高质量多壁碳纳米管的制备方法和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管具有十分独特的结构和优异的物理化学性能,在纳米电子器件、复合材料、传感器等诸多领域有着巨大的应用前景。目前,工业化的碳纳米管以CVD方法生长为主,由于其生长温度低,石墨化程度低,导致结构缺陷多,严重制约了它们优异性能的发挥。其他的碳管合成方法或生产成本高,或比较耗时,且产量较低,不能够满足实际应用。因此,探索高质量、低缺陷的碳纳米管的低成本、批量化制备具有非常重要的现实意义。本论文的主要工作是围绕高质量、低缺陷的多壁碳纳米管的大量制备及其在场发射和铜复合材料的应用展开,获得的主要结果包括:
     1.采用一种新颖的快速自加热方法高温退火处理CVD多壁碳纳米管,能够有效地提高多壁碳纳米管的有序结构,减少缺陷。介绍了一种简单、高效、可靠的剪切碳纳米管的方法,剪切后的碳纳米管主要集中在200–300nm。
     2.探索出在低压空气中电弧放电法制备多壁碳纳米管的工艺,通过深入细致地研究得出了碳管最佳制备条件。对阴极圆柱状沉积物进行详细地观察,根据观察结果给出了电弧放电条件下多壁碳纳米管可能的生长机理。通过对电弧放电设备改造,实现多壁碳纳米管的半连续化生产和连续化生产,并详细介绍了生产的操作流程。
     3.以Fe做催化剂,FeS做促进剂,通过电弧放电法成功地在低压空气中制备出双壁碳纳米管,同时研究了制备双壁碳纳米管的最佳条件。由于空气易得,无需预抽真空,该方法简化了制备流程,有望实现低成本、大产量制备双壁碳纳米管。提纯后的碳纳米管纯度为90wt.%以上,为以后开展对双壁碳纳米管的研究工作打下了基础。最后,给出了Fe–FeS催化剂电弧放电法生长碳纳米管的可能生长机理。
     4.对在空气气氛中制备的多壁碳纳米管和双壁碳纳米管分别进行场致发射测试。对于多壁碳纳米管,直接采用阴极沉积物薄片中间富含多壁碳纳米管的松软区域进行测试,发现空气中750oC下保持30min的热处理过程,能有效地提高多壁碳纳米管的场发射性能;对于双壁碳纳米管,开发了一种制备具有尖端结构的碳纳米管膜的方法,这种尖端结构的双壁碳纳米管膜呈现出非常优异的场发射性能。
     5.采用磁控溅射法、衬底增强化学镀法和分子级混合工艺三种方式制备多壁碳纳米管/铜复合材料,对所制备的复合材料进行形貌、结构表征和薄膜电阻的测试,结果显示,在磁控溅射法制备的多壁碳纳米管/铜复合材料中,碳纳米管表面可以形成一层致密而均匀的铜层;以锌片为衬底,采用衬底增强化学镀法制备的多壁碳纳米管/铜复合材料中,碳纳米管表面沉积的铜纳米粒子呈现立方体状,并串连在一起;分子级混合工艺制备的经过氢气还原的多壁碳纳米管/铜复合粉体,碳纳米管多数都埋入或贯穿在铜纳米球体中;通过第一性原理对铜原子吸附在单壁碳纳米管的电学性能进行计算,根据结果提出了铜提供高浓度电子在碳纳米管高迁移率系统的电子结构内流动,形成导电性增强机制的导电模型;多壁碳纳米管/铜复合材料组成的非酶性电化学传感器对葡萄糖的检测具有非常好的灵敏性、选择性和稳定性。
Carbon nanotubes (CNTs) have potential applications in different fileds, includingnanoelectronic devices, composite materials, and sensors, etc., due to their uniquestructure and good physical and chemical properties. At present, the main industrialgrowth of CNTs is chemical vapor deposition (CVD) method. However, CVD CNTs havevery disordered structures and a high content of defects including vacancies, danglingbonds, edges and dislocations, as a result of the idiosyncrasy of CVD conditions at lowtemperature. These have seriously restricted their excellent performance. The othersynthesis methods are always high cost, time-consuming, and low yield, which can notsatisfy the practical application. Therefore, to explore the large scale and low costpreparation of high quality and low defect CNTs has very important practical significance.This dissertation is mainly focused on the large scale synthesis of multi-walled carbonnanotubes (MWCNTs) with high quality and low defect and their application. The mainresults are as follows:
     1. A rapid high-temperature annealing technique has been developed, demonstrating agreat potential for defects reduction and structural enhancement of CVD MWCNTs. Highresolution TEM, Raman spectra, TGA and electrical resistivity measurement of nanotubepowders have been employed in order to evaluate the rapid high temperature annealingeffects. Moreover, a novel, simple, and effective method has been developed to cut theconventional long and entangled MWCNTs. The cutting process was carried out by theinteractive collision of CNTs with the silicon carbide particles adhered on the abrasivepapers. After cutting, the lengths of the most CNTs are200–300nm.
     2. The development of preparing straight MWCNTs on a large scale is demonstratedusing direct current arc discharge in low pressure air. The process is time-saving,economical and non-hazardous. It is found the optimum conditions for the highest yield of MWCNTs. Base on the detailed investigation on the internal organization of cathodedeposit, the growth process of MWCNTs by arc discharge method in low pressure air isdepicted. The semi-continuous and continuous initial productions of MWCNTs areachieved by the modification of arc discharge equipment. And the production processesare introduced in detail.
     3. Double-walled carbon nanotubes (DWCNTs) have been effectively synthesized byarc discharge in low pressure air using a mixture of Fe catalyst and FeS promoter.Compared with conventional arc methods, this method is easier to implement withoutusing expensive high purity gas sources. And it also simplifies the preparation processbecause of the absence of pre-vacuum. This method is expected to be low-cost, largeproduction preparation of DWCNTs. The optimum conditions for the preparation ofDWCNTs are investigated. DWCNT purification is employed by combining method usingwet selection in magnetic field, oxidation in air, treatment in hydrochloric acid andcentrifugation, which can effectively remove the impurities in samples, such as amorphouscarbon, metal catalyst particles and graphite particles, etc.. After purification, the purity ofDWCNTs is more than90wt.%, which is the foundation for the future to carry outresearch on DWCNTs. Finally, the possible growth mechanism of DWCNTs using Fe–FeS catalyst by arc discharge is given.
     4. Field emission tests of MWCNTs and DWCNTs prepared in low pressure air by arcdischarge are carried out, respectively. For MWCNTs, the field emission performances ofMWCNTs in black core region of cathode deposits before and after burning at750oC for30min in air have been investigated detailedly. The results indicate that simple burningcan improve dramatically the field emission properties. For DWCNTs, a tip structuralDWCNT film has been successfully fabricated by a mixing process of electrophoresis,electroplating and electrocorrosion. The field emission properties of tip structuralnanotube film is significantly increased compared with DWCNT film fabricated byelectrophoresis. The mixing process is not complicated, does not require expensive equipments and facilities, and not subject to special conditions, which provide a simpleand effective way to improve the contact between CNTs and substrate. Based on the fieldemission results, tip structural DWCNT film is superior for field emission, which can beapplied as field emission flat panel displays and cold electron sources in display devices.
