敏化太阳能电池光阳极和对电极的制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
敏化太阳能电池作为一种新型的光伏电池,因其具有高效率,成本低廉且制作工艺简单的优点,从而日益受到人们的关注,成为目前研究的热点。从敏化太阳能电池的工作机理来看,敏化剂(染料及量子点)与半导体薄膜的界面接触、光阳极的结构、对电极的催化还原性能等是影响其光电转换效率的主要原因。本论文主要围绕敏化太阳能电池的光阳极和对电极制备进行研究,改善光阳极内部的界而接触、降低器件制作的成本,主要研究内容如下:
     一、共沉淀方法制备光致发光材料Y3Al5O12:Ce颗粒,并作为散光层材料应用于染料敏化太阳能电池。通过在纳米晶TiO2(P25)透过层表面增加Y3Al5O12:Ce散光层,可以增加波长400-450nm范围内的光吸收,提高电极的光散射和反射本领;同时Y3Al5012:Ce荧光粉颗粒作为下转换材料可以吸收短波段的光,发射长波段的光,增加光阳极对光的捕获能力。在一个标准太阳光(100mWcm-2, AM1.5G)下,使用P25/Y3Al5O12:Ce电极的染料敏化太阳能电池的转换效率达到7.91%,比纯的P25电极(6.97%)的提高了13.5%。
     二、微波法合成石墨烯和石墨烯/金纳米颗粒复合物,并利用电泳法将它们沉积石墨片基底上形成薄膜作为对电极应用于染料敏化太阳能电池。
     (1)电泳沉积制备石墨烯/碳纳米管复合薄膜作为对电极应用于染料敏化太阳能电池,并比较不同碳纳米管掺杂量对电池性能的影响。通过碳纳米管的掺杂,碳管在复合电极中像桥梁一样连接在石墨烯之间,填充了石墨烯之间的空隙,形成了一种独特的网状结构,提高了复合电极的导电性,从而提高电池的转换效率。当碳纳米管在复合物中含量是60%时,在一个太阳光照射(AM1.5G,100mWcm-2)下,电池达到最高的转换效率(6.17%),比纯石墨烯(3.63%)和纯碳管(5.48%)的分别提高了70%和13%。
     (2)电泳沉积制备石墨烯/金纳米颗粒复合薄膜作为对电极应用于CdS量子点敏化太阳能电池。与纯的石墨烯电极相比,高催化性的金纳米颗粒和高比表面积的石墨烯复合形成多孔的网状结构,提高了电极的电化学催化性和导电性。在一个太阳光照射(AM1.5G,100mW cm-2)下,基于石墨烯/金纳米颗粒复合对电极的CdS量子点敏化电池的转换效率为1.36%,比纯石墨烯(0.98%)的提高了39%。同时这个转换效率,也高于传统的Pt和Au对电极的转换效率(1.21%和1.32%)。
     三、微波辅助化学浴沉积制备TiO2/CdS, TiO2/CdSe和TiO2/CdS/CdSe电极并应用于量子点敏化太阳能电池。与传统的量子点敏化太阳能电池的光阳极制备方法相比较,通过微波的辐射作用,可以在量子点与TiO2之间产生一个好的连接,从而形成优越的界面接触,有利于电子传输,抑制电子复合,从而得到高的转换效率。分别使用微波辅助化学浴沉积法一步制备了TiO2/CdS、TiO2/CdSe和TiO2/CdS/CdSe电极应用于量子点敏化太阳能电池,在一个太阳光照射(AM1.5G,100mW cm-2)下,得到1.18%、1.75%和3.06%的转换效率。与单个的TiO2/CdS和TiO2/CdSe电极相比,TiO2/CdS/CdSe可以形成一种阶梯式能带结构和好的界面接触,利于电子的传输和收集,抑制复合电流,因此有效提高了光电转换效率。
     四、超声雾化热解法制备ZnO界面层和ZnO/CdS电极,应用于量子点敏化太阳能电池。
     (1)使用超声雾化热解法在TiO2薄膜上制备ZnO的界面层,改善TiO2/CdS之间的界面接触,同时增加了量子点的吸附,提高了电极的光散射和反射。在一个标准太阳光(100mWcm-2, AM1.5G)下,使用TiO2/ZnO/CdS电极的量子点敏化太阳能电池得到1.56%的转换效率,比纯的TiO2/CdS电极(0.99%)的提高了57%。
     (2)使用超声雾化热解法制备ZnO薄膜和CdS敏化剂应用于量子点敏化太阳能电池。使用超声雾化热解法制备的ZnO/CdS电极,在FTO/ZnO/CdS之间可以产生个好的接触界面,有利于电子的传输,抑制电子的复合,从而得到高的转换效率。在一个太阳光照射(AM1.5G,100mWcm-2)下,得到转换效率达到1.54%。
Sensitized solar cells (SSCs) as a kind of novel photovoltaic device have attracted considerable attention due to their low production cost, simple technique and high power conversion efficiency. Based on the working mechanism of SSCs, the interface contact between the sensitizer (dye or quantum dots) and semiconductor film, the structure of photoanode, and the electrochemical catalytic activity of counter electrode are important factors for the device performance. In the thesis, we designed and fabricated the photoanode and counter electrodes by different techniques to improve the interface contact inside the photoande and reduce the cost, and the major contents of the thesis is summarized as follows:
     (1) Y3Al5O12:Ce photoluminescent materials were fabricated by the co-precipitation method and used as an effectiv a marked improvement in conversion efficiency (7.91%) compared with the cell without a scattering layer (6.97%).
     (2) Graphene and grapnene/Au nanoparticles composite were fabr e scattering layer on the top of the transparent layer of nanocrystalline Tio2for dye sensitized solar cells (DSSCs). Due to enhanced light harvesting via the improved absorption of Y3Al5O12:Ce layer in the range of400-450nm, increased light scattering and reflection, and the light down-converting performance of Y3Al5O12:Ce particles, under one sun illumination (AM1.5G,100mW cm-2), the as-prepared DSSCs with Y3Al5O12:Ce scattering layer shows icated by microwave method, and then as-prepared samples were deposited onto graphite substrate by electrophoretic deposition (EPD) and used as counter electrodes for SSCs.
     1. Graphene-carbon nanotubes (CNTs) composite films with different amounts of CNTs were fabricated by EPD and used as counter electrodes of DSSCs. When CNTs are incorporated into the composite, the electrical conductivity of composite film is enhanced due to the good network structure for conductive bridge of the gaps between graphene nanosheets, leading to an improvement in performance of DSSCs. A maximum conversion efficiency of6.17%under one sun illumination (AM1.5G,100m Wcm-2) has been achieved for the cell based on graphene-CNTs counter electrode with60%CNTs, which has an improvement of70%and13%compared with the cells with pure graphene (3.63%) and CNTs (5.48%) counter electrodes, respectively.
     2. Graphene-Au nanoparticle composite film was fabricated by electrophoretic deposition and used as a counter electrode for CdS quantum dot-sensitized solar cells (QDSSCs). Under one sun illumination (AM1.5G,100mW cm-2), the cell with grapnene-Au counter electrode shows a energy conversion efficiency of1.36%, which is an increase of39%compared to the cell with pure graphene counter electrode (0.98%), due to a superior combination between highly catalytic Au nanoparticle and conductive graphene network structure. In the meantime, the value is also higher than those of the cells employing conventional Pt (1.21%) or Au (1.32%) counter electrodes.
     (3) CdS, CdSe, and CdS/CdSe quantum dots (QDs) sensitized TiO2films were fabricated by using microwave assisted chemical bath deposition (MACBD) technique and used as photoanodes for QDSSCs. Compared with conventional fabrication methods, this technique can synthesize QDs rapidly and suppress their surface defects as well as form a good contact between QDs and TiO2film, which can improve the performance of the cell. TiO2/CdS, TiO2/CdSe and TiO2/CdS/CdSe were one-step fabricated by MACBD technique and used as a photoanode for QDSSCs, respectively. Under one sun illumination (AM1.5G,100mWcm"2), conversion efficiencies of1.18%,1.75%,3.06%have been achieved for QDSSCs based on these electrode, which is comparable to those by using conventional fabrication methods. Compared with single (CdS and CdSe) QDs, their co-sensitized structure can provide a superior ability owing to the extension of light absorption range and effective charge injection from QDs to TiO2and thus exhibits a higher conversion efficiency.
     (4) The ZnO interface layer and ZnO/CdS electrode were fabricated by using ultrasonic spray pyrolysis (USP) deposition and applied in QDSSCs.
     1. The ZnO interface layer was deposited on screen-printed TiO2layer by using USP technique. The formation of an inherent energy barrier between TiO2and CdS films and the passivation of surface traps on the TiO2film caused by the introduction of ZnO layer, which can improve the interface contact between TiO2and CdS, increase the adsorbed amount of CdS QDs and light scattering. Under one sun illumination (AM1.5G,100mWcm-2), a conversion efficiency of1.56%has been achieved for QDSSCs with ZnO interface layer, which has an increase of57%compared to the cell without a ZnO interface layer (0.99%).
