量子点的制备及在生物标记中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对生物体内及生命过程中蛋白质、核酸、多肽等重要生物分子的高灵敏分析检测,是生命科学研究领域的重要难题。探索和发展高灵敏度、高选择性的分析检测方法一直是这一领域研究者的努力方向。荧光分析法是生物学研究中十分重要的方法之一,其检测灵敏度很大程度上取决于标记物的发光强度和光化学稳定性。目前使用的大多数荧光试剂如有机荧光染料等存在着光学稳定性较差、激发光谱范围窄、发射光谱较宽、与生物分子的背景荧光难以区分等不可忽视的弱点,导致应用中灵敏度下降。量子点作为一种新型的荧光纳米材料,弥补了有机染料的上述缺点,引起分析化学和生命科学领域的广泛关注。
     早期的量子点是在有机体系中制备的,即用金属有机化合物在具有配位性质的有机溶剂环境中生长纳米颗粒。这种方法制备条件比较苛刻、操作复杂,且制得的量子点水溶性不佳,欲获得较理想水溶性,需进行复杂的修饰改性,因而水溶性量子点的制备成为人们研究的热点。但目前报道的水相中合成量子点的一般量子产率较低(10%~30%),荧光发射峰半峰宽较宽。基于上述研究现状,本项研究选用谷胱甘肽作为稳定剂在水相中制备高质量的量子点,并考察它们在生物大分子标记以及细胞的免疫成像等领域中的应用。
     首先采用水相合成法,以谷胱甘肽(L-glutathione,GSH)作为稳定剂,氯化镉、和碲粉等简单的无机试剂作为合成原料,合成水溶性CdTe量子点。利用CdTe量子点表面的羧基和氨基基团与生物分子(如蛋白质和抗体)中氨基和羧基基团之间的相互作用,直接与生物分子链接并对细胞进行荧光标记。实验中CdTe量子点与牛血清白蛋白成功地链接后,量子点荧光强度明显提高。并在BSA的浓度为2.0-10 mg/L时,溶液的荧光强度与BSA浓度形成良好的线性关系,可以用来进行蛋白的初步定量测定。同时,CdTe量子点能与大鼠抗小鼠CD4抗体连接,制备水溶性CdTe-CD4复合物探针,对鼠的淋巴细胞和脾脏标记成像。结果表明,CdTe量子点与传统的异硫氰酸荧光素(FITC)相比,具有更强的荧光强度和光稳定性。
     其次,将CdTe量子点作为生物荧光探针引入前列腺癌研究中。采用直接和间接标记两种方法检测前列腺癌细胞的特异性抗原(prostate specific antigen,PSA),比较两种方法对细胞的免疫标记效果。结果表明,直接标记方法操作步骤虽然简单,但是量子点在细胞表面有明显的非特异性吸附现象;而间接标记方法利用一抗和二抗之间的结合降低了非特异性吸附,量子点探针在细胞表面呈现出明显的荧光信号。同时,通过对活的前列腺癌细胞进行标记,考察了CdTe量子点的生物毒性。
     第三,选用谷胱甘肽(GSH)作为稳定剂,首次在水溶液中合成了稳定的CdSe/CdS核/壳结构的量子点。采用CdS无机包覆层对CdSe量子点表面进行修饰,有效地限制对核的激发,消除非辐射驰豫途径和防止光化学褪色,提高了量子点的稳定性和荧光产率。经光学性能表征,制备的CdSe/CdS核/壳结构量子点具有荧光产率较高、半峰宽窄、峰形对称等优良的光谱性能;结构性能表征表明合成的量子点尺寸分布均匀,为近似球形颗粒。同时,将CdSe/CdS量子点和鼠抗人CD3抗体连接,制备水溶性CdSe/CdS-CD3复合物探针,对人血淋巴细胞标记成像。实验结果表明,CdSe/CdS量子点与传统的FITC相比,具有更强的荧光强度和光稳定性。
     最后,初步研究了量子点与碳纳米管复合物的制备。由于这种纳米复合物具有独特的物理和化学的性质,预期在纳米电学、催化反应、生物感应器等领域具有广泛的应用,尤其在医学和药学上的应用成为众多国际研究者最为关注的热点。实验中碳纳米管经氧化处理后,在端口处会形成羧基,利用羧基与谷胱甘肽包被的CdTe量子点上氨基之间的作用,实现了量子点与单壁碳纳米管的链接。经荧光光谱表征,链接碳纳米管后的量子点荧光强度减弱。
     总之,本研究工作以谷胱甘肽作为稳定剂,合成了两种高质量的水溶性量子点。利用量子点表面的羧基和氨基基团与生物分子抗体中氨基和羧基基团之间的相互作用,直接与生物分子链接制备了三种免疫探针,成功地用于淋巴细胞及脾组织、前列腺癌细胞和人血淋巴细胞的荧光标记及成像。实验中还考察了CdTe量子点的生物毒性。此外,初步探索了量子点与碳纳米管复合物的制备工艺。
The sensitive and selective detection of proteins,nucleic acid,peptides and other important biological molecules in organism or life process is an important field of life science. To explore and develop effective bio-analysis methods has been being the goal of analytical chemists.Fluorimetry is one kind of important methods for the life science studies,in which the detection sensitivity depends largely on their marker's luminous intensity and the photochemistry stability.Conventional organic dyes show some shortcomings such as narrower excitation and broader emission spectra,lower sensitivity and poor stability,making it to be difficult to distinguish the detection signals from self fluorescence of bio-molecules in bio-analytical applications.Quantum dots(QDs)just come to overcome these limitations of organic dyes and attract much attention in analytical and biological chemistry fields.