     5. In order to prepare CNTs/Cu composite materials, radio frequency (RF) magnetronsputtering, substrate-enhanced electroless deposition (SEED) and molecular-level mixingare used. A composite material based on Cu nanoparticles with good crystallinitydeposited uniformly on the arc-prepared MWCNTs has been developed by RF magnetronsputtering. The CNTs/Cu composite prepared by SEED process shows that Cunanoparticles deposited on the surface of MWCNTs are cube shape, and are connectedtogether in series. The CNTs/Cu composite powders prepared by molecular-level mixingprocess show that nanotubes are implanted or through Cu nanosphere. The electronicstructure of Cu atom adsorbed on a single-walled carbon nanotube (SWCNT/Cu) isstudied by the First Principles calculations. Based on the experimental results andtheoretical calculations, we propose an electron conductive model of CNT/Cu composite,that is the high concentration of electrons provided by Cu flows in CNTs with the highmobility electronic structure, forming the conductivity enhancement mechanism. A sort ofnon-enzymatic electrochemical sensor is fabricated based on a composite of Cunanoparticles and arc-synthesized MWCNTs by using SEED method for detecting glucose.It exhibits excellent sensitivity, good specifity and high stability.
引文
[1]. Kroto, H. W.,Heath, J. R.,O'Brien, S. C., etc., C60: Buckminsterfullerene[J]. Nature,1985,318(6042),pp162-163.
    [2]. Kr tschmer, W.,Lamb, L. D.,Fostiropoulos, K., etc., C60: a new form of carbon[J]. Nature,1990,347(6291),pp354-358.
    [3]. Ajie, H.,Alvarez, M. M.,Anz, S. J., etc., Characterization of the soluble all-carbon molecules C60and C70[J]. Journal of Physical Chemistry,1990,94(24),pp8630-8633.
    [4]. Iijima, S., Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348),pp56-58.
    [5]. Dresselhaus, M.,Dresselhaus, G.,Saito, R., Carbon fibers based on C60and their symmetry[J].Physical Review B,1992,45(11),pp6234-6242.
    [6]. Iijima, S.,Ichihashi, T., Single-shell carbon nanotubes of1-nm diameter[J]. Nature,1993,363(6430),pp603-605.
    [7]. Bethune, D. S.,Klang, C. H.,de Vries, M. S., etc., Cobalt-catalysed growth of carbon nanotubeswith single-atomic-layer walls[J]. Nature,1993,363(6430),pp605-607.
    [8]. Li, G.,Li, Y.,Liu, H., etc., Architecture of graphdiyne nanoscale films[J]. ChemicalCommunications,2010,46(19),pp3256-3258.
    [9]. Geim, A. K.,Novoselov, K. S., The rise of graphene[J]. Nature Materials,2007,6(3),pp183-191.
    [10].Ajayan, P. M.,Ebbesen, T. W., Nanometre-size tubes of carbon[J]. Reports on Progress in Physics,1997,60(10),p1025.
    [11]. M. S. Dresselhaus,G. Dresselhaus,Avouris, P., Carbon nanotubes: synthesis, structure, properties,and applications. Springer, Topics in Applied Physics,2001.
    [12].Odom, T. W.,Huang, J. L.,Kim, P., etc., Atomic structure and electronic properties of single-walledcarbon nanotubes[J]. Nature,1998,391(6662),pp62-64.
    [13].Wong, H.-S. P.,Akinwande, D., Carbon Nanotube and Graphene Device Physics. CambridgeUniversity Press,2011.
    [14].Wildoer, J. W. G.,Venema, L. C.,Rinzler, A. G., etc., Electronic structure of atomically resolvedcarbon nanotubes[J]. Nature,1998,391(6662),pp59-62.
    [15].Belin, T.,Epron, F., Characterization methods of carbon nanotubes: a review[J]. Materials Scienceand Engineering B,2005,119(2),pp105-118.
    [16].Deacon, R.,Chuang, K. C.,Nicholas, R., etc., Cyclotron resonance study of the electron and holevelocity in graphene monolayers[J]. Physical Review B,2007,76(8),p081406.
    [17].Odom, T. W.,Huang, J.-L.,Kim, P., etc., Atomic structure and electronic properties of single-walledcarbon nanotubes[J]. Nature,1998,391(6662),pp62-64.
    [18].陈长鑫,碳纳米管多沟道场效应晶体管研究[博士论文].上海,上海交通大学2007.
    [19].戴彤,碳纳米管及其异构体的制备和小能隙单壁碳纳米管的能带结构研究[硕士论文].兰州,兰州理工大学2008.
    [20].Zhang, Z.,Peng, J.,Zhang, H., Low-temperature resistance of individual single-walled carbonnanotubes: A theoretical estimation[J]. Applied Physics Letters,2001,79(21),pp3515-3517.
    [21].Li, H. J.,Lu, W. G.,Li, J. J., etc., Multichannel ballistic transport in multiwall carbon nanotubes[J].Physical Review Letters,2005,95(8),p086601.
    [22].Hjortstam, O.,Isberg, P.,Soderholm, S., etc., Can we achieve ultra-low resistivity in carbonnanotube-based metal composites?[J]. Applied Physics A: Materials Science&Processing,2004,78(8),pp1175-1179.
    [23].Martel, R.,Schmidt, T.,Shea, H. R., etc., Single-and multi-wall carbon nanotube field-effecttransistors[J]. Applied Physics Letters,1998,73(17),pp2447-2449.
    [24].Dekker, C., Carbon nanotubes as molecular quantum wires[J]. Physics Today,1999,52(5),pp22-28.
    [25].Postma, H. W. C.,Teepen, T.,Yao, Z., etc., Carbon nanotube single-electron transistors at roomtemperature[J]. Science,2001,293(5527),pp76-79.
    [26].Bachtold, A.,Hadley, P.,Nakanishi, T., etc., Logic circuits with carbon nanotube transistors[J].Science,2001,294(5545),pp1317-1320.
    [27].Wei, B. Q.,Vajtai, R.,Ajayan, P. M., Reliability and current carrying capacity of carbonnanotubes[J]. Applied Physics Letters,2001,79(8),pp1172-1174.
    [28].Collins, P. G.,Hersam, M.,Arnold, M., etc., Current saturation and electrical breakdown inmultiwalled carbon nanotubes[J]. Physical Review Letters,2001,86(14),pp3128-3131.
    [29].Miyamoto, Y.,Louie, S. G.,Cohen, M. L., Chiral Conductivities of Nanotubes[J]. Physical ReviewLetters,1996,76(12),pp2121-2124.