     2. Sensitized-type solar cells based on ZnO photoanode and CdS QDs as sensitizers, in which both ZnO films and CdS QDs are prepared using USP technique. A good contact at the interfaces of FTO/ZnO/CdS has been formed by USP, which favors electron transportation and suppresses its recombination. Under one sun illumination (AM1.5G,100mWcm-2), a conversion efficiency of1.54%has been achieved for QDSSCs based on USP deposited ZnO/CdS electrode.
引文
[1]B.P. Statistical. Review of World Energy, June 2009.
    [2]M.A. Browna, M.D. Levineb, W. Shortc, et al. Scenarios for a clean energy future [J]. Enery Policy,2001,29(14):1179-1196.
    [3]A. Geotzberger, C. Hebling, H.W. Schock, et al. Photovoltaic materials, history, status and outlook [J]. Mater. Sci. Eng. R.,2003,40(1):1-46.
    [4]陈振兴.《高分子电池材料》[M].北京:化学工业出版社,2006,159-269.
    [5]B. OReagan, M. Gratzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature,1991,353(6346):737-740.
    [6]U. Bach, D. Lupo, P. Comte, et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high proton-to-electron conversion efficiencies [J]. Nature,1998,395(6702): 583-585.
    [7]C.Y. Chen, M.K. Wang, J.Y. Li, et al. Highly efficient light-harvesting ruthenium sen-sitizer for thin-film dye-sensitized solar cells [J]. ACS Nano,2009,3(10): 103-3109.
    [8]M. Gratzel. Photoeleetroehemicalcells [J]. Nature,2001,414(6561):335-344.
    [9]A. Yella, H.W. Lee, H.N. Tsao, et al. Porphyrin-sensitized solar cells with cobalt (Ⅱ/Ⅲ)-based redox electrolyte exceed 12 percent efficiency [J]. Science,2011, 334(6056):629-633.
    [10]W.T. Sun, Y. Yu, H.Y. Pan, et al. CdS quantum dots sensitized tio2 nanotube-array photoelectrodes [J]. J. Am. Chem. Soc.,2008,130(4):1124-1125.
    [11]G. Zhu, L.K. Pan, H.C. Sun, et al. Electrophoretic deposition of reduced graphene-Au nanoparticle composite film as counter electrode for CdS quantum dot-sensitized solar cells [J]. ChemPhysChem,2012,13(3):769-776.
    [12]G. Zhu, L.K. Pan, T. Xu, et al. One-step synthesis of CdS sensitized TiO2 photoanodes for quantum dot-sensitized solar cells by microwave-assisted chemical bath deposition method [J]. Appl. Mater. Interfaces,2011,3(5):1472-1478.
    [13]G. Zhu, T. Lv, L.K. Pan, et al. All spray pyrolysis deposited CdS sensitized ZnO films for quantum dot-sensitized solar cells [J]. J. Alloys Compd.,2011,509(2): 362-365.
    [14]G. Zhu, L.K. Pan, T. Xu, et al. Cascade structure of TiO2/ZnO/CdS film for quantum dot sensitized solar cells [J]. J. Alloys Compd.,2011,509(29):7814-7817.
    [15]G. Zhu, L.K. Pan, T. Xu, et al. Microwave assisted CdSe quantum dots deposition on TiO2 films for dye-sensitize solar cells [J]. Nanoscale,2011.3[5]:2188-2193.
    [16]G. Zhu, L.K. Pan, T. Xu, et al. CdS/CdSe co-sensitized TiO2 photoanode for quantum-dot sensitized solar cells by microwave assisted chemical bath deposition method [J]. Appl. Mater. Interfaces,2011,3(8):3146-3151.
    [17]J. Chen, D.W. Zhao, J.L. Song, et al. Directly assembled CdSe quantum dots on TiO2 in aqueous solution by adjusting pH value for quantum dot sensitized solar cells [J]. Electrochem. Commun.,2009,11(12):2265-2267.
    [18]Q. Shen, T. Sato, M. Hashimoto, et al. Photoacoustic and photoelectrochemical characterization of CdSe-sensitized TiO2 electrodes composed of nanotubes and nanowires [J]. Thin Solid Films,2006,499(1-2):299-305.
    [19]Y.L. Lee,Y.S. Lo. Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe [J]. Adv. Funct. Mater.,2009,19(4):604-609.
    [20]S.Q. Fan, D. Kim, J.J. Kim, et al. Highly efficient CdSe quantum-dot-sensitized TiO2 photoelectrodes for solar cell applications [J]. Electrochem. Commun.,2009,11(6): 1337-1339.
    [21]W.J. Lee, J.W. Lee, S.K. Min, et al. Effect of single-walled carbon nanotube in PbS/TiO2 quantum dots-sensitized solar cells [J]. Mater. Sci. Eng., B,2009,156(1-3): 48-51.
    [22]R. Plass, S. Pelet, J. Krueger, et al. Quantum dot sensitization of organic-inorganic hybrid solar cells [J]. J. Phys. Chem. B,2002,106 (31):7578-7580.
    [23]P. Hoyer, R. Konenkamp. Photoconduction in porous TiO2 sensitized by PbS quantum dots [J].Appl. Phys. Lett.,1995,66:349.
    [24]D.H. Cui, J. Xu, T. Zhu, et al. Harvest of near infrared light in PbSe nanocrystal-polymer hybrid photovoltaic cells [J]. Appl. Phys. Lett.,2006,88:183111.
    [25]R.D. Schaller, V.I. Klimov. High efficiency carrier multiplication in pbse nanocrystals: implications for solar energy conversion [J]. Phys. Rev. Lett.2004,92:186601.
    [26]Q.X. Zhang, X.Z. Guo, X.M. Huang, et al. Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO2photoelectrodes [J]. Phys. Chem. Chem. Phys.,2011,13(10):4659-4667.
    [27]孔凡太,戴松元.染料敏化太阳能电池研究进展[J].化学进展,2006,18(11):1409-1424.
    [28]孔凡太,戴松元,王孔嘉.染料敏化纳米薄膜太阳电池中的染料敏化剂[J].化学通报,2005,5:338-345.
    [29]P.V. Kamat, K. Tvrdy, D.R. Baker, et al. Beyond photovoltaics semiconductor nanoarchitectures for liquid-junction [J]. Chem. Rev.,2010,110(11):6664-6688.
    [30]J.H. Bang, P.V. Kamat, Solar cells by design:photoelectrochemistry of TiO2 nanorod arrays decorated with CdSe [J]. Adv. Funct. Mater.,2010,20(12):1970-1976.
    [31]G. Zhu, T. Xu, T. Lv, et al. Graphene-incorporated nanocrystalline TiO2 films for CdS quantum dot sensitized solar cells [J]. J. Electroanal. Chem.,2011,650(2):248-251.
    [32]G. Zhu, F.F. Su, T. Lv, et al., Au nanoparticles as interfacial layer for CdS quantum dot-sensitized solar cells [J]. Nanoscale Res. Lett.,2010,5(11):1749-1754.
    [33]G. Zhu, Z.J. Cheng, T. Lv, et al. Zn-doped nanocrystalline TiO2 films for CdS quantum dot sensitized solar cells [J]. Nanoscale 2010,2(7):1229-1132.
    [34]Q.X. Zhang, Y.D. Zhang, S.Q. Huang, et al. Application of Carbon Counter Electrode on CdS Quantum Dot-Sensitized Solar Cells (QDSSCs) [J]. Electrochem. Commun. 2010,12(2):327-329.
    [35]W. Lee, S.H. Kang, J.Y. Kim. TiO2 nanotubes wih a ZnO thin energy barrier for improved current efficiency of CdSe quantum-dot-sensitized solar cells [J]. Nanotechnol.,2009,20:335706.
    [36]Y.L Lee, C.H. Chang. Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells [J]. J. Power Sources.2008,185(1):584-588.
    [37]I. Mora-Sero, S. Gimenez, F. Fabregat-Santiago, et al. Recombination in Quantum Dot Sensitized Solar Cells [J]. Acc. Chem. Res.,2009,42(11):1848-1857.
    [38]N. Guijarro, T. Lana-Villarreal, I. Mora-Sero, et al. CdSe quantum dot-sensitized TiO2 electrodes:effect of quantum dot coverage and mode of attachment [J]. J. Phys. Chem. C,2009.113(10):4208-4214.
    [39]I. Mora-Sero, J. Bisquert. Breakthroughs in the development of semiconductor-sensitized solar cells [J]. J. Phys. Chem. Lett.,2010,1(20):3046-3052.
    [40]K.Y. Yan, Y. C. Qiu, W. Chen, et al. A double layered photoanode made of highly crystalline TiO2 nanooctahedra and agglutinated mesoporous TiO2 microspheres for high efficiency dye sensitized solar cells [J]. Energy Environ. Sci.,2011,4(6): 2168-2176.
    [1]B. OReagan, M. Gratzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature,1991,353(6346):737-740.
    [2]M. Gratzel. Photoeleetroehemicalcells [J]. Nature,2001,414 (6561):335-344.
