碳纳米管薄膜阴极的制备与场发射性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管具有优异的电学、力学和热学性能,在场发射平板显示领域显示出诱人的应用前景。但是,碳纳米管在发射点密度、发射稳定性和均匀性等方面的性能都不够理想,碳纳米管场发射性能的改善是其走向产业化的重要一步。本论文以改善碳纳米管场发射性能为研究目的,从碳纳米管阴极制备工艺的改进与优化、阴极薄膜的后处理等方面开展了一系列工作,得出了一些有意义的研究成果。
     利用纳米银的低温熔接性和良好导电性,首次以纳米银作为导电材料和粘结剂,在低的烧结温度(250oC)下,利用涂敷法制成了表面平整、导电性和场发射性能良好的碳纳米管冷阴极。当混合浆料中碳纳米管与纳米银的质量比率为1:2时,碳纳米管阴极具有最好的场发射性能;过高和过低的纳米银掺入量均会使场发射性能变差。进一步优化了碳纳米管/纳米银阴极膜的制备工艺,采用两步涂敷法,制得了双层结构的碳纳米管/纳米银阴极膜,明显增强了碳纳米管与基底的附着力,提高了碳纳米管的场发射性能。
     采用电泳法沉积碳纳米管薄膜,首次系统研究了各种电泳工艺条件对沉积的碳纳米管薄膜场发射性能的影响,获得了利用电泳法沉积碳纳米管薄膜的较优化的工艺条件和工艺细节;研究了各种测试参数对碳纳米管场发射的影响,随测试时阴阳极间距的增加和系统真空度的提高,碳纳米管薄膜的开启电场和阈值电场增大,但发射稳定性明显改善。分析了碳纳米管场发射F-N曲线的非线性现象。
     从降低表面功函数和增强碳纳米管与基底之间附着力的角度改善电泳沉积的碳纳米管薄膜的场发射性能。通过在碳纳米管薄膜表面形成低功函数的Ti碳化物,降低了碳纳米管发射体的表面功函数,增强了碳纳米管薄膜的场发射性能。通过在基底表面镀覆Ti膜,退火后碳纳米管和基底之间形成导电性Ti碳化物,增加了碳纳米管与基底之间的附着力,消除了碳纳米管与基底之间的界面势垒,使碳纳米管场发射的开启电场和阈值电场明显降低。
     系统研究了Ar微波等离子体处理对电泳沉积和涂敷制备的碳纳米管微结构和场发射性能的影响。由于等离子体处理造成了利于场发射的各种微观几何结构的形成,降低了电子发射的表面势垒,提高了碳纳米管的场增强因子,从而改善了碳纳米管薄膜场发射的I-V性能,而等离子体处理后碳纳米管薄膜场发射电流稳定性和均匀性的提高则归因于等离子体处理后碳纳米管电子发射位的增加以及发射位位置在场强方向上的一致化。
Carbon nanotubes (CNTs) have superior electronic and mechanical and thermodynamic properties which make them attractive in different application fields, especially in the field of flat panel display. However, up to date, field emission properties of CNTs, such as the number density of electron emission sites, the stability and uniformity of field emission current and so on, are not satisfied for its application as cold cathode electron source. It is crucial to improve the field emission properties of CNTs for their commercial applications. In this work, a series of studies were proceeded round the improvement and optimization for the fabrication processes of CNTs cathodes film and the post-treatment of the as-prepared CNTs film with the purpose of improving the field emission properties, and some useful conclusions were obtained.
     Based on the properties of low melting point and high conductivity, a new preparation process for carbon nanotubes(CNTs) cold cathode was studies in the first time through the replacement of traditional organic binder or Ag paste with Ag nano-particles. A flat CNTs films with good field emission performance was obtained after sintered 30 min under 250oC. The measurements reveal that the field emission properties are the best when the mass ratio of CNTs and Ag nano-particles is 1:2. Too many and too few Ag nano-particles in mixed paste all result in poor field emission properties. The fabrication process for CNTs/Ag nano-particles cathode was optimized by using a two-step coating method, The two-layer structure CNTs cathode obtained by using the two-step coating method showed improved field emission properties, which can due to the improved adhesion of CNTs to substrate.
     CNTs film was fabricated using electrophoresis deposition technique. The effects of various process conditions and the measurement parameters on the field emission properties of CNTs were investigated comprehensively in the first time, and the relative optimized electrophoresis process conditions and details were obtained. With the increasing of the interelectrode distance and the decreasing of the residual gas pressure in vacuum chamber, the as-prepared CNTs film exhibited improved emission current stability, while turn on electrical field and threshold electrical field became high. The probably reason causing the non-linearity phenomenon on the Fowler-Nordheim (F-N) plots was also analyzed.