    [30].Yevtushenko, O. M.,Slepyan, G. Y.,Maksimenko, S. A., etc., Nonlinear electron transport effectsin a chiral carbon nanotube[J]. Physical Review Letters,997,79(6),pp1102-1105.
    [31].Zou, R.,Hu, J.,Song, Y., etc., Carbon Nanotubes as Field Emitter[J]. Journal of Nanoscience andNanotechnology,2010,10(12),pp7876-7896.
    [32].Li, C.,Zhang, Y.,Mann, M., etc., High emission current density, vertically aligned carbon nanotubemesh, field emitter array[J]. Applied Physics Letters,2010,97(11), p113107.
    [33].De Heer, W. A.,Chatelain, A.,Ugarte, D., A carbon nanotube field-emission electron source[J].Science,1995,270(5239),pp1179-1180.
    [34].Che, R.,Peng, L. M.,Duan, X. F., etc., Microwave absorption enhancement and complexpermittivity and permeability of Fe encapsulated within carbon nanotubes[J]. Advanced Materials,2004,16(5),pp401-405.
    [35].韦进全,张先锋,王昆林,碳纳米管宏观体.北京,清华大学出版社,2006.
    [36].Lu, J. P., Elastic properties of carbon nanotubes and nanoropes[J]. Physical Review Letters,1997,79(7),pp1297-1300.
    [37].Salvetat, J.-P.,Briggs, G. A. D.,Bonard, J.-M., etc., Elastic and shear moduli of single-walledcarbon nanotube ropes[J]. Physical Review Letters,1999,82(5),pp944-947.
    [38].Hafner, J. H.,Cheung, C. L.,Lieber, C. M., Direct growth of single-walled carbon nanotubescanning probe microscopy tips[J]. Nature,1996,384pp147-150.
    [39].Hafner, J. H.,Cheung, C. L.,Oosterkamp, T. H., etc., High-yield assembly of individualsingle-walled carbon nanotube tips for scanning probe microscopies[J]. The Journal of PhysicalChemistry B,2001,105(4),pp743-746.
    [40].Kim, P.,Lieber, C. M., Nanotube nanotweezers[J]. Science,1999,286(5447),pp2148-2150.
    [41].Baughman, R. H.,Cui, C.,Zakhidov, A. A., etc., Carbon nanotube actuators[J]. Science,1999,284(5418),pp1340-1344.
    [42].Kim, P.,Shi, L.,Majumdar, A., etc., Thermal transport measurements of individual multiwallednanotubes[J]. Physical Review Letters,2001,87(21),p215502.
    [43].Berber, S.,Kwon, Y.-K.,Tománek, D., Unusually high thermal conductivity of carbon nanotubes[J].Physical Review Letters,2000,84(20),pp4613-4616.
    [44].Wang, F.,Dukovic, G.,Brus, L. E., etc., The optical resonances in carbon nanotubes arise fromexcitons[J]. Science,2005,308(5723),pp838-841.
    [45].Wei, J.,Zhu, H.,Wu, D., etc., Carbon nanotube filaments in household light bulbs[J]. AppliedPhysics Letters,2004,84(24),pp4869-4871.
    [46].Jarillo-Herrero, P.,Kong, J.,Van Der Zant, H., etc., Electronic transport spectroscopy of carbonnanotubes in a magnetic field[J]. Physical Review Letters,2005,94(15),p156802.
    [47].Ajiki, H.,Ando, T., Energy bands of carbon nanotubes in magnetic fields[J]. Journal of thePhysical Society of Japan,1996,65(2),pp505-514.
    [48].Li, W.,Liang, C.,Qiu, J., etc., Carbon nanotubes as support for cathode catalyst of a directmethanol fuel cell[J]. Carbon,2002,40(5),pp787-790.
    [49].Liu, C.,Fan, Y.,Liu, M., etc., Hydrogen storage in single-walled carbon nanotubes at roomtemperature[J]. Science,1999,286(5442),pp1127-1129.
    [50].Frackowiak, E.,Gautier, S.,Gaucher, H., etc., Electrochemical storage of lithium in multiwalledcarbon nanotubes[J]. Carbon,1999,37(1),pp61-69.
    [51].Chen, P.,Wu, X.,Lin, J., etc., Synthesis of Cu nanoparticles and microsized fibers by using carbonnanotubes as a template[J]. The Journal of Physical Chemistry B,1999,103(22),pp4559-4561.
    [52].Ebbesen, T. W.,Ajayan, P. M., Large-scale synthesis of carbon nanotubes[J]. Nature,1992,358(6383),pp220-222.
    [53].Morales, A. M.,Lieber, C. M., A laser ablation method for the synthesis of crystallinesemiconductor nanowires[J]. Science,1998,279(5348),pp208-211.
    [54].Zhang, Y.,Iijima, S., Formation of single-wall carbon nanotubes by laser ablation of fullerenes atlow temperature[J]. Applied Physics Letters,1999,75(20),pp3087-3089.
    [55].彭忠梅,薛建伟,李晋平,碳纳米管(CNT)及其储氢特性研究进展[J].山西化工,2000,12(6),pp16-20.
    [56].魏飞,骞伟中,碳纳米管的宏量制备技术.北京,科学出版社,2012.
    [57].Gamaly, E. G.,Ebbesen, T. W., Mechanism of carbon nanotube formation in the arc discharge[J].Physical Review B,1995,52(3),pp2083-2089.
    [58].Louchev, O. A., Transport-kinetical phenomena in nanotube growth[J]. Journal of Crystal Growth,2002,237pp65-69.
    [59].Louchev, O. A.,Sato, Y.,Kanda, H., Morphological stabilization, destabilization, and open-endclosure during carbon nanotube growth mediated by surface diffusion[J]. Physical Review E,2002,66(1),p011601.
    [60].Louchev, O. A.,Sato, Y.,Kanda, H., Mechanism of thermokinetical selection between carbonnanotube and fullerene-like nanoparticle formation[J]. Journal of Applied Physics,2002,91(12),pp10074-10080.
    [61].De Heer, W. A.,Poncharal, P.,Berger, C., etc., Liquid carbon, carbon-glass beads, and thecrystallization of carbon nanotubes[J]. Science,2005,307(5711),pp907-910.
    [62].Harris, J. F.,Tsang, S. C.,Claridge, J. B.,Green, etc., High-resolution electron microscopy studiesof a microporous carbon produced by arc-evaporation[J]. Journal of the Chemical Society, FaradayTransactions,1994,90(18),pp2799-2802.
    [63].Peter J.F, H., Solid state growth mechanisms for carbon nanotubes[J]. Carbon,2007,45(2),pp229-239.
    [64].Gupta, V., Graphene as intermediate phase in fullerene and carbon nanotube growth: AYoung-Laplace surface-tension model[J]. Applied Physics Letters,2010,97(18), p181910.