     QDs were early prepared mainly through organometallic synthesis.Although the QDs prepared by this kind of methods possess higher photoluminescence quantum efficiency (QYs),it is,however,harsh,complicated to operate and water insoluble.Therefore,QDs preparation directly in aqueous solution has become the research hotspot,eventhough the lower QYs of 10-30%were typically obtained.In this work,L-Glutathione(GSH) stabilized CdTe and CdSe/CdS QDs were directly prepared in aqueous media and used as fluorescent labels in the domain of biological macromolecules probe and immuno-imagings.
     Firstly,GSH capped highly fluorescent CdTe QDs were prepared by an aqueous approach.Based on interaction of the carboxylic and amino groups on the surface of QDs with the amino and carboxylic groups of antibody,the as prepared CdTe QDs were used as fluorescent labels of biological macro-molecules for cells targeting and imaging.The experimental results showed that CdTe QDs could be conjugated to BSA with the obvious enhancement of photoluminescence intensity and the enhanced fluorescence intensity was proportional to the concentration of BSA in the range 2.0-10 mg/l.Meanwhile the as prepared CdTe QDs were conjugated with CD4 antibody to be the fluorescent labels of mouse T lymphocyte and spleen tissues for immuno imaging.It was demonstrated that CdTe QDs exhibited much better photo stability and stronger fluorescence intensity than FITC,showing a good application potential in the immuno-labeling of cells and tissues.
     Secondly,the water soluable CdTe QDs were applied as fluorescent markers in prostate cancer research.The as prepared QDs were linked with prostate-specific antigen(PSA) for the direct labeling and linked to immunoglobulin G(IgG) for the indirect labeling of fixed prostate cancer cells.In comparison,the direct labeling procedure was relatively simpler, unfortunately,showing some non-specificity;whereas indirect labeling method eliminated non-specific adsorption by linking of second antibody with QDs,primary antibody with cell or tissues and then the two conjugates,consequently exhibited excellent fluorescence microscopic images.Simultaneously,the prepared QDs were also used to label live prostate cancer cell,to inspect its biological toxicity.
     Thirdly,GSH capped highly fluorescent CdSe/CdS core-shell quantum dots were firstly prepared by an aqueous approach.Fluorescence emission spectra of as-prepared CdSe/CdS core-shell QDs showed a remarkable enhancement in the emission intensity than that of node CdSe QDs.The TEM results showed that the as prepared CdSe/CdS QDs were approximately spherical in shape with the Size of 5 nm,and monodisperse in aqueous solution.The CdSe/CdS QDs were linked with mouse anti-human CD3 to image human T-lymphocyte.It was demonstrated that the fluorescent CdSe/CdS QDs exhibited much better photo stability and stronger fluorescence intensity than FITC,showing a good application potential in the immuno-labeling of cells.
     At last,a new kind of materials,the QDs-CNTs nanocomposites were prepared.The nanocomposites are expected to be applied in nano-electrical chemistry,catalytic reaction and biological sensors especially in medical and pharmiceutical science due to its unique physical and chemical properties,and have attracted great attention of the world.In this study,the carboxyl group in the CNTs was linked with the amine group on the QDs after the carbon nanotubes were oxidized,the QDs-CNTs nanocomposites were characterized by fluorescence spectra,showing that after linked with each other,the fluorescence intensity was weakened markedly.
     In conclusion,two kinds of L-glutathiones stabilized highly fluorescent CdTe and CdSe/CdS quantum dots were prepared by aqueous approach.The as prepared QDs were successfully used as fluorescent labels of biological macro-molecules,such as BSA,CD4 and CD3 antibody,for cells(and tissues) labeling and imaging through the interaction of carboxylic and/or amino groups on the surface of QDs and the amino and/or carboxylic groups on antibody,.The primary experiments about biological toxicity of QDs were also carried out.In addition,the preparation of QDs-CNTs nanocomposites was tried with the preliminary results.
引文
1.陈扬,陆祖宏.生物分子的纳米粒子标记和检测技术[J],中国生物化学与分子生物学报,2003,19(1):1-4.
    2.赵薇,张志凌,庞代文.量子点荧光标记技术在生物医学领域的应用[J],化学传感器,2008,28:8-14.
    3.李军,袁航,白玉白,等.CdTe纳米晶与蛋白相互作用研究[J],高等学校化学学报,2003.4:1293-1295.
    4.邹明强.量子点的光学特征及其在生命科学中的应用[J],分析测试学报,2005,24(6):133-137.
    5.徐海娥,闫翠娥.水溶性量子点的制备及应用[J],化学进展,2005,17(5)800-808.
    6.林章碧,苏星光,张皓,等.用水溶液中合成的量子点作为生物荧光标记物的研究[J],高等学校化学学报,2003,24(2):216-220.
    7.Xie YH,Gilmer GH,Roland C,et al.Semiconductor Surface Roughness:Dependence on Sign and Magnitude of Bulk Strain[J],Phys.Rev.Lett.,1994,73(22):3006-3009.
    8.Tersof J,TercherI C,Lagally MG.Self organization in growth of quantum dot Superlattices[J],Phys.Rev.Lett.,1996,76(10):1675-1678.
    9.Pehlke E,Moll N,Kley A,et al.Shape and stability of quantum dots[J],Appl.Phys.,1997,A 65:525-534.