    [3]A. Yella, H.W. Lee, H.N. Tsao, et al. Porphyrin-sensitized solar cells with cobalt (Ⅱ/Ⅲ)-based redox electrolyte exceed 12 percent efficiency [J]. Science,2011, 334(6056):629-633.
    [4]V. Yong, S.T. Ho, R.P.H. Chang. Modeling and simulation for dye-sensitized solar cells [J]. Appl. Phys. Lett.,2008,92:143506.
    [5]B. Lee, D.K. Hwang, P.J. Guo, et al. Materials, interfaces, and photon confinement in dye-sensitized solar cells [J]. J. Phys. Chem. B,2010,114(45):14582-14591.
    [6]B. Lee, D.B. Buchholz, P.J. Guo, et al. Optimizing the performance of a plastic dye-sensitized solar cell [J]. J. Phys. Chem. C 2011,115(19):9787-9796.
    [7]Y.C. Qiu, W. Chen, S.H. Yang. Double-layered photoanodes from variable-size anatase TiO2 nanospindles:a candidate for high-efficiency dye-sensitized solar cells [J]. Angew. Chem. Int. Ed.,2010,49(21):3675-3679.
    [8]W. Chen, Y.C. Qiu, Y. Zhong, et al. High efficiency dye sensitized solar cells based on the composite photoanodes of SnO2 nanoparticles/ZnO anotetrapods [J]. J. Phys. Chem. A,2010,114(9):3127-3138.
    [9]Y.C. Qiu, W. Chen, S.H. Yang. Facile hydrothermal preparation of hierarchically assembled, porous single-crystalline ZnO nanoplates and their application in dye-sensitized solar cells [J]. J. Mater. Chem.,2010,20(5):1001-1006.
    [10]M.X. Wu, X. Lin, YD. Wang, et al. Economical Pt-free catalysts for counter electrodes of dye-sensitized solar cells [J]. J. Am. Chem. Soc.,2012,134(7):3419-3428.
    [11]H.X. Wang, H.Li, D.F. Xue, et al. Solid-State Composite Electrolyte LiI/3-Hydroxypropionitrile/SiO2 for Dye-Sensitized Solar Cells [J]. J. Am. Chem. Soc., 2005,127(17):6394-6401.
    [12]B. Tan, Y.Y. Wu. Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites [J]. J. Phys. Chem. B,2006,110(32):15932-15938.
    [13]X.Z. Liu, Y.H. Luo, H. Li, et al. Room temperature fabrication of porous ZnO photoelectrodes for flexible dye-sensitized solar cells [J]. Chem. Commun,2007, (27):2847-2849.
    [14]I. Mora-Sero, J. Bisquert. Simulation of steady-state characteristics of dye-sensitized solar cells and the interpretation of the diffusion length [J]. J. Phys. Chem. Lett.,2010, 1(1):450-456.
    [15]H.W. Chen, C.P. Liang, H.S. Huang, et al. Electrophoretic deposition of mesoporous TiO2 nanoparticles consisting of primary anatase nanocrystallites on a plastic substrate for flexible dye-sensitized solar cells [J]. Chem. Commun.,2011,29(47):8346-8348.
    [16]H. Im, S. Kim, C. Park, et al. High performance organic photosensitizers for dye-sensitized solar cells [J]. Chem. Commun.,2010,46(8):1335-1337.
    [17]J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, et al. Electron lifetime in dye-sensitized solar cells:theory and interpretation of measurements [J]. J. Phys. Chem. C,2009,113(40):17278-17290.
    [18]G. Zhu, L.K. Pan, T. Lu, et al. Electrophoretic deposition of reduced graphene-carbon nanotubes composite films as counter electrodes of dye-sensitized solar cells [J]. J. Mater. Chem.,2011,21(38):14869-14875.
    [19]A. Hagfeldt, G. Boschloo, L.C. Sun, et al. Dye-Sensitized Solar Cells [J]. Chem. Rev., 2010,110(11):6595-6663.
    [20]H.N. Tian, E. Gabrielsson, Z. Yu, et al. A thiolate/disulfide ionic liquid electrolyte for organic dye-sensitized solar cells based on Pt-free counter electrodes [J]. Chem. Commun.,2011,47(36):10124-10126.
    [21]G. Zhu, X.J. Wang, H.L. Li, et al. Y3Al5O12:Ce phosphors as a scattering layer for high-efficiency dye sensitized solar cells [J]. Chem. Commun.,2012,48(7):958-960.
    [22]F.Z. Huang, D.H. Chen, X.L. Zhang, et al. Dual-function scattering layer of submicromcter-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells [J]. Adv. Funct. Mater.,2010,20(8):1301-1305.
    [23]I.G Yu, Y.J. Kim, H.J. Kim. et al. Size-dependent light-scattering effects of nanoporous TiO2 spheres in dye-sensitized solar cells [J]. J. Mater. Chem.,2011,21(2): 532-538.
    [24JY.Z. Zheng, X. Tao, L.X. Wang, et al. Novel ZnO-based film with double light-scattering layers as photoelectrodes for enhanced efficiency in dye-sensitized solar cells [J]. Chem. Mater.,2010,22(3):928-934.
    [25]Y.C. Park, Y.J. Chang, B.G. Kum, et al. Size-tunable mesoporous spherical TiO2 as a scattering overlayer in high-performance dye-sensitized solar cells [J]. J. Mater. Chem., 2011,21(26):9582-9586.
    [26]Z. Lan, J.H. Wu, M.L. Huang, et al. A facile way to fabricate highly efficient photoelectrodes with chemical sintered scattering layers for dye-sensitized solar cells [J]. J. Mater. Chem.,2011,21(39):15552-15557.
    [27]W.G Yang, F.R. Wan, Q.W. Chen, et al. Controlling synthesis of well-crystallized mesoporous TiO2 microspheres with ultrahigh surface area for high-performance dye-sensitized solar cells [J]. J. Mater. Chem.,2010,20(14):2870-2876.
    [28]H.J. Koo, Y.J. Kim, Y.H. Lee, et al. Nano-embossed hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells [J]. Adv. Mater., 2008,20(1):195-199.
    [29]S.C. Yang, D.J. Yang, J. Kim, et al. Hollow TiO2 hemispheres obtained by colloidal templating for application in dye-sensitized solar cells [J]. Adv. Mater.,2008,20: 1059-1064.
    [30]D.H. Chen, F.Z. Huang, Y.B. Cheng. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes:a superior candidate for high-performance dye-sensitized solar cells [J]. Adv. Mater.,2009,21(21):2206-2210.
    [31]M. Rahman, F. Tajabadi, L. Shooshtari, et al. Nanoparticulate hollow TiO2 fibers as light scatterers in dye-sensitized solar cells:layer-by-layer self-assembly parameters and mechanism [J]. ChemPhysChem,2011,12(1-18):966-973.
    [32]E. Klampaftis, D. Ross, K.R. Mclntosh, et al. Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum:A review [J]. Sol. Energy Mater. Sol. Cells,2009,93(8):1182-1194.
    [33]J.H. Wu, G.X. Xie, J.M. Lin, et al. Enhancing photoelectrical performance of dye-sensitized solar cell by doping with europium-doped yttria rare-earth oxide [J]. J. Power Sources,2010,195(8):6937-6940.
    [34]Q.B. Li, J.M. Lin, J.H. Wu, et al. Enhancing photovoltaic performance of dye-sensitized solar cell by rare-earth doped oxide of Lu2O3:(Tm3+, Yb3+) [J]. Electrochim. Acta,2011,56(14):4980-4984.
    [35]H. Hafeza, M. Saif, M.S.A. Abdel-Mottalebc, et al. Down-converting lanthanide doped TiO2 photoelectrodes for efficiency enhancement of dye-sensitized solar cells [J].J. Power Sources,2011,196(13):5792-5796.
    [36]G.B. Shan, H. Assaaoudi, G.P. Demopoulos, et al. Enhanced Performance of Dye-Sensitized Solar Cells by Utilization of an External, Bifunctional Layer Consisting of Uniform β-NaYF4:Er3+/Yb3+Nanoplatelets [J]. ACS Appl. Mater. Interfaces,2011, 3(9):3239-3243.
    [37]X.J. Wang, M.C. Zhang, H. Ding, et al. Low-voltage cathodoluminescence properties of green-emitting ZnAl2O4:Mn2+nanophosphors for field emission display [J]. J. Alloy Compd.,2011,509(21):6317-6320.
    [38]S. Ito, P. Chen, P. Comte, et al. Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells [J]. Prog. Photovolt:Res. Appl.,2007,15(7): 603-612.
    [39]F. Sauvage, D.H. Chen, P. Comte, et al. Dye-sensitized solar cells employing a single film of mesoporous TiO? beads achieve power conversion efficiencies over 10%[J]. ACS Nano,2010,4(8):4420-4425.
    [40]H。J. Tian, L.H. Hu, W.X. Li, et al. A facile synthesis of anatase N, B codoped TiO2 anodes for improved-performance dye-sensitized solar cells [J]. J. Mater. Chem.,2011, 21(20):7074-7077.