    [65].Bakshi, S. R.,Lahiri, D.,Agarwal, A., Carbon nanotube reinforced metal matrix composites-areview[J]. International Materials Reviews,2010,55(1),pp41-64.
    [66].Chen, W. X.,Tu, J. P.,Wang, L. Y., etc., Tribological application of carbon nanotubes in ametal-based composite coating and composites[J]. Carbon,2003,41(2),pp215-222.
    [67].Tu, J. P.,Yang, Y. Z.,Wang, L. Y., etc., Tribological properties of carbon-nanotube-reinforcedcopper composites[J]. Tribology Letters,2001,10(4),pp225-228.
    [68].Chen, X.,Xia, J.,Peng, J., etc., Carbon-nanotube metal-matrix composites prepared by electrolessplating[J]. Composites Science and Technology,2000,60(2),pp301-306.
    [69].Wang, F.,Arai, S.,Endo, M., Metallization of multi-walled carbon nanotubes with copper by anelectroless deposition process[J]. Electrochemistry communications,2004,6(10),pp1042-1044.
    [70].Arai, S.,Saito, T.,Endo, M., Cu-MWCNT composite films fabricated by electrodeposition[J].Journal of the Electrochemical Society,2010,157(3),pp D147-D153.
    [71].Arai, S.,Saito, T.,Endo, M., Effects of additives on Cu-MWCNT composite plating films[J].Journal of the Electrochemical Society,2010,157(3),pp D127-D134.
    [72].Goh, C. S.,Wei, J.,Lee, L. C., etc., Development of novel carbon nanotube reinforced magnesiumnanocomposites using the powder metallurgy technique[J]. Nanotechnology,2006,17(1),pp7-12.
    [73].Zhou, S.-m.,Zhang, X.-b.,Ding, Z.-p., etc., Fabrication and tribological properties of carbonnanotubes reinforced Al composites prepared by pressureless infiltration technique[J]. Composites PartA: Applied Science and Manufacturing,2007,38(2),pp301-306.
    [74].Fauchais, P.,Vardelle, A.,Dussoubs, B., Quo vadis thermal spraying?[J]. Journal of Thermal SprayTechnology,2001,10(1),pp44-66.
    [75].Laha, T.,Chen, Y.,Lahiri, D., etc., Tensile properties of carbon nanotube reinforced aluminumnanocomposite fabricated by plasma spray forming[J]. Composites Part A: Applied Science andManufacturing,2009,40(5),pp589-594.
    [76].Laha, T.,Liu, Y.,Agarwal, A., Carbon nanotube reinforced aluminum nanocomposite via plasmaand high velocity oxy-fuel spray forming[J]. Journal of Nanoscience and Nanotechnology,2007,7(2),pp515-524.
    [77].Treacy, M. M. J.,Ebbesen, T. W.,Gibson, J. M., Exceptionally high Young's modulus observed forindividual carbon nanotubes[J]. Nature,1996,381(6584),pp678-680.
    [78].Wong, E. W.,Sheehan, P. E.,Lieber, C. M., Nanobeam mechanics: elasticity, strength, andtoughness of nanorods and nanotubes[J]. Science,1997,277(5334),pp1971-1975.
    [79].Berber, S.,Kwon, Y.-K.,Tomanek, D., Unusually high thermal conductivity of carbon nanotubes[J].Physical Review Letters,2000,84(20),pp4613-4616.
    [80].White, C. T.,Todorov, T. N., Quantum electronics: Nanotubes go ballistic[J]. Nature,2001,411(6838),pp649-651.
    [81].王伟,陈小华,熊伊娜,等,碳纳米管铜基复合颗粒的制备[J].中国有色金属学报,2011,21(6),pp1429-1434.
    [82].Li, H. Q.,Misra, A.,Horita, Z., etc., Strong and ductile nanostructured Cu-carbon nanotubecomposite[J]. Applied Physics Letters,2009,95(7), p071907.
    [83].K. T. Kim,K. H. Lee,S. I. Cha, etc., Characterization of carbon nanotube/Cu nanocompositesfabricated by using nano-sized Cu powders[J]. MRS Spring Meeting,2004,821p P3.25.
    [84].Li, E. Y.,Marzari, N., Improving the electrical conductivity of carbon nanotube networks: AFirst-Principles study[J]. ACS Nano,2011,5(12),pp9726-9736.
    [85].Yang, Y. L.,Wang, Y. D.,Ren, Y., etc., Single-walled carbon nanotube-reinforced copper compositecoatings prepared by electrodeposition under ultrasonic field[J]. Materials Letters,2008,62(1),pp47-50.
    [1]. Yu, M.-F.,Lourie, O.,Dyer, M. J., etc., Strength and breaking mechanism of multiwalled carbonnanotubes under tensile load[J]. Science,2000,287(5453),pp637-640.
    [2]. Xu, L. S.,Chen, X. H.,Pan, W. Y., etc., Electrostatic-assembly carbon nanotube-implanted coppercomposite spheres[J]. Nanotechnology,2007,18(43), p435607.
    [3]. Chun, K.-Y.,Oh, Y.,Rho, J., etc., Highly conductive, printable and stretchable composite films ofcarbon nanotubes and silver[J]. Nature Nanotechnology,2010,5pp853–857.
    [4]. Y. F. Zhang, Y. F. W., N. Chen, Y. Y. Wang, Y. Z. Zhang, Z. H. Zhou and L. M. Wei, Photovoltaicenhancement of Si solar cells by assembled carbon nanotubes[J]. Nano-Micro Letters,2010,2pp22-25.
    [5]. Pan, H.,Li, J. Y.,Feng, Y. P., Carbon nanotubes for supercapacitor[J]. Nanoscale Research Letters,2010,5(3),pp654-668.
    [6]. Lee, S. W.,Yabuuchi, N.,Gallant, B. M., etc., High-power lithium batteries from functionalizedcarbon-nanotube electrodes[J]. Nature Nanotechnology,2010,5(7),pp531-537.
    [7]. Wang, Y.,Zhou, Z.,Yang, Z., etc., Gas sensors based on deposited single-walled carbon nanotubenetworks for DMMP detection[J]. Nanotechnology,2009,20, p345502.
    [8]. Bom, D.,Andrews, R.,Jacques, D., etc., Thermogravimetric analysis of the oxidation ofmultiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry[J].Nano Letters,2002,2(6),pp615-619.
    [9]. Andrews, R.,Jacques, D.,Qian, D., etc., Purification and structural annealing of multiwalledcarbon nanotubes at graphitization temperatures[J]. Carbon,2001,39(11),pp1681-1687.
    [10].Hurt, R. H.,Monthioux, M.,Kane, A., Toxicology of carbon nanomaterials: status, trends, andperspectives on the special issue[J]. Carbon,2006,44(6),pp1028-1033.
    [11]. Musso, S.,Giorcelli, M.,Pavese, M., etc., Improving macroscopic physical and mechanicalproperties of thick layers of aligned multiwall carbon nanotubes by annealing treatment[J]. Diamondand Related Materials,2008,17(4–5),pp542-547.