    10.Apetz R,Vescan L,Hartmann A,et al.Photoluminescence and electroluminescence of SiGe dots fabricated by island growth[J],Appl.Phys.Lett.,1995,66(4):445-447.
    11.彭英才.半导体量子点的自组织生长及其应用[J],半导体杂志,1999,24(3):40-50.
    12.Sugisaki M,Ren H W,Nishi K,et al.Optical anisotropy in self-assembled InP quantum dots[J],Phys.Rev.B,1999,59(8):R530-R533.
    13.Puntes V F,Krishnan K M,Alivisatos A P.Colloidal nanocrystal shape and size control the case of cobalt[J],Science,2001,291:2115-2117.
    14.De Mongeot FB,Zhu WG,Wang EG,et al.Nanocrystal formation and faceting instability in Al(110)homoepitaxy[J],Phys.Rev.Lett.,2003,91:016102.
    15.Chan WCW,Nie SM.Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J],Science,1998,281:2016-2018.
    16.Jaiswal JK,Mattoussi H,Mauro J M,et al.Long-term multiple color imaging of live cells using quantum dot bioconjugates[J],Nat Biotechnol,2003,21(1):47-51.
    17.Gao X,Cui Y,Levenson RM,et al.In vivo cancer targeting and imaging with semiconductor quantum dots[J],Nat Biotechnol,2004,22(8):969-976.
    18.GaoX,Yarig L,Petros JA,et al.In vivo molecular and cellular imagingwith quantum dots[J],Curt Opin Biotechnol,2005,16(1):63-72.
    19.陈良冬,李雁,袁宏银,庞代文.量子点在肿瘤研究中的应用[J],癌症,2006,25(5):651-656.
    20.赵承军,唐军民.量子点在生物医学中的应用[J],解剖学报,2006,37(4):484-486.
    21.Cao YW,Banin U.Synthesis and characterization of InAs/Inp and InAs/CdSe Core/Shell Nanocrystals[J],J.Am.Chem.Int.Edit.,1999,38(24):3692.
    22.Cao Y W,Banin U.Growth and properties of semiconductor core/shell nanocrystals with InAs cores[J],J.Am.Chem.Soc.,2000,122:9692.
    23.关柏鸥,韩关云.半导体纳米材料的光学性能及研究进展[J],光电子·激光,1998,9(3):260.
    24.Murray CB,Norris DJ,Bawendi MG.Synthesis and characterization of nearly monodisperse CdE(E=sulfur,selenium,tellurium) semiconductor nanocrystallites[J],J.Am.Chem.Soc.,1993,115:8706-8715.
    25.Bruchez Jr M,Moromme M,Gim P,Weiss S,Alivisatos A P.Semiconductor nanocrystals as flourescent biological labels[J],Science,1998,281:2013-2016.
    26.Spanhel L,Haase M,Weller H,Henglein A.Photochemistry of colloidal semiconductors.20.Surface modification and stability of strong luminescing CdS particles[J],J.Am.Chem.Soc.,1987,109,5649-5655.
    27.Kortan AR,Hull R,Opila RL,Bawendi MG,Steigerwald ML,Carrikk PJ,Brus LE.Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds,and vice versa,in inverse micelle media[J],J.Am.Chem.Soc.,1990,112:1327-1332.
    28.Peng ZA,Peng XG.Formation of high-quality CdTe,CdSe,and CdS nanocrystals using CdO as precursor[J],J.Am.Chem.Soc.,2001,123,183-184.
    29.Han MY,Gao XH,Su Jack Z,Nie SM.Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules[J],Nat.Biotechnol.,2001,19:631-635.
    30.Deng ZT,Cao L,Tang FQ,Zou BS.A new route to zinc-blende CdSe nanocrystals:Mechanism and synthesis[J],Phys.Chem.B,2005,109:16671-16675.
    31.Yang DZ,Xu SK,Chen QF,Wang WX.A simple organic synthesis for CdS and Se-doped CdS nanocrystals[J],Colloid and surface A,2007,299:153-159.
    32.Yang DZ,Chen QF,Xu SK.Synthesis of CdSe/CdS with a simple non-TOP-based route[J],Journal of Luminescence,2007,126:853-858.
    33.Gaponik N,Talapin DV,Rogach AL,Hoppe K,Shevchenko EV,Komowski A,Eychmuller A,Weller H.Thiol-capping of CdTe nanocrystals:An alternative to organometallic synthetic routes[J],Phys.Chem.B,2002,106:7177-7185.
    34.Zhang H,Zhou Z,Yang B,Gao M.The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles[J],Phys.Chem.B,2003,107:8-13.
    35.Gao M,Kirstein S,Rogach AL,et al.Strongly photoluminescent CdTe nanocrystals byproper surface modification[J],Phys.Chem.B,1998,102:8360-8363.
    36.Gaponik N,Talapin DV,Rogach A L,et al.Thiol-capping of CdTe nanocrystals:an alternative to organomethic synthetic routes[J],Phys.Chem.B.,2002,106:7177-7185
    37.刘舒曼,徐征.CdSe纳米晶的制备及性能表征[J],光电子·激子,2003,14(1):46-49.
    38.徐力,郭轶,杨文胜,等.水相合成CdS纳米晶标记牛血清白蛋白[J],功能材料与器件学报,2003,9(2):2001-2004.
    39.谢颖,徐静娟,于俊生,等.水溶性的CdSe/ZnS纳米微粒的合成及表征[J],无机化学学报,2004,20(6):663-667.