    [41]K.Y. Yan, Y.C. Qiu, W. Chen, et al. A double layered photoanode made of highly crystalline TiO2 nanooctahedra and agglutinated mesoporous TiO2 microspheres for high efficiency dye sensitized solar cells [J]. Energy Environ. Sci.,2011,4(6): 2168-2176.
    [42]W. Guo, Y.H. Shen, G. Boschloo, et al. Influence of nitrogen dopants on N-doped TiO2 electrodes and their applications in dye-sensitized solar cells [J]. Electrochim. Acta,2011,56(12):4611-4617.
    [43]W. Shao, F. Gu, L.L. Gai et al. Planar scattering from hierarchical anatase TiO2 nanoplates with variable shells to improve light harvesting in dye-sensitized solar cells [J].Chem. Commun.,2011,47(17):5046-5048.
    [44]Q.D. Tai, B.L. Chen, F. Guo, et al. In situ prepared transparent polyaniline electrode and its application in bifacial dye-sensitized solar cells [J]. ACS Nano,2011,5 (5): 3795-3799.
    [1]B. OReagan, M. Gratzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature,1991,353(6346):737-740.
    [2]M. Gratzel. Photoeleetroehemicalcells [J]. Nature,2001,414 (6561):335-344.
    [3]A. Yella, H.W. Lee, H.N. Tsao, et al. Porphyrin-sensitized solar cells with cobalt (Ⅱ/Ⅲ)-based redox electrolyte exceed 12 percent efficiency [J]. Science,2011, 334(6056):629-633.
    [4]V. Yong, S.T. Ho, R.P.H. Chang. Modeling and simulation for dye-sensitized solar cells [J]. Appl. Phys. Lett.,2008,92:143506.
    [5]A. Hagfeldt, G. Boschloo, L.C. Sun, et al. Dye-Sensitized Solar Cells [J]. Chem. Rev., 2010,110(11):6595-6663.
    [6]M.X. Wu, X. Lin, Y.D. Wang, et al. Economical Pt-free catalysts for counter electrodes of dye-sensitized solar cells [J]. J. Am. Chem. Soc.,2012,134(7):3419-3428.
    [7]H.N. Tian, E. Gabrielsson, Z. Yu, et al. A thiolate/disulfide ionic liquid electrolyte for organic dye-sensitized solar cells based on Pt-free counter electrodes [J]. Chem. Commun.,2011,47(36):10124-10126.
    [8]E. Barea, R. Caballero, L. Lopez-Arroyo, et al. Triplication of the photocurrent in dye solar cells by increasing the elongation of the p-conjugation in Zn-porphyrin sensitizers [J]. ChemPhysChem,2011,12(1-18):961-965.
    [9]P. Joshi, L.F. Zhang, Q.L. Chen, et al. Electrospun carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells [J]. ACS Appl. Mater. Interfaces,2010, 2(12):3572-3577.
    [10]S.R. Sun, L. Gao, Y.Q. Liu. Optimization of the cutting process of multi-wall carbon nanotubes for enhanced dye-sensitized solar cells [J]. Thin Solid Films,2011,519(7): 2273-2279.
    [11]H.C. Sun, Y.H. Luo, Y.D. Zhang, et al. In situ preparation of a flexible polyaniline/carbon composite counter electrode and its application in dye-sensitized solar cells [J].J.Phys.Chem.C,2010,114(26):11673-11679.
    [12]W.J. Lee, E. Ramasamy, D.Y. Lee, et al. Dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes [J]. ACS Appl. Mater. Interfaces,2009, 1(6):1145-1149.
    [13]M.H. Deng, Q.X. Zhang, S.Q. Huang, et al. Low-Cost Flexible Nano-Sulfide/Carbon Composite Counter Electrode for Quantum-Dot-Sensitized Solar Cell [J]. Nanoscale Res. Lett.,2010,5(6):986-990.
    [14]M.K. Wang, A.M. Anghel, B. Marsan, et al. CoS supersedes pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells [J]. J. Am. Chem. Soc.2009,131(44):15976-15977.
    [15]M.X. Wu, Q.Y. Zhang, J.Q. Xiao, et al. Two flexible counter electrodes based on molybdenum and tungsten nitrides for dye-sensitized solar cells [J]. J. Mater. Chem., 2011,21(29):10761-10766.
    [16]P. Joshi, Y. Xie, M. Ropp, et al. Dye-sensitized solar cells based on low cost nanoscale carbon/TiO2 composite counter electrode [J]. Energy Environ. Sci.,2009,32(4): 426-429.
    [17]W.J. Lee, E. Ramasamy, D.Y. Lee, et al. Performance variation of carbon counter electrode based dye-sensitized solar cell [J]. Sol. Energy Mater. Sol. Cells,2008,92(7): 814-818.
    [18]J.K. Chen, K.X. Li, Y.H. Luo, et al. A flexible carbon counter electrode for dye-sensitized solar cells [J].Carbon,2009,47 (11):2704-2708.
    [19]K.X. Li, Y.H. Luo, Z.X. Yu, et al. Low temperature fabri-cation of efficient porous carbon counterelectrode for dye-sensi-tized solar cells [J]. Electrochem. Commun., 2009,11,11 (7):1346-1349.
    [20]G. Veerappan, K. Bojan, S.W. Rhe. Sub-micrometer-sized graphite as a conducting and catalytic counter electrode for dye-sensitized solar cells [J]. ACS Appl. Mater. Interfaces,2011,3(3):857-862.
    [21]S.I. Cha, B.K. Koo, S.H. Seo, et al. Pt-free transparent counter electrodes for dye-sensitized solar cells prepared from carbon nanotube micro-balls [J]. J. Mater. Chem.,2010,20(4):659-662.
    [22]W.J. Hong, Y.X. Xu, G.W. Lu, et al. Transparent gra-phene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells [J]. Electrochem. Commun., 2008,10(10):1555-1558.
    [23]K.C. Huang, Y.C. Wang, R.X. Dong, et al. A high performance dye-sensitized solar cell with a novel nanocomposite film of Pt NP/MWCNT on the counter electrode [J]. J. Mater. Chem.,2010,20(20):4067-4073.
    [24]N. Yang, J. Zhai, D. Wang, et al. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells [J]. ACS Nano,2010,4(2): 887-895.
    [25]L. Kavan, J.H. Yum, M. Gratzel. Optically transpa-rent cathode for dye-sensitized solar cells based on graphene nanoplatelets [J]. ACS Nano,2011,5 (1):165-172.
    [26]C.X. Guo, H.B. Yang, Z.M. Sheng, et al. Layered gra-phene/quantum dots for photovoltaic devices [J]. Angew. Chem. Int. Ed.,2010,49 (17):3014-3017.
    [27]C.T. Hsieh, B.H. Yang, J.Y. Lin. One and two dimensional carbon nanomaterials as counter electrodes for dye-sensitized solar cells [J]. Carbon,2011,49(9):3092-3097.
    [28]Y.H. Hu, H. Wang, B. Hu. Thinnest two-dimensional nanomaterial-graphene for solar energy [J]. ChemSusChem,2010,3(7):782-796.
    [29]H. Choi, J.E. Shin, G.W. Lee, et al. Effect of surface modification of multi-walled carbon nanotubes on the fabrica-tion and performance of carbon nanotube based counter elec-trodes for dye-sensitized solar cells[J]. Curr. Appl. Phys.,2010,10(2): S165-S167.
    [30]J.D. Roy-Mayhew, D.J. Bozym, C. Punckt, et al. Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells [J]. ACS Nano,2010,4(10): 6203-6211.
    [31]C.T. Hsieh, W.Y. Chen. Water/oil repellency and drop sliding behavior on carbon nanotubes/carbon paper composite surfaces [J]. Carbon,2010,48(3):612-619.
    [32]C.T. Hsieh, W.Y. Chen, Y.S. Cheng. Influence of oxidation level on capacitance of electrochemical capacitors fabricated with carbon nanotube/carbon paper composites [J]. Electrochim. Acta,2010,55(19):5294-5300.
    [33]C.T. Hsieh, W.Y. Chen, F.L. Wu. Fabrication and superhydrophobicity of fluorinated carbon fabrics with micro/nanoscaled two-tier roughness [J]. Carbon,2008,46(9): 1218-1224.
    [34]H. Choi, H. Kim, S. Hwang. Dye-sensitized solar cells using graphene-based carbon nano composite as counter electrode [J]. Sol. Energy Mater. Sol. Cells,2011 95(1): 323-325.
    [35]K.S. Lee, W.J. Lee, N.G. Park, et al. Transferred vertically aligned N-doped carbon nanotube arrays:use in dye-sensitized solar cells as counter electrodes [J]. Chem. Commun.,2011,47(14):4264-4266.
    [36]S.H. Seo, S.Y. Kim, B.K. Koo, et al. Influence of electrolyte composition on the photovoltaic performance and stability of dye-sensitized solar cells with multiwalled carbon nanotube catalysts [J]. Langmuir,2010,26(12):10341-10346.
