semiconductor and insulator nanoparticles at the surface of covalently modified multiwalled carbon nanotubes. Chem Mater 2004;16(19):3780-90.
    [83]Gomathi A, Vivekchand SRC, Govindaraj A, Rao CNR. Chemically bonded ceramic oxide coating on carbon nanotubes and inorganic nanowires. Adv Mater 2005;17(22)2757-61.
    [84]Deluga GA, Salge JR, Schmidt LD, Verykios XE. Renewable hydrogen from ethanol by autothermal reforming. Science 2004;303(5660):993-7.
    [85]Feng XD, Sayle DC, Wang ZL, Paras MS, Santora B, Sutorik AC, et al. Converting ceria polyhedral nanoparticles into single-crystal nanospheres. cience 2006;312(5779):1504-8.
    [86]Sun Z, Zhang X, Han B, Wu Y, An G, Liu Z, et al. Coating carbon nanotubes with metal oxides in supercritical carbon dioxide-ethanol solution. Carbon 2007;45(13):2589-96.
    [87]Zhao D, Han E, Wu X, Guan H. Hydrothermal synthesis of ceria nanoparticles supported on carbon nanotubes in supercritical water. Mater Lett 2006;60(29-30):3544-7.
    [88] Li Y, Ding J, Chen J, Xu C, Wei B, Liang J, Wu D. Preparation of ceria nanoparticles suppoted on carbon nanotubes. Mater Res Bull 2002;37(2):313-8.
    [89]Guo JX, Xin XQ, Zhang X, Zhang S. Ultrasonic-induced synthesis of high surface area colloids CeO2-ZrO2. J Nanopart Res 2009;DOI: 10.1007/s11051-008-9504-y
    [90]Allongue P,Souteyrand E.Metal electrodeposition on semiconductors:part I.Comparison with glassy carbon in the case of platinum deposition[J].Electroanal Chem,1990,286:217-237.
    [91]Furuya N,Koides S.Hydrogen adsorption on platinum single-crystal surfaces[J], Surf. SCI, 1989, 220: 18-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700