    [12].Jin, R.,Zhou, Z. X.,Mandrus, D., etc., The effect of annealing on the electrical and thermaltransport properties of macroscopic bundles of long multi-wall carbon nanotubes[J]. Physica B:Condensed Matter,2007,388(1-2),pp326-330.
    [13].Ray, S. C.,Pao, C. W.,Tsai, H. M., etc., High-temperature annealing effects on multiwalled carbonnanotubes: electronic structure, field emission and magnetic behaviors[J]. Journal of Nanoscience andNanotechnology,2009,9(12),pp6799-6805.
    [14].Singh, D. K.,Iyer, P. K.,Giri, P. K., Diameter dependence of oxidative stability in multiwalledcarbon nanotubes: Role of defects and effect of vacuum annealing[J]. Journal of Applied Physics,2010,108(8),p084313.
    [15].Behler, K.,Osswald, S.,Ye, H., etc., Effect of thermal treatment on the structure of multi-walledcarbon nanotubes[J]. Journal of Nanoparticle Research,2006,8(5),pp615-625.
    [16].Katayama, T.,Araki, H.,Yoshino, K., Multiwalled carbon nanotubes with bamboo-like structureand effects of heat treatment[J]. Journal of Applied Physics,2002,91, pp6675-6678.
    [17].Chen, C.-M.,Chen, M.,Leu, F.-C., etc., Purification of multi-walled carbon nanotubes bymicrowave digestion method[J]. Diamond and Related Materials,2004,13(4-8),pp1182-1186.
    [18].Kalita, G.,Adhikari, S.,Aryal, H. R., etc., Cutting carbon nanotubes for solar cell application[J].Applied Physics Letters,2008,92(12),pp123508-123511.
    [19].Rauwald, U.,Shaver, J.,Klosterman, D. A., etc., Electron-induced cutting of single-walled carbonnanotubes[J]. Carbon,2009,47(1),pp178-185.
    [20].Zhang, Z.,Sun, Z.,Chen, Y., Improve the field emission uniformity of carbon nanotubes treated byball-milling process[J]. Applied Surface Science,2007,253(6),pp3292-3297.
    [21].Wang, S.,Liang, R.,Wang, B., etc., Dispersion and thermal conductivity of carbon nanotubecomposites[J]. Carbon,2009,47(1),pp53-57.
    [22].Cheng, H.-M.,Yang, Q.-H.,Liu, C., Hydrogen storage in carbon nanotubes[J]. Carbon,2001,39(10),pp1447-1454.
    [23].Ogrin, D.,Anderson, R. E.,Colorado, R., etc., Amplification of Single-Walled Carbon Nanotubesfrom Designed Seeds: Separation of Nucleation and Growth [J]. The Journal of Physical Chemistry C,2007,111(48),pp17804-17806.
    [24].Stepanek, I.,Maurin, G.,Bernier, P., etc., Nano-mechanical cutting and opening of single wallcarbon nanotubes[J]. Chemical Physics Letters,2000,331(2-4),pp125-131.
    [25].Maurin, G.,Stepanek, I.,Bernier, P., etc., Segmented and opened multi-walled carbon nanotubes[J].Carbon,2001,39(8),pp1273-1278.
    [26].Liu, F.,Zhang, X.,Cheng, J., etc., Preparation of short carbon nanotubes by mechanical ball millingand their hydrogen adsorption behavior[J]. Carbon,2003,41(13),pp2527-2532.
    [27].Pierard, N.,Fonseca, A.,Colomer, J. F., etc., Ball milling effect on the structure of single-wallcarbon nanotubes[J]. Carbon,2004,42(8-9),pp1691-1697.
    [28].Park, K. C.,Fujishige, M.,Takeuchi, K., etc., Inter-collisional cutting of multi-walled carbonnanotubes by high-speed agitation[J]. Journal of Physics and Chemistry of Solids,2008,69(10),pp2481-2486.
    [29].Lustig, S. R.,Boyes, E. D.,French, R. H., etc., Lithographically cut single-walled carbonnanotubes: Controlling length distribution and introducing end-group functionality[J]. Nano Letters,2003,3(8),pp1007-1012.
    [30].Lee, J.,Jeong, T.,Heo, J., etc., Short carbon nanotubes produced by cryogenic crushing[J]. Carbon,2006,44(14),pp2984-2989.
    [31].Banhart, F.,Li, J. X.,Terrones, M., Cutting single-walled carbon nanotubes with an electron beam:Evidence for atom migration inside nanotubes[J]. Small,2005,1(10),pp953-956.
    [32].Li, J. Y.,Zhang, Y. F., Cutting of multi walled carbon nanotubes[J]. Applied Surface Science,2006,252(8),pp2944-2948.
    [33].Tran, M. Q.,Tridech, C.,Alfrey, A., etc., Thermal oxidative cutting of multi-walled carbonnanotubes[J]. Carbon,2007,45(12),pp2341-2350.
    [34].Chen, Z. Y.,Ziegler, K. J.,Shaver, J., etc., Cutting of single-walled carbon nanotubes byozonolysis[J]. Journal of Physical Chemistry B,2006,110(24),pp11624-11627.
    [35].Gu, Z.,Peng, H.,Hauge, R. H., etc., Cutting single-wall carbon nanotubes through fluorination[J].Nano Letters,2002,2(9),pp1009-1013.
    [36].Liu, J.,Rinzler, A. G.,Dai, H., etc., Fullerene pipes[J]. Science,1998,280(5367),pp1253-1256.
    [37].Elias, A. L.,Botello-Mendez, A. R.,Meneses-Rodriguez, D., etc., Longitudinal cutting of pure anddoped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels[J]. NanoLetters,2010,10(2),pp366-372.
    [38].Hu, H.,Yu, A.,Kim, E., etc., Influence of the zeta potential on the dispersability and purification ofsingle-walled carbon nanotubes[J]. The Journal of Physical Chemistry B,2005,109(23),pp11520-11524.
    [39].White, B.,Banerjee, S.,O'Brien, S., etc., Zeta-potential measurements of surfactant-wrappedindividual single-walled carbon nanotubes[J]. The Journal of Physical Chemistry C,2007,111(37),pp13684-13690.
    [40].Sun, Z.,Nicolosi, V.,Rickard, D., etc., Quantitative evaluation of surfactant-stabilizedsingle-walled carbon nanotubes: Dispersion quality and its correlation with zeta potential[J]. TheJournal of Physical Chemistry C,2008,112(29),pp10692-10699.
    [1].魏飞,骞伟中,碳纳米管的宏量制备技术.北京,科学出版社,2012.
    [2]. Iijima, S., Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348),pp56-58.
    [3]. Ebbesen, T. W.,Ajayan, P. M., Large-scale synthesis of carbon nanotubes[J]. Nature,1992,358(6383),pp220-222.