    40.汪乐余,周运友,王伦,等.功能性CdS纳米荧光探针荧光增敏法测定人血清白蛋白[J],高等学校化学学报,2003,24(4):612-614.
    41.徐万帮,汪勇先,许荣辉,等.Ⅱ-Ⅵ型量子点的制备、修饰及其生物应用[J],无机材料学报,2006,21:1031-1037.
    42.孙聆东,付雪峰,钱程,等.水热法合成CdS/ZnO核壳结构纳米微粒[J],高等学校化学学报,2001,22(6):879-882.
    43.Yu SH,Wu YS,Qian YT,et al.A Novel solventothermal synthetic route to nanocrystalline CdE(E=S,Se,Te) and morphological control chem[J],Mater.,1998,10(9):2309-2312.
    44.Li YD,Liao HW,Qian YT.Preparation of pure nickel,cobalt,nickel-cobalt and nickelcopper alloys by hydrotherimal reduction[J],Materials Chemistry and Physics,1999,58:87-89.
    45.舒磊,俞书宏,钱逸泰.半导体硫化物纳米微粒的制备[J],无机化学学报,1999,15(1):1-7.
    46.Li MY,Ge YX,Chen QF,Xu SK,Wang NZ,Zhang XJ,Hydrothermal synthesis of highly luminescent CdTe quantum dots by adjusting precursors' concentration and their conjunction with BSA as biological fluorescent probes[J],Talanta,2007,72:89-94.
    47.Jiang C,Xu SK,Zhang FH,Yang DZ,Wang WX.The Synthesis of glutathione capped CdS quantum dots andits preliminary studies on protein detection and Cell Fluorescence Image[J],Luminescence,2007,22:430-437.
    48.Zhao X J,Tapee-Dytioco R,Tan WH.Ultrasen-sitive DNA detection using highly fluorescent bioconjugated nanoparticles[J],J.Am.Chem.Soc.,2003,125(38):11474-11475.
    49.Zhu JJ,Zhou MG,Xu JZ,et al.Preparation of CdS and ZnS nanoparticles using microwave irradiation[J],Material Letters,2001,47(1.2):25-29
    50.Li L,Qian HF,Ren JC.Rapid synthesis of highly luminescent CdTe nanocrystals in the aqueous phase by microwave irradiation-with controllable temperature[J],Chem.Commun.,2005:528-530.
    51.Chu MQ,Shen XY,Liu GJ.Microwave irradiation method for the synthesis of water-soluble CdSe nanoparticles with narrow photoluminescent emission in aqueous solution[J],Nanotechnology,2006,7:444-449.
    52.陈启凡,杨冬芝,徐淑坤,曲 正.微波辐射法制备水溶性CdTe量子点及其光谱学研究[J],光谱学与光谱分析,2007,27(4):650-653.
    53.Rossetti R,Ellin JL,Gibson JM,Brus LE.Size effects in the excited electronic states of small colloidal CdS crystallites[J],Chem.Phys.,1984,80:4464-4469.
    54.Steigerwald ML,Alivisatos A P.Surface derivatization and isolation of semiconductor cluster molecules[J],J.Am.Chem Soc.,1988,110(10):3046- 3050
    55.张宇,付德刚,蔡建东,等.CdS纳米粒子的表面修饰及其对光学性质的影响[J],物理化学学报,2000,16(5):431-436.
    56.Zhang J,Sun LD,Liao G,et al.Size control and photolumineseence enhancement of CdS nanopartieles prepared via Ieverse micele method[J],Solid State Communications,2002,124:45-48.
    57.Sato H,Tsubaki Y,Hirai T,et al.Mechanism of formation of metal sulfide ultrafine particles in reverse micelles using a gas injection method [J], And. Eng. Chem. Res., 1997, 36(1): 92-100.
    58. Becerra LR, Murray CB, Griffin RG, Bawendi MG. Investigation of the surface morphology of capped CdSe nanocrystallites by 31P nuclear magnetic resonance [J], Chem. Phys., 1994, 100: 3297-3300.
    59. Katari JEB, Colvin VL, Alivisatos AP. X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface [J], Phys. Chem., 1994,98:4109-4117.
    60. Hines M A, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals [J], Phys. Chem., 1996, 100: 468-471.
    61. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen K F, Bawendi M G. (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites [J], Phys. Chem. B, 1997, 101: 9463-9475.
    62. Pan D, Wang Q, Jiang S, Ji X, An Low-temperature synthesis of oil-soluble CdSe, CdS, and CdSe/CdS core-shell nanocrystals by using various water-soluble anion precursors [J], Phys. Chem. C, 2007,111(15): 5661-5666.
    63. Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG Self-assemble of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein [J], J. Am. Chem. Soc., 2000, 122: 12142-12150.
    64. Mitchell GP, Mirkin CA, Letsinger RL. Programmed assembley of DNA functionalized quantum dots [J], J. Am. Chem. Soc, 1999, 121: 8122-8123.
    65. Pathal S, Choi SK, Amheim N, Thompson ME. Hydroxylated quantum dots as luminescent probes for in situ hybridization [J], J. Am. Chem. Soc.,2001, 123: 4103-4104 .
    66. Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots [J], Science, 1996,271:933-937.
    67. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles [J], Science, 2002, 298: 1759-1762.
    68. Schroedter A, Weller H, Eritja R, Ford WE, Wessels J. Biofunctionalization of silica-coated CdTe and gold nanocrystals [J], Nano Lett., 2002, 2: 1363-1367.