    [37]G. Calogero, F. Bonaccorso, O.M. Marago, et al. Single wall carbon nanotubes deposited on stainless steel sheet substrates as novel counter electrodes for ruthenium polypyridine based dye sensitized solar cells [J]. Dalton Trans.,2010,39(11): 2903-2009.
    [38]C.S. Chou, C. Huang. R.Y. Yang, et al. The effect of SWCNT with the functional group deposited on the counter electrode on the dye-sensitized solar cell [J]. Adv. Powder Technol.,201021(4):542-550.
    [39]E. Ramasamy, W.J. Lee, D.Y. Lee, et al. Spray coated multi-wall carbon nanotube counter electrode for Tri-iodide (i3-) reduction in dye-sensitized solar cells [J]. Electrochem. Commun.,2008,10(7):1087-1089.
    [40]G. Zhu, L.K. Pan, T. Lu, et al. Electrophoretic deposition of carbon nanotubes films as counter electrodes of dye-sensitized solar cells [J]. Electrochim. Acta,2011,56(27): 10288-10291.
    [41]G. Zhu, L.K. Pan, T. Lu, et al. Electrophoretic deposition of reduced graphene-carbon nanotubes composite films as counter electrodes of dye-sensitized solar cells [J]. J. Mater. Chem.,2011,21(38):14869-14875.
    [42]K.S. Novoselov, A.K. Geim, S.V. Morozov, et al. Electric field effect in atomically thin carbon films [J]. Science,2004,306(5696):666-669.
    [43]C.G. Liu, Z.N. Yu, D. Neff, et al. Graphene-based supercapacitor with an ultrahigh energy density [J]. Nano Lett.,2010,10 (12):4863-4868.
    [44]S.R. C. Vivekchand, C.S. Rout, K.S. Subrahmanyam, et al. Graphene-based electrochemical supercapacitors [J]. J. Chem. Sci.,2008,120(1):9-13.
    [45]Y. Wang, Z.Q. Shi, Y. Huang, et al. Supercapacitor devices based on graphene materials [J]. J. Phys. Chem. C,2009,113(30):13103-13107.
    [46]M. Choucair, P. Thordarson, J. A. Stride. Gram-scale production of graphene based on solvothermal synthesis and sonication [J]. Nat. Nanotechnol.,2009,4(1):30-33.
    [47]R. Hao, W. Qian, L.H. Zhang, et al. Aqueous dispersions of TCNQ-anion-stabilized graphene sheets [J]. Chem. Commun.,2008, (48):6576-6578.
    [48]W. Yang, E. Widenkvist, U. Jansson, et al. Stirring-induced aggregation of graphene in suspension [J]. New J. Chem.,2011,35(4):780-783.
    [49]D.R. Dreyer, S. Park, C.W. Bielawsk, et al. The chemistry of graphene oxide [J]. Chem. Soc. Rev.,2010,39(1):228-240.
    [50]W.W. Cai, R. D. Piner, F. J. Stadermann, et al. Synthesis and solid-state NMR structural characterization of C-13-labeled graphite oxide [J]. Science,2008,321(5897): 1815-1817.
    [51]V.C. Tung, L.M. Chen, M.J. Allen, Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors [J]. Nano Lett.,2009,9(5):1949-1955.
    [52]C. Li, Z. Li, H. Zhu, et al. Graphene nano-"patches" on carbon nanotube network for highly transparent/conductive thin film applications [J]. J. Phys. Chem. C,2010, 114(33):14008-14012.
    [53]H.Y. Jeong, D.S. Lee, H.K. Choi, et al. Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films [J]. Appl. Phys. Lett.,2010, 96:213105.
    [54]D. Cai, M. Song, C. Xu. Highly conductive carbon-nanotube/graphite-oxide hybrid films [J]. Adv. Mater.,2008,20(9):1706-1709.
    [55]Q. Su, Y. Liang, X. Feng, et al. Towards free-standing graphene/carbon nanotube composite films via acetylene-assisted thermolysis of organocobalt functionalized graphene sheets [J]. Chem. Commun.,2010,46(43):8279-8281.
    [56]F. Du, D.S. Yu, L.M. Dai, et al. Preparation of tunable 3D pillared carbon nanotube-graphene networks for high-performance capacitance [J]. Chem. Mater., 2011,23 (21):4810-4816.
    [57]H. Choi, H. Kim, S. Hwang, et al. Graphene counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition [J]. J. Mater. Chem.,2011,21(21): 7548-7551.
    [58]Z. Li, Y. Yao, Z. Lin, et al. Ultrafast, dry microwave synthesis of graphene sheets [J]. J. Mater. Chem.,2010,20(23):4781-4783.
    [59]W. Chen, L. Yan, P.R. Bangal. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves [J]. Carbon,2010,48(4): 1146-1152.
    [60]H.B. Li, T. Lu, L.K. Pan, et al. Electrosorption behavior of graphene in NaCl solutions [J]. J. Mater. Chem.,2009,19(37):6773-6779.
    [61]L.L. Wang, Y.W. Chen, T. Chen, et al. Optimization of field emission properties of carbon nanotubes cathodes by electrophoretic deposition [J]. Mater Lett,2007,61(4-5): 1265-1269.
    [62]F. Sauvage, D.H. Chen, P. Comte, Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%[J]. ACS Nano,2010,4(8):4420-4425.
    [63]D.S. Yu, L.M. Dai. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors [J]. J. Phys. Chem. Lett.,2010,1(2):467-470.
    [64]D.H. Lee, J.E. Kim, T.H. Han, et al. Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films [J]. Adv. Mater.,2010,22(11):1247-1252.
    [65]R.K. Paul, M. Ghazinejad, M. Penchev, et al. Synthesis of a pillared graphene nanostructure:a counterpart of three-dimensional carbon architectures [J]. Small,2010, 6(20):2309-2313.
    [66]D.H. Lee, J.A. Lee, W.J. Lee, et al. Flexible field emission of nitrogen-doped carbon nanotubes/reduced graphene hybrid films [J]. Small,2011,7(1):95-100.
    [67]P.J. Li, J.H. Wua, J.M. Lin, et al. High-performance and low platinum loading Pt/Carbon black counter electrode for dye-sensitized solar cells [J]. Sol. Energy,2009, 83(5):845-849.
    [68]Z.J. Fan, J. Yan, L. Zhi, et al. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors [J]. Adv. Mater.,2010, 22(33):3723-3728.
    [69]L.L. Zhang, Z. Xiong, X.S. Zhao. Pillaring chemically exfoliated graphene oxide with carbon nanotubes for photocatalytic degradation of dyes under visible light irradiation [J]. ACS Nano,2010,4(11):7030-7063.
    [70]L. Qiu, X. Yang, X. Gou, et al. Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives [J]. Chem. Eur. J.,2010, 16(35):10653-10658.
    [71]H.J. Tian, L.H. Hu, W.X. Li, et al. A facile synthesis of anatase N, B codoped TiO2 anodes for improved-performance dye-sensitized solar cells [J]. J. Mater. Chem.,2011, 21(20):7074-7077.
    [72]K.Y. Yan, Y. C. Qiu, W. Chen, et al. A double layered photoanode made of highly crystalline TiO2 nanooctahedra and agglutinated mesoporous TiO2 microspheres for high efficiency dye sensitized solar cells [J]. Energy Environ. Sci.,2011,4(6): 2168-2176.
    [73]J. Han, H. Kim, D.Y. Kim, et al. Water-soiuble polyelectrolyte-grafted multiwalled carbon nanotube thin films for efficient counter electrode of dye-sensitized solar cells [J]. ACS Nano,2010,4(6):3503-3509.
    [74]G.Q. Xin, W. Hwang, N. Kim, et al. A graphene sheet exfoliated with microwave irradiation and interlinked by carbon nanotubes for high-performance transparent flexible electrodes [J]. Nanotechnol.,2010,21:405201.
    [75]I.'Mora-Sero, J. Bisquert. Breakthroughs in the development of semiconductor-sensitized solar cells [J]. J. Phys. Cbem. Lett.,2010,1(20):3046-3052.
    [76]P.V. Kamat, K. Tvrdy, D.R. Baker, et al. Beyond photovoltaics semiconductor nanoarchitectures for liquid-junction [J]. Chem. Rev.,2010,110(11):6664-6688.
    [77]I. Mora-Sero, S. Gimenez, F. Fabregat-Santiago, et al. Recombination in quantum dot sensitized solar cells [J]. Ace. Chem. Res.,2009,42(11):1848-1857.
    [78]D.R. Baker, P.V. Kamat, Photosensitization of TiO2 nanostructures with CdS quantum dots:particulate versus tubular support architectures [J]. Adv. Funct. Mater.2009, 19(5):805-811.
    [79]G. Zhu, L.K. Pan, T. Xu, et al. Microwave assisted chemical bath deposition of CdS on TiO2 film for quantum dot-sensitized solar cells [J]. J. Electroanal. Chem.,659, 2011 (2):205-209.
    [80]X.F. Gao, W.T. Sun, Z.D. Hu, et al. An efficient method to form heterojunction TiO2/CdS photoelectrodes using highly ordered TiO2 nanotube array films [J]. J. Phys. Chem. C,2009,113(47):20481-20485.