    [4]. de Heer, W. A.,Poncharal, P.,Berger, C., etc., Liquid carbon, carbon-glass beads, and thecrystallization of carbon nanotubes[J]. Science,2005,307(5711),pp907-910.
    [5]. Zhao, X.,Ohkohchi, M.,Wang, M., etc., Preparation of high-grade carbon nanotubes by hydrogenarc discharge[J]. Carbon,1997,35(6),pp775-781.
    [6]. Maniwa, Y.,Fujiwara, R.,Kira, H., etc., Multiwalled carbon nanotubes grown in hydrogenatmosphere: An x-ray diffraction study[J]. Physical Review B,2001,64(7),p073105.
    [7]. Cui, S.,Scharff, P.,Siegmund, C., etc., Investigation on preparation of multiwalled carbonnanotubes by DC arc discharge under N2atmosphere[J]. Carbon,2004,42(5-6),pp931-939.
    [8]. Cui, S.,Scharff, P.,Siegmund, C., etc., Preparation of multiwalled carbon nanotubes by DC arcdischarge under a nitrogen atmosphere[J]. Carbon,2003,41(8),pp1648-1651.
    [9]. Jung, S. H.,Kim, M. R.,Jeong, S. H., etc., High-yield synthesis of multi-walled carbon nanotubesby arc discharge in liquid nitrogen[J]. Applied Physics A: Materials Science&Processing,2003,76(2),pp285-286.
    [10].Mao, B. D.,Kang, Z. H.,Wang, E. B., etc., Fabrication of high quality carbon nanotubes with asimple ethanol-assisted arc discharge process[J]. Journal of Nanoscience and Nanotechnology,2006,6(5),pp1392-1395.
    [11]. Shervin, S.,Gheytani, S.,Simchi, A., Effect of Fe3+concentration on MWCNTs formation in liquidarcing method[J]. Physica B: Condensed Matter,2010,405(20),pp4344-4349.
    [12].Okotrub, A. V.,Yudanov, N. F.,Aleksashin, V. M., etc., Study of thermal and mechanical propertiesof composites based on arc-grown carbon nanotubes and heat-resistant cyanoether binder[J]. PolymerScience Series A,2007,49(6),pp702-707.
    [13].Gamaly, E. G.,Ebbesen, T. W., Mechanism of carbon nanotube formation in the arc discharge[J].Physical Review B,1995,52(3),pp2083-2089.
    [14].苏言杰,高质量单壁碳纳米管的生长调控与特性研究[博士论文].上海,上海交通大学2012.
    [15].Kratschmer, W.,Lamb, L. D.,Fostiropoulos, K., etc., Solid C60: a new form of carbon[J]. Nature,1990,347(6291),pp354-358.
    [16].Kim, H. H.,Kim, H. J., Preparation of carbon nanotubes by DC arc discharge process underreduced pressure in an air atmosphere[J]. Materials Science and Engineering: B,2006,133(1-3),pp241-244.
    [17].Wang, X. K.,Lin, X. W.,Dravid, V. P., etc., Carbon nanotubes synthesized in a hydrogen arcdischarge[J]. Applied Physics Letters,1995,66(18),pp2430-2432.
    [18].Zhao, X.,Ohkohchi, M.,Shimoyama, H., etc., Morphology of carbon allotropes prepared byhydrogen arc discharge[J]. Journal of Crystal Growth,1999,198-199,pp934-938.
    [19].Hou, P.-X.,Liu, C.,Cheng, H.-M., Purification of carbon nanotubes[J]. Carbon,2008,46(15),pp2003-2025.
    [20].Zhao, J.,Zhang, Y.,Su, Y., etc., Structural improvement of CVD multi-walled carbon nanotubes bya rapid annealing process[J]. Diamond and Related Materials,2012,25pp24-28.
    [21].Kiselev, N. A.,Moravsky, A. P.,Ormont, A. B., etc., SEM and HREM study of the internal structureof nanotube rich carbon arc cathodic deposits[J]. Carbon,1999,37(7),pp1093-1103.
    [22].Colbert, D.,Zhang, J.,McClure, S., etc., Growth and sintering of fullerene nanotubes[J]. Science,1994,266(5188),pp1218-1222.
    [23].Krueger, A, Carbon materials and nanotechnology. Weinheim, WILEY-VCH Verlag GmbH&CoKGaA,2010.
    [24].傅献彩,沈文霞,姚天扬,等,物理化学(第五版).北京,高等教育出版社,2005.
    [25].Wang, Z.,et al., Low-cost and large-scale synthesis of graphene nanosheets by arc discharge inair[J]. Nanotechnology,2010,21(17),p175602.
    [26].Jiao, L.,Zhang, L.,Wang, X., etc., Narrow graphene nanoribbons from carbon nanotubes[J]. Nature,2009,458(7240),pp877-880.
    [1]. Feng, Y.,Zhang, H.,Hou, Y., etc., Room temperature purification of few-walled carbon nanotubeswith high yield[J]. ACS Nano,2008,2(8),pp1634-1638.
    [2]. Qian, C.,Qi, H.,Liu, J., Effect of tungsten on the purification of few-walled carbon nanotubessynthesized by thermal chemical vapor deposition methods[J]. The Journal of Physical Chemistry C,2007,111(1),pp131-133.
    [3]. Hutchison, J. L.,Kiselev, N. A.,Krinichnaya, E. P., etc., Double-walled carbon nanotubesfabricated by a hydrogen arc discharge method[J]. Carbon,2001,39(5),pp761-770.
    [4]. Li, L.,Li, F.,Liu, C., etc., Synthesis and characterization of double-walled carbon nanotubes frommulti-walled carbon nanotubes by hydrogen-arc discharge[J]. Carbon,2005,43(3),pp623-629.
    [5]. Qiu, H.,Shi, Z.,Guan, L., etc., High-efficient synthesis of double-walled carbon nanotubes by arcdischarge method using chloride as a promoter[J]. Carbon,2006,44(3),pp516-521.
    [6]. Sugai, T.,Yoshida, H.,Shimada, T., etc., New synthesis of high-quality double-walled carbonnanotubes by high-temperature pulsed arc discharge[J]. Nano Letters,2003,3(6),pp769-773.
    [7]. Feng, J. M.,Wang, R.,Li, Y. L., etc., One-step fabrication of high quality double-walled carbonnanotube thin films by a chemical vapor deposition process[J]. Carbon,2010,48(13),pp3817-3824.
    [8]. Green, A. A.,Hersam, M. C., Processing and properties of highly enriched double-wall carbonnanotubes[J]. Nature Nanotechnology,2009,4(1),pp64-70.
    [9]. Smith, B. W.,Monthioux, M.,Luzzi, D. E., Carbon nanotube encapsulated fullerenes: a uniqueclass of hybrid materials[J]. Chemical Physics Letters,1999,315(1–2),pp31-36.