    69. Hoppe K, Geidel E, Weller H, Eychmuller A. Covalently bound CdTe nanocrystals [J], Phys.Chem.Chem.Phys.,2002,4:1704-1706.
    70.张春阳,马辉,丁尧.量子点标记天花粉蛋白的研究[J],高等学校化学学报,2001,22(1):34-37.
    71.Goldman ER,Anderson GP,Tran PT.Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays[J],Anal.Chem.,2002,74:841-847.
    72.Lingerfelt BM,Mattoussi H,Goldman ER,Mauro JM,Anderson GP.Preparation of quantum dot-biotin conjugates and their use in immunochromatography assays[J],Anal.Chem.,2003,75:4043-4049.
    73.Mitchell G P,Mirkin C A,Letsinger R L.Programmed assembly of DNA functionalized quantum dots[J],J.Am.Chem.Soc.,1999,121(35):8122-8123.
    74.Chang E,Miller JS,Sun JT,Yu WW,Colvin VL,Drezek R,West JL.Protease-activated quantum dot probes[J],Biochem.Bioph.Res.Co.,2005,334:1317-1321.
    75.李鹏程,李雁,庞代文.量子点技术在生物成像方面的应用[J],国际生物医学工程杂志,2007,30(5):310-314.
    76.Chen F Q,Gerion D.Fluorescent ZnS/CdSe nanocrystal-peptide conjugates for long-term,nontoxic imaging and nuclear targeting in living cells[J],Nano Lett.,2004,4(10):1827-1832.
    77.Gao JH,Xu B.Applications of nanomaterials inside cells[J],Nano Today,2009,4:37-51.
    78.吕蔡,张杰,赵薇,庞代文.热休克蛋白糖蛋白96的量子点荧光标记检测及意义[J],中华实验外科杂志,2006(12):12-15.
    79.宋强,赵川莉,李丽珍,等.无机纳米晶体发光颗粒-量子点对小鼠骨髓造血细胞的标记成像[J],山东大学学报·医学版,2005,43(8):753.
    80.Kim BYS,Jiang W,Oreopoulos J,Yip CM,Rutka J T,Chan WCW.Biodegradable Quantum Dot Nanocomposites Enable live cell labeling and imaging of cytoplasmic targets[J],Nano Letters,2008,Vol.8,No.11 3887-3892.
    81.Su YY,He Y,Lu HT,Sai LM,Li QN,Li WX,Wang LH,Shen PP,Huang Q,Fan CH.The cytotoxicity of cadmium based aqueous phase synthesized,quantum dots and its modulation by surface coating[J],Biomaterials 30(2009):19-25.
    82.Ravindran S,Kim S,Martin R,Lord EM,Ozkan CS.Quantum dots as bio-labels for the localization of a small plant adhesion protein[J],Nanotechnology,2005,16(1):1-4.
    83.Lim YT,Kim S,Nakayama A,et al.Selection of quantum dot wavelengths for biomedical assays and imaging[J],Imaging,2003,2:50-64.
    84.王洋,邓玉林,庆宏,谢海燕.量子点标记的生物实时动态示踪成像研究进展[J],高等学校化学学报,2008,29(4)661-668.
    85.Larson DR,Zipfel WR,Williams RM,et al.Water-soluble quantum dots for multiphoton fluorescence imaging in vivo[J],Science,2003,300:1434-1436.
    86.Ballou B,Lagerholm BC,Ernst LA,et al.Noninvasive Imaging of Quantum Dots in Mice[J],Bioconjugate Chem.,2004,15:79-86
    87.Kim S,Lim YT,Soltesz EG,Grand AMD,Lee J,Nakayama A,Parker JA,Mihaljevic T,Laurence RG,Dor DM,Cohn LH,Bawendi M G,Frangioni J V.Near-infrared fluorescent type Ⅱ quantum dots for sentinel lymph node mapping[J],Nat.Biotechnol.,2003,22:93-97.
    88.Hoshino A,Hanaki K,Suzuki K,et al.Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body.Biochero[J],Biophys.Res.Commun.,2004,314:463.
    89.Santra S,Dutta D,Walter GA,Moudgil BM.Fluorescent nanoparticle probes for cancer imaging[J],Technol.Cancer Res.Treat.,2005,4:593-602.
    90.Nida DL,Rahman MS,Carlson KD,Richards Kortum R,Follen M.Fluorescent nanocrystals for use in early cervical cancer detection[J],Gynecol.Oncol.,2005,99:S89-S94.
    91.张海丽,刘天才,王建浩,黄振立,赵元弟,骆清铭.量子点成像的新研究进展[J],分析化学(FENXIHUAXUE)评述与进展,2006,34(10):1491-1495.
    92.Wu XY,Liu H J,Liu JQ,et al.Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots[J],Nat Biotechnol,2003,21(1):41-46.
    93.Rabman M,Abd-El-Bar M,Mack V,et al.Optical imaging of cervical piecancers with structured illumination:an integrated approach[J],Gynecol Oncol,2005,99(3 Suppl 1):S112-S115.
    94.Wang HZ,Wang HY,Liang RQ,et al.Detection of tumor marker CA125 I ovrian carcinoma using quantum dots[J],Acta.Biochim.Binphys.Sin,2004,36(10):681-686.
    95.Li Y,Tang ZY,Ye SL,et al.Establishment of cell clones with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHCC97 [J], World J Gastroenterol, 2001, 7(5): 630-636.