    [81]M. Shalom, I. Hod, Z. Tachan, et al. Quantum dot based anode and cathode for high voltage tandem photo-electrochemical solar cell [J]. Energy Environ. Sci.,2011,4(5): 1874-1878.
    [82]Y.L. Lee, C.F. Chi, S.Y. Liau. CdS/CdSe co-sensitized TiO2 photoelectrode for efficient hydrogen generation in a photoelectrochemical cell [J]. Chem. Mater.,2010, 22(3):922-927.
    [83]H.J. Lee, J. Bang, J. Park, et al. Multilayered semiconductor (CdS/CdSe/ZnS)-sensitized TiO2 mesoporous solar cells:all prepared by successive ionic layer adsorption and reaction processes [J]. Chem. Mater.,2010,22(19): 5636-5643.
    [84]H.J. Lee, J.H. Yum, H.C. Leventis, et al. CdSe quantum dot-sensitized solar cells exceeding efficiency 1% at full-sun intensity [J]. J. Phys. Chem. C,2008,112(48): 11600-11608.
    [85]J.G. Radich, R. Dwyer, P.V. Kamat. Cu2S Reduced graphene oxide composite for high-efficiency quantum dot solar cells overcoming the redox limitations of S2-/Sn2-at the counter electrode [J]. J. Phys. Chem. Lett.,2011,2 (19):2453-2460.
    [86]B. Farrow, P.V. Kamat. CdSe quantum dot sensitized solar cells, shuttling electrons through stacked carbon nanocups [J]. J. Am. Chem. Soc.,2009,131 (31): 11124-11131.
    [87]Q.X. Zhang, Y.D. Zhang, S.Q. Huang, et al. Application of carbon counter electrode on CdS quantumdot-sensitized solar cells (QDSSCs) [J]. Electrochem. Commun.2010, 12(2):327-329.
    [88]M.A. Hossain, J.R. Jennings, Z.Y. Koh, et al. Carrier generation and collection in CdS/CdSe-sensitized SnO2 solar cells exhibiting unprecedented photocurrent densities [J]. ACS Nano 2011,5(4):3172-3181.
    [89]Y.L. Lee, Y.S. Lo. Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe [J]. Adv. Funct. Mater.,2009,19(4):604-609.
    [90]Q.X. Zhang, X.Z. Guo, X.M. Huang, et al. Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO2 photoelectrodes [J]. Phys. Chem. Chem. Phys.,2011,13(10):4659-4667.
    [91]Z.S. Yang, C.Y. Chen, C.W. Liu, et al. Electrocatalytic sulfur electrodes for CdS/CdSe quantum dot-sensitized solar cells [J]. Chem. Commun.,2010,46(30):5485-5487.
    [92]G. Zhu, T. Xu, T. Lv, et al. Graphene-incorporated nanocrystalline TiO2 films for CdS quantum dot sensitized solar cells [J]. J. Electroanal. Chem.,2011,650(2):248-251.
    [93]G. Zhu, L.K. Pan, H.C. Sun, et al. Electrophoretic deposition of reduced graphene-Au nanoparticle composite film as counter electrode for CdS quantum dot-sensitized solar cells [J]. ChemPhysChem,2012,13(3):769-776.
    [94]G. Zhu, L.K. Pan, T.Xu, et al. CdS/CdSe co-sensitized TiO2 photoanode for quantum-dot sensitized solar cells by microwave assisted chemical bath deposition method [J]. Appl. Mater. Interfaces,2011,3(8):3146-3151.
    [95]G. Zhu, L.K. Pan, T.Xu, et al. One-step synthesis of CdS sensitized TiO2 photoanodes for quantum dot-sensitized solar cells by microwave-assisted chemical bath deposition method [J]. Appl. Mater. Interfaces,2011,3(5):1472-1478.
    [96]Y.L Lee, C.H. Chang. Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells [J]. J. Power Sources.,2008,185(1):584-588.
    [97]V. Georgakilas, D. Gournisb, V. Tzitzios, et al. Decorating carbon nanotubes with metal or semiconductor nanoparticles [J]. J. Mater. Chem.,2007,17(26):2679-2694.
    [98]H.Y. Wang, F.M. Wang, Y.Y. Wang, et al. Electrochemical formation of pt nanoparticles on multiwalled carbon nanotubes:useful for fabricating electrodes for use in dye-sensitized solar cells [J]. J. Phys. Chem. C,2011,115(16):8439-8445.
    [99]G.R. Li, F. Wang, Q.W. Jiang, et al. Carbon nanotubes with titanium nitride as a low-cost counterelectrode material for dye-sensitized solar cells [J]. Angew. Chem. Int. Ed.2010,49(21):3653-3656.
    [1]A.J. Nozik. Quantum dot solar cells [J]. Physica E 2002,14(1-2):115-120.
    [2]P.V. Kamat. Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters [J]. J. Phys. Chem. C,2008,112(48):18737-18753.
    [3]A.J. Nozik. Multiple exciton generation in semiconductor quantum dots [J]. Chem. Phys. Lett.,2008,457(1-3):3-11.
    [4]B.A. Gregg, M.C. Hanna. Comparing organic to inorganic photovoltaic cells:Theory, experiment, and simulation [J]. J. Appl. Phys.,2003,93(6):3605.
    [5]I. Mora-Sero, J. Bisquert. Breakthroughs in the development of semiconductor-sensitized solar cells [J]. J. Phys. Chem. Lett.,2010,1(20):3046-3052.
    [6]P.V. Kamat, K. Tvrdy, D.R. Baker, et al. Beyond photovoltaics semiconductor nanoarchitectures for liquid-junction [J]. Chem. Rev.,2010,110(11):6664-6688.
    [7]I. Mora-Sero, S. Gimenez, F. Fabregat-Santiago, et al. Recombination in quantum dot sensitized solar cells [J]. Acc. Chem. Res.,2009,42(11):1848-1857.
    [8]G. Zhu, L.K. Pan, T. Xu, et al. Microwave assisted chemical bath deposition of CdS on TiO2 film for quantum dot-sensitized solar cells [J]. J. Electroanal. Chem.,659, 2011(2):205-209.
    [9]G. Zhu, L.K. Pan, T. Xu, et al. Cascade structure of TiO2/ZnO/CdS film for quantum dot sensitized solar cells [J]. J. Alloys Compd.,2011,509(29):7814-7817.
    [10]D.R. Baker, P.V. Kamat. Photosensitization of TiO2 nanostructures with CdS quantum dots:particulate versus tubular support architectures [J]. Adv. Funct. Mater.2009, 19(5):805-811.
    [11]G. Zhu, F.F. Su, T. Lv, et al., Au nanoparticles as interfacial layer for CdS quantum dot-sensitized solar cells [J]. Nanoscale Res. Lett.,2010,5(11):1749-1754.
    [12]G. Zhu, Z.J. Cheng, T. Lv, et al. Zn-doped nanocrystalline TiO2 films for CdS quantum dot sensitized solar cells [J]. Nanoscale 2010,2(7):1229-1132.
    [13]I. Robel, V. Subramanian, M. Kuno, et al. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films [J]. J. Am. Chem. Soc.2006,128(7):2385-2393.
    [14]I. Mora-Sero, S. Gimenez, T. Moehl, et al. Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell:the role of the linker molecule and of the counter electrode [J]. Nanotechnol.,2008,19:424007.
    [15]C.H. Chang, Y.L. Lee. Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells [J]. Appl. Phys. Lett.,2007,91:053503.
    [16]W. Lee, S.K.Min, V. Dhas, et al. Chemical bath deposition of CdS quantum dots on vertically aligned ZnO nanorods for quantum dots-sensitized solar cells [J]. Electrochem. Commun.,2009,11(1):103-106.
    [17]H.J. Lee, J. Bang, J. Park, et al. Multilayered semiconductor (CdS/CdSe/ZnS)-sensitized HO2 mesoporous solar cells:all prepared by successive ionic layer adsorption and reaction processes [J]. Chem. Mater..2010,22(19): 5636-5643.
    [18]Y.L. Lee,Y.S. Lo. Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe [J]. Adv. Funct. Mater.,2009,19(4):604-609.
    [19]V.G Pedro, X.Q. Xu, I. Mora-Sero, et al. Modeling high-efficiency quantum dot sensitized solar cells [J]. ACS Nano,2010,4(10):5783-5790.
    [20]Z.S. Yang, C.Y. Chen, C.W. Liu, et al. Electrocatalytic sulfur electrodes for CdS/CdSe quantum dot-sensitized solar cells [J]. Chem. Commun.2010,46(30):5485-5487.
    [21]A.L. Washington, G.F. Strouse. Microwave synthesis of CdSe and CdTe nanocrystals in nonabsorbing alkanes [J]. J. Am. Chem. Soc.,2008,130(28):8916-8922.
    [22]J.J. Zhu, O. Palchik, S.G. Chen, et al. Microwave assisted preparation of CdSe, PbSe, and Cu2-xSe Nanoparticles [J]. J. Phys. Chem. B,2000,104(31):7344-7347.