    [10].Saito, Y.,Yoshikawa, T.,Bandow, S., etc., Interlayer spacings in carbon nanotubes[J]. PhysicalReview B,1993,48(3),pp1907-1909.
    [11]. Ha, B.,Shin, D. H.,Park, J., etc., Electronic structure and field emission properties ofdouble-walled carbon nanotubes synthesized by hydrogen arc discharge[J]. Journal of PhysicalChemistry C,2008,112(2),pp430-435.
    [12].Bandow, S.,Takizawa, M.,Hirahara, K., etc., Raman scattering study of double-wall carbonnanotubes derived from the chains of fullerenes in single-wall carbon nanotubes[J]. Chemical PhysicsLetters,2001,337(1),pp48-54.
    [13].Saito, Y.,Nakahira, T.,Uemura, S., Growth conditions of double-walled carbon nanotubes in arcdischarge[J]. The Journal of Physical Chemistry B,2003,107(4),pp931-934.
    [14].Kim, M.,Rodriguez, N.,Baker, R., The interplay between sulfur adsorption and carbon depositionon cobalt catalysts[J]. Journal of Catalysis,1993,143(2),pp449-463.
    [15].Tibbetts, G. G.,Bernardo, C. A.,Gorkiewicz, D. W., etc., Role of sulfur in the production of carbonfibers in the vapor phase[J]. Carbon,1994,32(4),pp569-576.
    [16].Shi, L.,Sheng, L. M.,Yu, L. M., etc., Ultra-thin double-walled carbon nanotubes: A novelnanocontainer for preparing atomic wires[J]. Nano Research,2011,4(8),pp759-766.
    [1]. Gadzuk, J. W.,Plummer, E. W., Field emission energy distribution (FEED)[J]. Reviews of ModernPhysics,1973,45(3),pp487-548.
    [2]. Iijima, S., Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348),pp56-58.
    [3]. Zou, R.,Hu, J.,Song, Y., etc., Carbon nanotubes as field emitter[J]. Journal of Nanoscience andNanotechnology,2010,10(12),pp7876-7896.
    [4]. De Heer, W. A.,Chatelain, A.,Ugarte, D., A carbon nanotube field-emission electron source[J].Science,1995,270(5239),pp1179-1180.
    [5]. Giubileo, F.,Di Bartolomeo, A.,Sarno, M., etc., Field emission properties of as-grown multiwalledcarbon nanotube films[J]. Carbon,2012,50(1),pp163-169.
    [6]. Jung, S. M.,Hahn, J.,Jung, H. Y., etc., Clean carbon nanotube field emitters aligned horizontally[J].Nano Letters,2006,6(7),pp1569-1573.
    [7]. Zeng, F.-G.,Zhu, C.-C.,Liu, X., etc., A novel mechanical approach to improve the field emissioncharacteristics of printed CNT films[J]. Materials Letters,2006,60(19),pp2399-2402.
    [8]. Kuznetzov, A. A.,Lee, S. B.,Zhang, M., etc., Electron field emission from transparent multiwalledcarbon nanotube sheets for inverted field emission displays[J]. Carbon,2010,48(1),pp41-46.
    [9]. Li, C.,Zhang, Y.,Mann, M., etc., High emission current density, vertically aligned carbon nanotubemesh, field emitter array[J]. Applied Physics Letters,2010,97(11),p113107.
    [10].Wang, H.,Li, Z.,Ghosh, K., etc., Synthesis of double-walled carbon nanotube films and their fieldemission properties[J]. Carbon,2010,48(10),pp2882-2889.
    [11]. Lahiri, I.,Seelaboyina, R.,Hwang, J. Y., etc., Enhanced field emission from multi-walled carbonnanotubes grown on pure copper substrate[J]. Carbon,2010,48(5),pp1531-1538.
    [12].Lee, D. H.,Lee, J. A.,Lee, W. J., etc., Flexible field emission of nitrogen-doped carbonnanotubes/reduced graphene hybrid films[J]. Small,2011,7(1),pp95-100.
    [13].Wood, R. W., A new form of cathode discharge and the production of x-rays, together with somenotes on diffraction. preliminary communication[J]. Physical Review (Series I),1897,5(1),pp1-10.
    [14].Fowler, R. H.,Nordheim, L., Electron emission in intense electric fields[J]. Proceedings of theRoyal Society of London. Series A,1928,119(781),pp173-181.
    [15].Tsai, T. Y.,Lee, C. Y.,Tai, N. H., etc., Transfer of patterned vertically aligned carbon nanotubesonto plastic substrates for flexible electronics and field emission devices[J]. Applied Physics Letters,2009,95(1), p013107.
    [16].Lee, H. J.,Moon, S. I.,Kim, J. K., etc., Improvement of field emission from printed carbonnanotubes by a critical bias field[J]. Journal of Applied Physics,2005,98(1), pp016107.
    [17].Lee, Y. D.,Lee, K.-S.,Lee, Y.-H., etc., Field emission properties of carbon nanotube film using aspray method[J]. Applied Surface Science,2007,254(2),pp513-516.
    [18].Choi, W. B.,Chung, D. S.,Kang, J. H., etc., Fully sealed, high-brightness carbon-nanotubefield-emission display[J]. Applied Physics Letters,1999,75(20),pp3129-3131.
    [19].Bonard, J. M.,Salvetat, J. P.,Stockli, T., etc., Field emission from carbon nanotubes: perspectivesfor applications and clues to the emission mechanism[J]. Applied Physics A-Materials Science&Processing,1999,69(3),pp245-254.
    [20].Ikuno, T.,Honda, S.,Furuta, H., etc., Correlation between field electron emission and structuralproperties in randomly and vertically oriented carbon nanotube films[J]. Japanese Journal of AppliedPhysics,2005,44, pp1655-1660.
    [21].Suh, J. S.,Jeong, K. S.,Lee, J. S., etc., Study of the field-screening effect of highly ordered carbonnanotube arrays[J]. Applied Physics Letters,2002,80(13),pp2392-2394.
    [22].Nilsson, L.,Groening, O.,Emmenegger, C., etc., Scanning field emission from patterned carbonnanotube films[J]. Applied Physics Letters,2000,76(15),pp2071-2073.
    [23].Chen, G.,Shin, D. H.,Iwasaki, T., etc., Enhanced field emission properties of vertically aligneddouble-walled carbon nanotube arrays[J]. Nanotechnology,2008,19(41),p415703.
    [24].Jung, S. I.,Jo, S. H.,Moon, H. S., etc., Improved crystallinity of double-walled carbon nanotubesafter a high-temperature thermal annealing and their enhanced field emission properties[J]. The Journalof Physical Chemistry C,2007,111(11),pp4175-4179.
    [25].Ha, B.,Shin, D. H.,Park, J., etc., Electronic structure and field emission properties ofdouble-walled carbon nanotubes synthesized by hydrogen arc discharge[J]. Journal of PhysicalChemistry C,2008,112(2),pp430-435.