    96. Yang, DZ, Chen, QF, Wang, W X, Xu, S K, Direct and indirect immunolabelling of HeLa cells with quantum dots [J], Luminescence, 2008, 23:169-174.
    97. Yong KT, Ding H, Roy I, Law WC, Bergey EJ, Maitra A, Prasad PN. Imaging Pancreatic Cancer Using Bioconjugated InP Quantum Dots [J], ACS Nano, 2009, 3 (3), 502-510.
    98. Azzazy HM, Mansour MM, Kazmierezak SC. Nanodiagnostics: a new frontier for clinical laboratory medicine [J], Clin. Chem., 2006, 52(7): 1238-1246.
    99. Kerman K, Endo T, Tsukamoto M, et al. Quantum dot-base immunosensor for the detection of prostate-specific antigen using fluorescence microscopy [J], Talanta, 2007, 71(4): 1494-1499.
    100. Bakalova R, Ohba H, Zhelev Z, Ishikawa M, Baba YN. Quantum dots as photosensitizers [J], Biotech., 2004, 22 (11): 1360-1361.
    101. 谭君, 祝连彩. 量子点在新药开发中的应用[J], 生命的化学,2008, 28 (6) : 778-781.
    102. Yang CH, Huang KS, Lin YS, Lu K, Tzeng CC, Wang EC, Lin CH, Hsu WY, Chang JY. Microfluidic assisted synthesis of multi-functional polycaprolactone microcapsules: incorporation of CdTe quantum dots, Fe_3O_4 superparamagnetic nanoparticles and tamoxifen anticancer drugs [J], Lab on a chip, 2009, 9 (7) : 961-965.
    103. Li LL, Li HB, Chen D, Liu HY, Tang FQ, Zhang YQ, Ren J, Li Y. Preparation and Characterization of Quantum Dots Coated Magnetic Hollow Spheres for Magnetic Fluorescent Multimodal Imaging and Drug Delivery [J], Journal of nanoscience and nanotechnology, 2009,9(4):2540-2545.
    104. Guo DD, Wu CH, Hu HL, Wang XM, Li XM, Chen BA. Study on the enhanced cellular uptake effect of daunorubicin on leukemia cells mediated via functionalized nickel nanoparticles [J], Biomedical Materials, 2009, 4(2):025013.
    105. Barua S, Rege K. Cancer cell phenotype dependent differential intracellular trafficking of unconjugated quantum dots [J], SMALL, 2009, 5(3):370-376.
    106. Yang LL, Mao H, Wang YA, Cao ZH, Peng XH, Wang XX, Duan HW, Ni CC, Yuan QG, Adams G, Smith MQ, Wood WC, Gao XH, Nie SM. Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging [J], SMALL, 2009, 5(2)235-243.
    107.Pan J,Feng SS,Targeting and imaging cancer cells by Folate-decorated,quantum dots (QDs)-loaded nanoparticles of biodegradable polymers[J],Biomaterials,2009,30(6):1176-1183.
    108.Delehanty JB,Mattoussi H,Medintz IL.Delivering quantum dots into cells:strategies,progress and remaining issues[J],Analytical and Bioanalytical Chemistry,2009,393(4):1091-1105.
    109.Klarreich E.Biologists join the dots[J],Nature,2001,413:450-452.
    110.Mattheakis LC,et al.Optical coding of mammalian cells using semiconductor quantum dots[J],Anal.Biochem.,2004,327:200-208.
    111.Palfreyman MG.Human tissue in target identification and drug discovery[J],Drug Discov Today,2002,7:407-409.
    112.Austen M,et al.Phenotype-first screening for the identification of novel drug targets[J],Drug Discov Today,2005,10:275-282.
    113.Mohamed AE,Zheng Y,Yu HH,Ying JY.Ultrasensitive Pb~(2+) detection by glutathione-capped quantum dots[J],Anal.Chem.,2007,79(24):9452-9458.
    114.Chen Y,Rosenzweig Z.Luminescent CdS quantum dots as selective ion probes[J],Anal.Chem.,2002,74(19):5132-5138.
    115.Ai XP,He ZK,Pang DW.Functionalized CdSe quantum dots as selective silver ion chemodosimeter Jian-Gong Liang[J],Analyst,2004,129:619-622.
    116.严拯宇,庞代文,邵秀芬,胡育筑.量子点荧光猝灭法测定中药饮片中的微量铜[J],中国药科大学学报,2005,3:230-233.
    117.Zhang X J,Wang GF.Luminescent CuS nanotubes as silver ion probes[J],Spectrochimicaacta part a molecular and biomolecular spectroscopy,2009,72(5):1071-1075.
    118.Lai SJ,Chang XJ,Fu C.Cadmium sulfide quantum dots modified by chitosan as fluorescence probe for copper(Ⅱ) ion determination[J],Microchimica ACTA,2009,165(1-2):39-44.
    119.Zheng AF,Chen JL.Aqueous phase preparation of CdTe nanorods and its application in recognition of Cu~(2+) ions[J],Journal of Inorganic Materials,2009,24(2):251-254.
    120.Liu MM,Xu L,Cheng WQ,Zeng Y,Yan ZY.Surface-modified CdS quantum dots as luminescent probes for sulfadiazine determination[J],Spectrochimica Acta Part A-molecular and Biomolecular Spectroscopy,2008,70(5):1198-1202.