    [23]Y. Wada, H. Kuramoto, J. Anand, et al. Microwave-assisted size control of CdS nanocrystallites [J]. J. Mater. Chem.,2001,11(7):1936-1940.
    [24]A.L. Washington, G.F. Strouse. Microwave synthetic route for highly emissive TOP/TOP-S passivated CdS quantum dots [J]. Chem. Mater.,2009,21(15):3586-3592.
    [25]Q.H. Shen, Y. Liu, J. Xu, et al. Microwave induced center-doping of silver ions in aqueous CdS nanocrystals with tunable, impurity and visible emission [J]. Chem. Commun.,2010,46(31):5701-5703.
    [26]S. Karan, B. Mallik. Tunable visible-light emission from CdS nanocrystallites prepared under microwave irradiation [J]. J. Phys. Chem. C,2007,111(45): 16734-16741
    [27]G. Zhu, L.K. Pan, T. Xu, et al. Microwave assisted CdSe quantum dots deposition on TiO2 films for dye-sensitize solar cells [J]. Nanoscale,2011,3[5]:2188-2193.
    [28]G. Zhu, L.K. Pan, T. Xu, et al. CdS/CdSe co-sensitized TiO2 photoanode for quantum-dot sensitized solar cells by microwave assisted chemical bath deposition method [J]. Appl. Mater. Interfaces,2011,3(8):3146-3151.
    [29]G. Zhu, L.K. Pan, T. Xu, et al. One-step synthesis of CdS sensitized TiO2 photoanodes for quantum dot-sensitized solar cells by microwave-assisted chemical bath deposition method [J]. Appl. Mater. Interfaces,2011,3(5):1472-1478.
    [30]G. Zhu, T. Lv, L.K. Pan, et al. All spray pyrolysis deposited CdS sensitized ZnO films for quantum dot-sensitized solar cells [J]. J. Alloys Compd.,2011,509(2): 362-365.
    [31]G. Zhu, L.K. Pan, T. Xu, et al. Cascade structure of TiO2/ZnO/CdS film for quantum dot sensitized solar cells [J]. J. Alloys Compd.,2011,509(29):7814-7817.
    [32]Y.L Lee, C.H. Chang. Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells [J]. J. Power Sources.2008,185(1):584-588.
    [33]L.W. Chong, H.T. Chien, Y.L. Lee. et al. Assembly of CdSe onto mesoporous TiO2 films induced by a self-assembled monolayer for quantum dot-sensitized solar cell applications [J]. J. Power Sources,2010,195(15):5109-5113.
    [34]J. Bisquert, A. Zaban, M. Greenshtein, et al. Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method [J]. J. Am. Chem. Soc.,2004,126(41):13550-13559.
    [35]E.M. Barea, M. Shalom, S. Gimenez, et al. Design of injection and recombination in quantum dot sensitized solar cells [J]. J. Am. Chem. Soc.,2010,132(19):6834-6839.
    [36]N. Guijarro, T. Lana-Villarreal, Q. Shen, Sensitization of titanium dioxide photoanodes with cadmium selenide quantum dots prepared by silar:photoelectrochemical and carrier dynamics studies [J]. J. Phys. Chem. C,2010,114(50):21928-21937.
    [37]E. Martinez-Ferrero, I. Mora-Sero, J. Alberoa, et al. Charge transfer kinetics in CdSe quantum dot sensitized solar cells [J]. Phys. Chem. Chem. Phys.,2010,12(12): 2819-2821.
    [38]Q. Shen, J. Kobayashi, L.J. Diguna, et al. effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells [J]. J. Appl. Phys.,2008,103(8): 084304.
    [39]N. Guijarro, T. Lana-Villarreal, I. Mora-Sero, et al. CdSe quantum dot-sensitized TiO2 electrodes:effect of QD coverage and mode of attachment [J]. J. Phys. Chem. C,2009, 113(10):4208-4214.
    [40]S.C. Lin, Y.L.Lee, C.H. Chang, et al. Quantum-dot-sensitized solar cells:Assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition [J]. Appl. Phys. Lett.,2007,90:143517.
    [41]Q.X. Zhang, Y.D. Zhang, S.Q. Huang, et al. Application of carbon counter electrode on CdS quantumdot-sensitized solar cells (QDSSCs) [J]. Electrochem. Commun.2010, 12(2):327-329.
    [42]J. Kruger, R. Plass, M. Gratzel, et al. Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis(4,4'-dicarboxy-2,2'bipyridine)-bis(isothiocyanato) ruthenium(Ⅱ) [J]. Appl. Phys. Lett.,2002,81:367.
    [43]J. Kruger, R. Plass, L. Cevey, et al. High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination [J]. Appl. Phys. Lett.,2001,79:2085.
    [44]S. Kundu, H. Lee. H. Liang. Synthesis and application of DNA-CdS nanowires within a minute using microwave irradiation [J]. Inorg. Chem.,2009,48(1):121-127.
    [45]W.X. Tu, H. Liu. Continuous Synthesis of colloidal metal nanoclusters by microwave irradiation [J]. Chem. Mater.,2000,12(2):564-567.
    [46]S.M. Mirabedini, H. Rahimi, S. Hamedifar, et al. Microwave irradiation of polypropylene surface:a study on wettability and adhesion [J]. Int. J. Adhes. Adhes., 2004,24(2):163-170.
    [47]C.Q.Sun, Y. Sun, Y. Ni, et al. Coulomb repulsion at the nanometer-sized contact:a force driving superhydrophobicity, superfluidity, superlubricity, and supersolidity [J]. J. Phys. Chem. C,2009,113(46):20009-20019.
    [48]S. Komarneni, D. Li, B. Newalkar, et al. Microwave-polyol process for Pt and Ag nanoparticles [J]. Langmuir,2002,18(15):5959-5962.
    [49]D. Chen, G. Shen, K. Tang, et al. Microwave-assisted polyol synthesis of nanoscale SnSx (x=1,2) flakes [J]. J. Cryst. Growth,2004,260(3-4):469-474.
    [50]H. Zhang, L. Wang, H. Xiong, et al. Hydrothermal synthesis for high quality CdTe QDs [J].Adv. Mater.,2003,15(20):1712-1715.
    [51]L. Li, H. Qian, J. Ren. Rapid synthesis of highly luminescent CdTe nanocrystals in the aqueous phase by microwave irradiation with controllable temperature [J]. Chem. Commun.,2005, [4]:528-530.
    [52]L.J. Diguna, Q. Shen, J. Kobayashi, et al. High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells [J]. Appl. Phys. Lett.,2007,91: 023116.
    [53]M. Gratzel. Photoeleetroehemicalcells [J]. Nature,2001,414 (6561):335-344.
    [54]Z.F. Liu, Y.J. Li, Z.G. Zhao, et al. Block copolymer templated nanoporous TiO2 for quantum-dot-sensitized solar cells [J]. J. Mater. Chem.,2010,20(3):492-497.
    [55]P. Sudhagar, J.H. Jung, S. Park, et al. The performance of coupled (CdS:CdSe) quantum dot-sensitized TiO2 nanofibrous solar cells [J]. Electrochem. Commun.,2009, 11(11):2220-2224.
    [56]J. Chen, J. Wu, W. Leia, et al. Co-sensitized quantum dot solar cell based on ZnO nanowire [J]. Appl. Surf. Sci.,2010,256(24):7438-7441.
    [57]M. Li, Y. Liu, H. Wang, et al. CdS/CdSe cosensitized oriented single-crystalline TiO2 nanowire array for solar cell application [J]. J. Appl. Phys.,2010,108(9):094304.
    [58]S. H. Im, Y. H. Lee, S. Seok, et al. Quantum-dot-sensitized solar cells fabricated by the combined process of the direct attachment of colloidal cdse quantum dots having a ZnS glue layer and spray pyrolysis deposition [J]. Langmuir,2010,26(23): 18576-18580.
    [59]X.F. Gao, W.T. Sun, G. Ai, et al. Photoelectric performance of TiO2 nanotube array photoelectrodes co-sensitized with CdS/CdSe quantum dots [J]. Appl. Phys. Lett.,2010, 96:153104.
    [60]V. Chakrapani, D. Baker, P.V. Kamat. Understanding the role of the sulfide redox couple (S2-/Sn2-) in quantum dot-sensitized solar cells [J]. J. Am. Chem. Soc.,2011, 133(24):9607-9615.
    [61]Md.A. Hossain, J.R. Jennings, Z.Y. Koh, et al. Carrier generation and collection in CdS/CdSe-Sensitized SnO2 solar cells exhibiting unprecedented photocurrent densities [J]. ACS Nano,2011,5(4):3172-3181.
    [1]E. Arca, K. Fleischer, I.V. Shvets. Influence of the precursors and chemical composition of the solution on the properties of ZnO thin films grown by spray pyrolysis [J]. J. Phys. Chem. C,2009,113 (50):21074-21081.
    [2]D. Li, H. Haneda, S. Hishita, et al. Visible-light-driven N-F-codoped TiO2 Photocatalysts.1. synthesis by spray pyrolysis and surface characterization [J]. Chem. Mater.,2005,17(10):2588-2595.