    [26].Lee, Y. D.,Lee, H. J.,Han, J. H., etc., Synthesis of double-walled carbon nanotubes by catalyticchemical vapor deposition and their field emission properties[J]. The Journal of Physical Chemistry B,2006,110(11),pp5310-5314.
    [27].Liu, C.,Kim, K. S.,Baek, J., etc., Improved field emission properties of double-walled carbonnanotubes decorated with Ru nanoparticles[J]. Carbon,2009,47(4),pp1158-1164.
    [1]. Dai, H.,Wong, E. W.,Lieberf, C. M., Probing ESectncai transport in nanomaterials: conductivity ofindividual carbon nanotubes[J]. Nature,1995,376, pp139-144.
    [2].彭堂超,磁控溅射制备NiO、TiO2和ZnO薄膜及其物性研究[博士论文],武汉,武汉大学,2011.
    [3].史勇, V2O5/Pd薄膜的制备及氢气敏感特性研究[硕士论文].武汉,武汉理工大学,2010.
    [4]. Qu, L.,Dai, L., Substrate-enhanced electroless deposition of metal nanoparticles on carbonnanotubes[J]. Journal of the American Chemical Society,2005,127(31),pp10806-10807.
    [5]. Cha, S. I.,Kim, K. T.,Arshad, S. N., etc., Extraordinary strengthening effect of carbon nanotubes inmetal-matrix nanocomposites processed by molecular-level mixing[J]. Advanced Materials,2005,17(11),pp1377-1381.
    [6].刘萍,电泳结合电镀法制备碳纳米管/铜复合薄膜的研究[博士论文].上海,上海交通大学,2010.
    [7].谢希德,陆栋,固体能带理论.上海,复旦大学出版社,1998.
    [8].郑继明,单分子电子输送性质的第一性原理研究[博士论文].西安,西北大学,2008.
    [9]. Collins, P. G.,Arnold, M. S.,Avouris, P., Engineering carbon nanotubes and nanotube circuits usingelectrical breakdown[J]. Science,2001,292(5517),pp706-709.
    [10].Perdew, J. P.,Chevary, J. A.,Vosko, S. H., etc., Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation[J]. PhysicalReview B,1992,46(11),pp6671-6687.
    [11]. Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J].Physical Review B,1990,41(11),pp7892-7895.
    [12].Li, H. J.,Lu, W. G.,Li, J. J., etc., Multichannel ballistic transport in multiwall carbon nanotubes[J].Physical Review Letters,2005,95(8),pp086601.
    [13].Peng, Y.,Chen, Q., Fabrication of copper/multi-walled carbon nanotube hybrid nanowires usingelectroless copper deposition activated with silver nitrate[J]. Journal of the Electrochemical Society,2012,159(2),pp D72-D76.
    [14]. Zhu, Z.,Garcia-Gancedo, L.,Flewitt, A. J., etc., A critical review of glucose biosensors based oncarbon nanomaterials: carbon nanotubes and graphene[J]. Sensors,2012,12(5),pp5996-6022.
    [15]. Wang, J., Electrochemical glucose biosensors[J]. Chemical Reviews,2008,108(2),p814.
    [16]. Prehn, R.,Cortina-Puig, M.,Munoz, F. X., etc., A non-enzymatic glucose sensor based on the useof gold micropillar array electrodes[J]. Journal of the Electrochemical Society,2012,159(8),ppF134-F139.
    [17].Yang, M.,Yang, Y.,Liu, Y., etc., Platinum nanoparticles-doped so-gel/carbon nanotubes compositeelectrochemical sensors and biosensors[J]. Biosensors and Bioelectronics,2006,21(7),pp1125-1131.
    [18].Xie, J.,Wang, S.,Aryasomayajula, L., etc., Platinum decorated carbon nanotubes for highlysensitive amperometric glucose sensing[J]. Nanotechnology,2007,18(6),p065503.
    [19].Wu, B. Y.,Hou, S. H.,Yin, F., etc., Amperometric glucose biosensor based on multilayer films vialayer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidaseon the Pt electrode[J]. Biosensors and Bioelectronics,2007,22(12),pp2854-2860.
    [20].Zhang, H.,Meng, Z.,Wang, Q., etc., A novel glucose biosensor based on direct electrochemistry ofglucose oxidase incorporated in biomediated gold nanoparticles–carbon nanotubes composite film[J].Sensors and Actuators B: Chemical,2011,158(1),pp23-27.
    [21].Pop, A.,Manea, F.,Orha, C., etc., Copper-decorated carbon nanotubes based composite electrodesfor non-enzymatic detection of glucose[J]. Nanoscale Research Letters,2012,7(1),p266.
    [22].Sanvito, S.,Kwon, Y. K.,Tománek, D., etc., Fractional quantum conductance in carbonnanotubes[J]. Physical Review Letters,2000,84(9),pp1974-1977.
    [23].Shamsipur, M.,Najafi, M.,Hosseini, M. R. M., Highly improved electrooxidation of glucose at anickel (II) oxide/multi-walled carbon nanotube modified glassy carbon electrode[J].Bioelectrochemistry,2010,77(2),pp120-124.
    [24].Nie, H.,Yao, Z.,Zhou, X., etc., Nonenzymatic electrochemical detection of glucose usingwell-distributed nickel nanoparticles on straight multi-walled carbon nanotubes[J]. Biosensors andBioelectronics,2011,30(1),pp28-34.
    [25].Zeng, Q.,Cheng, J. S.,Liu, X. F., etc., Palladium nanoparticle/chitosan-grafted graphenenanocomposites for construction of a glucose biosensor[J]. Biosensors and Bioelectronics,2011,26(8),pp3456-3463.
    [26].Meng, L.,Jin, J.,Yang, G., etc., Nonenzymatic Electrochemical Detection of Glucose Based onPalladium Single-Walled Carbon Nanotube Hybrid Nanostructures[J]. Analytical Chemistry,2009,81(17),pp7271-7280.
    [27].Siegert, L.,Kampouris, D. K.,Kruusma, J., etc., The Heterogeneity of Multiwalled and Single‐Walled Carbon Nanotubes: Iron Oxide Impurities Can Catalyze the Electrochemical Oxidation ofGlucose[J]. Electroanalysis,2008,21(1),pp48-51.
    [28].Jiang, L.-C.,Zhang, W.-D., A highly sensitive nonenzymatic glucose sensor based on CuOnanoparticles-modified carbon nanotube electrode[J]. Biosensors and Bioelectronics,2010,25(6),pp1402-1407.
    [29].Kang, X.,Mai, Z.,Zou, X., etc., A sensitive nonenzymatic glucose sensor in alkaline media with acopper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode[J]. AnalyticalBiochemistry,2007,363(1),pp143-150.
    [30].Park, S.,Chung, T. D.,Kim, H. C., Nonenzymatic glucose detection using mesoporous platinum[J].Analytical Chemistry,2003,75(13),pp3046-3049.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700