    121.Zhang YH,Zhang HS,Guo XF,Wang H.L-Cysteine-coated CdSe/CdS core-shell quantum dots as selective fluorescence probe for copper(Ⅱ) determination[J],Microchemical Journal,2008,89(2):142-147.
    122.Chen JL,Gao YC,Guo C,Wu GH,Chen YC,Lin BW,Facile synthesis of water-soluble and size-homogeneous cadmium selenide nanoparticles and their application as a long-wavelength fluorescent probe for detection of Hg(Ⅱ) in aqueous solution[J],Spectrochimica Acta Part A-molecular and Biomolecular Spectroscopy,2008,69(2):572-579.
    123.Chen CY,Cheng CT,Lai CW,Wu PW,Wu KC,Chou PT,Chou YH,Chiu HT.Potassium ion recognition by 15-crown-5 functionalized CdSe/ZnS quantum dots in H_2O[J],Chemical Communications,2006,3:265-265.
    124.Shang ZB,Wang Y,Jin WJ,Triethanolamine-capped CdSe quantum dots as fluorescent sensors for reciprocal recognition of mercury(II) and iodide in aqueous solution[J],Talanta 78(2009):364-369.
    125.Yuan JP,Guo WW,Yin JY,Wang EK.Glutathione-capped CdTe quantum dots for the sensitive detection of glucose[J],Talanta,77(2009):1858-1863.
    126.Iijima S.Helical microtubules of graphitic carbon[J],Nature,1991,354(6348):56.
    127.Ebbesen TW,Ajayan P.Large-scale synthesis of carbon nanotubes[J],Nature,1992,358:220
    128.Guo T.Catalytic growth of single-walled nanotubes by laser vaporization[J],Chem.Phys.Lett.,1995,243:49
    129.Ivanov V,Nagy JB,Lambin Ph,et al.The study of carbon nanotubules produced by catalytic method[J],Chem.Phys.Lett.,1994,223:329
    130.Guo T,Nikolaev P,et al.Self-assembly of tubular fullerenes[J],Phys.Chem.,1995,99:10694.
    131.Thess A,Lee R,Nikolaev P,et al.Crystalline ropes of metallic carbon nanotubes[J],Science,1996,273:483.
    132.Bandow S,Bao AM,Williams KA,et al.Purification of single-wall carbon nanotubes by microfiltration[J],Phys.Chem B,1997,101:8839.
    133.Chiang IW,Brinson BE,Huang AY,et al.Purification and characterization of single-wall carbon nanotubes(SWNTs) obtained from the gas-phase decomposition of CO (HiPco Process)[J],Phys.Chem.B,2001,105:8297.
    134.曹伟,宋雪梅,王波,严辉.碳纳米管的研究进展[J],化学世界,2007,21:77-82.
    135.S B,Shenderous O A,White C T,et al.Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations[J],Carbon,1998,36(1-2):1
    136.Lu J P.Elastic properties of carbon nanotubes and nanoropes[J],Phys.Rev.Lett.,1997,79(7):1297.
    137.陶泳,高滋.碳纳米管的研究进展[J],化学世界,2006,238-241.
    138.Gao M,Daj L,WalI AG.Jucosesensor based on gluco seoxidasing containing polyporroleaaligned carbo nnanotube coaxialnanowi re-electrode[J],Synthetic Metals,2003,137:1393-1394.
    139.罗济文,张志凌.李家洲,等.单壁碳纳米管修饰玻碳电极对L-半胱氨酸的催化氧化及分析应用[J],应用化学,2005,22(1-1):1239-1243.
    140.唐婷,彭图治,时巧翠.碳纳米管修饰金电极检测特定序列DNA[J],化学学报,2005,63(22):2042-2046.
    141.Venkatesan N,Yoshimitsu J,et al.Liquid filled nanoparticles as a drug deliverytooI for protein therapeutics[J],Biomaterials,2005,26(34):7154-7163.
    142.白娟,曹济民.碳纳米管的跨膜转运、生物学效应及应用[J],医学研究杂志,200837(2):101-102.
    143.张怀,张云怀,李静,等.生物分子功能化碳纳米管[J],化学进展,2008,20(2/3):253-259.
    144.Li J,Wang YB,Qiu JD,et al.Biocomposites of covalently linked glucose oxidase on carbon nanotubes for glucose biosensor[J],Anal.Bioanal.Chem.,2005,383(6):918-922.
    145.RomanT,Dino WA,Nakanishi H,et al.Amino acid adsorption effects on nanotube electronics[J],Eur.Phys.J.D,2006,38:117-120.
    146.Dieckmann GR,Dalton AB,Johnson PA,et al.Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices[J],J.Am.Chem.Soc.,2003,125(7):1770-1777.
    147.Sarah EB,Cai W,Tami LL,et al.Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes[J],Synthesis and Hybridization.Nano Lett.,2002,2(12):1413-1417.
    148.Chen RJ,Zhang YG,Wang DW,el al.Noncovalent sidewall functionalization of single.walled carbon nanotubes for protein immobilization[J],J.Am.Chem.Soe,2001,123:3838.
    149.Chen J,Harmon MA,Hu H,et al.Solution properties of singlewalled carbon nanotubes [J],Science,1998,282:95-98.
    150.Chen J,Rao AM,Lyuksyutov S,et al.Dissolution of full length singlewalled carbon nanotubes[J],Phy Chem.B,2001,105:2525.
    151.Jiang KY,Schadler LS,Siegel RW,et al.Protein immobilization on carbon nanotubes via a two-step process ofdiimide-activated amidation[J],Mater.Chem.,2004,14:37- 39.