    [3]M. Miki-Yoshida, V. Collins-Martinez, P. Amezaga-Madrid, et a!. Thin films of photocatalytic TiO2 and ZnO deposited inside a tubing by spray pyrolysis [J]. Thin Solid Films,2002,419(1-2):60-64.
    [4]A. Manivannana, M.S. Seehra. Magnetism of Co-doped titania thin films prepared by spray pyrolysis [J]. Appl. Phys. Lett.,2003,83:111.
    [5]B. Wang, J.H. Min, Y. Zhao, et al. The grain boundary related p-type conductivity in ZnO films prepared by ultrasonic spray pyrolysis [J]. Appl. Phys. Lett.,2009,94: 192101.
    [6]J.L. Zhao, X.M. Li. Study on anomalous high p-type conductivity in ZnO films on silicon substrate prepared by ultrasonic spray pyrolysis [J]. Appl. Phys. Lett.,2007,90: 062118.
    [7]K. Shin, S. Seok, S.H. Im, et al. CdS or CdSe decorated TiO2 nanotube arrays from spray pyrolysis deposition:use in photoelectrochemical cells [J]. Chem. Commun., 2010,46(14):2385-2387.
    [8]Y.H. Lee, S.H. Im, J.H. Rhee, et al. Performance enhancement through post-treatments of CdS-sensitized solar cells fabricated by spray pyrolysis deposition [J]. Appl. Mater. Interfaces,2011,2(6):1648-1652.
    [9]G. Zhu, L.K. Pan, T.Xu, et al. One-step synthesis of CdS sensitized TiO2 photoanodes for quantum dot-sensitized solar cells by microwave-assisted chemical bath deposition method [J]. Appl. Mater. Interfaces,2011,3(5):1472-1478.
    [10]G. Zhu, L.K. Pan, H.C. Sun, et al. Electrophoretic deposition of reduced graphene-Au nanoparticle composite film as counter electrode for CdS quantum dot-sensitized solar cells [J]. ChemPhysChem,2012,13(3):769-776.
    [11]I. Mora-Sero, S. Gimenez, F. Fabregat-Santiago, et al. Recombination in quantum dot sensitized solar cells [J]. Ace. Chem. Res.,2009,42(11):1848-1857.
    [12]G. Zhu, T. Xu, T. Lv, et al. Graphene-incorporated nanocrystalline TiO2 films for CdS quantum dot sensitized solar cells [J]. J. Electroanal. Chem.,2011,650(2):248-251.
    [13]S. Roh, R.S. Mane, S.K. Min, et al. Achievement of 4.51% conversion efficiency using ZnO recombination barrier layer in TiO2 based dye-sensitized solar cells [J]. Appl. Phys. Lett.,2006,89:253512.
    [14]S.J. Wu, H.W. Han, Q.D. Tai, et al. Improvement in dye-sensitized solar cells with a ZnO-coated TiO2 electrode by rf magnetron sputtering [J]. Appl. Phys. Lett.,2008,92: 122106.
    [15]R.S. Mane, W.J. Lee, H.M. Pathan, et al. Nanocrystalline TiO2/ZnO thin films: fabrication and application to dye-sensitized solar cells [J]. J. Phys. Chem. B,2005, 109(51):24254-24259.
    [16]S. Pang, T.F. Xie, Y. Zhang, et al. Research on the effect of different Sizes of ZnO nanorods on the efficiency of TiO2-based dye-sensitized solar cells [J]. J. Phys. Chem. C,2007,111(49):18417-18422.
    [17]Z.S. Wang, C.H. Huang, Y.Y. Huang, et al. A highly efficient solar cell made from a dye-modified ZnO-covered TiO2 nanoporous electrode [J]. Chem. Mater.,2001,13(2): 678-682.
    [18]M.C. Kao, S.L. Young, H.Z. Chen. Effects of ZnO coating on the performance of TiO2 nanostructured thin films for dye-sensitized solar cells [J]. Appl. Phys. A,2009,97(2): 469-474.
    [19]W. Lee, S.H. Kang, J.Y. Kim, et al. TiO2 nanotubes with a ZnO thin energy barrier for improved current efficiency of CdSe quantum-dot-sensitized solar cells [J]. Nanotechnol.,2009,20:335706.
    [20]G Zhu, L.K. Pan, T. Xu, et al. Cascade structure of TiO2/ZnO/CdS film for quantum dot sensitized solar cells [J]. J. Alloys Compd.,2011,509(29):7814-7817.
    [21]G. Zhu, F.F. Su, T. Lv, et al., Au nanoparticles as interfacial layer for CdS quantum dot-sensitized solar cells [J]. Nanoscale Res. Lett.,2010,5(11):1749-1754.
    [22]Y.L Lee, C.H. Chang. Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells [J]. J. Power Sources,2008,185(1):584-588.
    [23]C.H. Chang, Y.L. Lee. Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells [J]. Appl. Phys. Lett.,2007,91:053503.
    [24]Y.Z. Zheng, X. Tao, L.X. Wang, et al. Novel ZnO-based film with double light-scattering layers as photoelectrodes for enhanced efficiency in dye-sensitized solar cells [J]. Chem. Mater.,2010,22(3):928-934.
    [25]W. Chen, Y.C. Qiu, Y. Zhong, et al. High efficiency dye sensitized solar cells based on the composite photoanodes of SnO2 nanoparticles/ZnO anotetrapods [J]. J. Phys. Chem. A,2010,114(9):3127-3138.
    [26]H. Choi, H. Kim, S. Hwang, et al. Graphene counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition [J]. J. Mater. Chem.,2011,21(21): 7548-7551.
    [27]H.J. Tian, L.H. Hu, W.X. Li, et al. A facile synthesis of anatase N, B codoped TiO2 anodes for improved-performance dye-sensitized solar cells [J]. J. Mater. Chem.,2011, 21(20):7074-7077.
    [28]K.Y. Yan, Y. C. Qiu, W. Chen, et al. A double layered photoanode made of highly crystalline TiO2 nanooctahedra and agglutinated mesoporous TiO2 microspheres for high efficiency dye sensitized solar cells [J]. Energy Environ. Sci.,2011,4(6): 2168-2176.
    [29]K.E. Kim, S.R. Jang, J. Park, et al. Enhancement in the performance of dye-sensitized solar cells containing ZnO-covered TiO2 electrodes prepared by thermal chemical vapor deposition [J]. Sol. Energy Mater. Sol. Cells,2007,91(4):366-370.
    [30]S.H. Kang, J.Y. Kim, Y. Kim, et al. Surface modification of stretched TiO2 nanotubes for solid-Siate dye-sensitized solar cells [J]. J. Phys. Chem. C,2007,111 (26): 9614-9623.
    [31]Y. Tak, S.J. Hong, J.S. Lee, et al. Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion [J]. J. Mater. Chem.,2009,19(33):5945-5951.
    [32]Q.F. Zhang, C.S. Dandeneau, S. Candelaria, et al. Effects of lithium ions on dye-sensitized ZnO aggregate solar cells [J]. Chem. Mater.,2010,22(8):2427-2433.
    [33]G. Zhu, T. Lv, L.K. Pan, et al. All spray pyrolysis deposited CdS sensitized ZnO films for quantum dot-sensitized solar cells [J]. J. Alloys Compd.,2011,509(2): 362-365.
    [34]Q.F. Zhang, T.R. Chou, B. Russo, et al. Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells [J]. Angew. Chem. Int. Ed.,2008, 47(13):2402-2406.
    [35]M. Gratzel. Photoeleetroehemicalcells [J]. Nature,2001,414 (6561):335-344.
    [36]Z.F. Liu, Y.J. Li, Z.G. Zhao, et al. Block copolymer templated nanoporous TiO2 for quantum-dot-sensitized solar cells [J]. J. Mater. Chem.,2010,20[3]:492-497.
    [37]E.M. Barea, M. Shalom, S. Gimenez, et al. Design of injection and recombination in quantum dot sensitized solar cells [J]. J. Am. Chem. Soc.,2010,132(19):6834-6839.
    [38]N. Guijarro, T. Lana-Villarreal, Q. Shen, et al. Sensitization of titanium dioxide photoanodes with cadmium selenide quantum dots prepared by silar: photoelectrochemical and carrier dynamics studies [J]. J. Phys. Chem. C,2010,114(50): 21928-21937.
    [39]L.W. Chong, H.T. Chien, Y.L. Lee. et al. Assembly of CdSe onto mesoporous TiO2 films induced by a self-assembled monolayer for quantum dot-sensitized solar cell applications [J]. J. Power Sources,2010,195(15):5109-5113.
    [40]S.C. Lin, Y.L.Lee, C.H. Chang, et al. Quantum-dot-sensitized solar cells:Assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition [J]. Appl. Phys. Lett.,2007,90:143517.
    [41]Q.X. Zhang, Y.D. Zhang, S.Q. Huang, et al. Application of carbon counter electrode on CdS quantumdot-sensitized solar cells (QDSSCs) [J]. Electrochem. Commun.2010, 12(2):327-329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700