    152.李鸿程,周群芳,刘伟,等.量子点毒性效应的研究进展[J],中国科学,2008,38(5):396-403.
    153.Larson DR,Zipfel WR,Williams RM et al.Water-soluble quantum dots for multiphoton fluorescence imaging in vivo[J],Science,2003,300:1434-1436.
    154.Voura EB,Jaiswal JK,Mattoussi H et al.Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission·scanning microscopy[J],Nat.Med.,2004,10:993-998.
    155.Austin MD,Warren CWC,Sangeeta NB.Probing the cytotoxicity of semiconductor quantum dots[J],Nano.Letter,2004,4(1):11-18.
    156.Hoshino A,Hanaki K,Suzuki K et al.Applications of T-Lymphoma labeled witll fluorescent quantum dots to cell tracing markers in mouse body[J],Biochem.Biophys.Res.Commun.,2004,314:46-53.
    157.Dubertret B,Skourides P,Norris DJ,et al.In vivo imaging of quantum dots encapsulated in phospholipid micelles[J],Science,2002,298:1759-1762.
    158.季雷华,高素莲,张斌.量子点的合成、毒理学及其应用[J],环境化学,2008,27(5):680-683.
    159.陈育民.第七章免疫细胞.病原生物与免疫学,第四军医大学出版社,2005.
    160.王进.第六章免疫系统.病原生物与免疫学,郑州大学出版社,2007.
    161.孙颖浩,叶定伟.前列腺癌临床诊疗学,第二军医大学出版社,2005.
    162.张天泽,徐光炜.第62章前列腺肿瘤.肿瘤学,天津科学技术出版社,辽宁科学技术出版社,2005.
    163.Yang R,Yan YX,Mu Y,Ji W,Li XW,Zou MQ,Fei Q,Jin QH.A rapid and facile method for hydrothermal synthesis CdTe nanocrystals under mild conditions[J],Journal of Nanosci.Nanotechnol,2006,(6):215-220.
    164.Rajh T,Micc O I,Nozik AJ.Synthesis and characterization of surface-modified colloidal CdTe quantum dots[J],Phy.Chem.,1993,97:11999-12003.
    165.Zhang H,Zhou Z,Yang B,The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles[J],Phys.Chem.B.,2003,107:8-13.
    166.Jiang C,Xu SK,Yang DZ.Synthesis of glutathione-capped CdS quantum dots and preliminary studies on protein detection and cell fluorescence image[J],Luminescence.2007,22:430-437.
    167.Yang DZ,Chen QF,Wang WX,Xu SK,Direct and indirect immunolabelling of HeLa cells with quantum dots[J],Luminescence,2008,23:169-174.
    168.Chen QD,Ma Q,Wan Y,Su XG,Lin ZB,Jin QH.Studies on fluorescence resonance energy transfer between dyes and watersoluble quantum dots[J],Luminescence,2005,20:251-255.
    169.Zhu CQ,Zhao DH,Chen JL,Li YX,Wang LY,Wang L,Application of L-cysteine-capped nano-ZnS as a fluorescence probe for the determination of proteins[J],Anal.Bioanal.Chem.,2004;378,811-815.
    170.Melton L.Imaging:The big picture[J],Nature,2005,437:775-779.
    171.张海丽,刘天才,王建浩,黄振立,赵元弟,骆清铭.量子点成像的新研究进展[J],分析化学,2006,34(10):1491-1495.
    172.Gittes RF.Carcinoma of the prostate[J],N.Engl.J.Med,1991,324:236.
    173.谭郁彬,张乃鑫.外科诊断病理学[M],天津:天津科学技术出版社,2000:648.
    174.李奕.前列腺癌病理学诊断的概况[J],辽宁医学杂志,2008,22(5):251-256.
    175.张怀,张云怀,李静,等.生物分子功能化碳纳米管[J],化学进展,2008,20(2/3):253-259.
    176.Heuff RF,Cramb DT,Marrocco M.Fluorescence correlation spectroscopy for diffusion of mobile quantum dots in dilute solutions[J],Chem.Phys.Lett.,2008,454(4-6):257-261.
    177.Mao J,Yao JN,Wang LN,Liu WS.Easily prepared high-quantum-yield CdS quantum dots in water using hyperbranched polyethylenimine as modifier[J],Colloid Interf.Sci.,2008,319(1):353-356.
    178.Khanna PK,Singh N.Light emitting CdS quantum dots in PMMA:Synthesis and optical studies[J],Lumin.,2007,127(2):474-482.
    179.Chan WCW,Maxwell D J,Gao X,Bailey RE,Han MY,Nie SM.Luminescent quantum dots for multiplexed biological detection and imaging[J],Curr.Opin.Biotech.,2002,13:40-46.
    180.Gaponik N,Talapin DV,Rogach AL,Hoppe K,Shevchenko EV,Kornowski A,Eychmuller A,Weller H.Thiol-capping of CdYe nanocrystals:An alternative to organometallic synthetic routes[J],Phys.Chem.B,2002,106:7177-7185.
    181.唐爱伟,滕枫,高银洁,梁春军,王永生.单核/双壳结构CdSe/CdS/ZnS纳米晶的合成与发光性质[J],无机材料学报,2006,21(2):323-327.
    182.刘舒曼,徐征.CdSe/CdS核/壳型纳米晶的光谱特性[J],光谱学与光谱分析,2002,22(6):908-911.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700