     In order to improve the field emission properties of electrophoresis deposition CNTs film using the method of decreasing the work function of the emitterΦ, a thin Ti film was coated on the surface of CNTs cathode film. Titanium carbide with lowΦformed after annealing in vacuum chamber decreased the work functionΦof CNTs emitters, which caused the improvement of field emission properties. When the Ti film was coated on the substrate, conductive titanium carbide was also formed between CNTs and substrate after annealing. The field emission properties were improved by the existence of conductive titanium carbide which resulted in the enhancement of adhesion of CNTs on the substrate and the elimination of the interface potential barrier between CNTs and the substrate.
     The effects of Ar microwave plasma treatment on the microstructure and field emission properties of coated CNTs/Ag nano-particles film and electrophoresis deposition CNTs film were studied systematically. It is found that the microstructure was changed and the field emission properties were improved obviously by the plasma treatment. We attributed the improved field emission I-V property to the increase ofβand decrease of electron emission potential barrier resulted by the changed microstructure. Meanwhile, plasma treatment removed a portion of protruding CNTs emitters on the film surface, which would allow a greater number of emitters to be active with compensation for a higher electrical field application, and raised the number density of electron emission sites, which lead an improvement in emission stability and uniformity.
引文
[1] Derbyshire K, Beyond AMLCDs: Field emission displays, Solid State Technology, 1994, 37(11): 55-58
    [2] 田民波,电子显示,北京:清华大学出版社,2001
    [3] Spindt C A, Brodie I, Humphrey L, et al, Physical properties of thin-film field emission cathodes with molybdenum, J.Appl. Phys., 1976, 47(12): 5248-5251
    [4] Sarangi D, Arpaoui I, Bonard J M, Carbon nanotube growth on borosilicate glass for flat panel displays, Physica B, 2002, 323(1-4): 165-167
    [5] Lee N S, Chung D S, Han I T, et al, Application of carbon nanotubes to field emission displays, Diamond and Related Materials, 2001, 10(2): 265-270
    [6] Chung D S, Park S H, Lee H W, et al, Carbon nanotubes electron emitters with a gated structure using backside exposure processes, Appl. Phys. Lett., 2002, 80(21): 4045-4047
    [7] Temple D, Palmer W D, Yadon L N, et al, Silicon field emitter cathodes: Fabrications, performance, and applications, J. Vac. Sci. Technol. A, 1998, 16(3): 1980-1990
    [8] Kang S U, Lee J H, Song Y H, et al, Emission characteristics of tin-coated silicon field emitter arrays, J. Vac. Sci. Technol. B, 1998, 16(2): 871-874
    [9] Rakhshandaroo M R, Pang S W. Fabrication of self-aligned field emission devices and effects of surface passivation on emission current. J. Vac. Sci. Technol. B, 1998, 16(2): 765-769
    [10] Jessing J R, Fabrication and characterization of gated porous silicon cathode ArF laser deposition, J. Vac. Sci. Technol. B, 1998, 16(2): 777-779
    [11] Ducroquet F, Kropfeld P, Yaradou O, et al, Fabrication and emission characters of GaAs tips and wedge-shaped field emitter arrays by wet etching, J. Vac. Sci. Technol. B, 1998, 16(2): 787-789
    [12] Kozawa T. Fabrication of GaN field emitter arrays by selective area growth technique, J. Vac. Sci. Technol. B, 1998, 16(2): 833-835
    [13] Matsumoto T, Mimura H, Point X-ray source using graphite nanofibers and its application to X-ray radiography, Appl.Phys.Lett.,2003,82(10): 1637-1639
    [14] Zhou J, Xu S N, et al, Large-area nanowire arrays of molybdenum and molybdenum oxides: synthesis and field emission properties, Adv. Mater., 2003, 15: 1835-1840
    [15] Lee C J, Lee T J, et al, Field emission from well-aligned zinc oxide nanowires grown at low temperature, Appl. Phys.Lett.,2002, 81(19): 3648-3650
    [16] Chang F Y, et a1, Local electron field emission characteristics of pulsed laser deposited diamond—like carbon films, Appl. Phys. Lett., 1996, 69(23): 3504-3506
    [17] Talin A A , Felter T E, Friedmann T A, et a1, Electron field emission from α-tC and α-tC : N, J. Vac. Sci. Technol. A, 1996, 14(3): 1719-1722
    [18] Okano K, Koizumi S, Sinlva S, et al, Low-threshold cold cathodes made of nitrogen-doped chemical-vapor-deposited diamond, Nature, 1996, 381: 140-141
    [19] Geis M W, Efremow N N, Krohn K E, et al, A new surface electron-emission methanism in diamond cathodes, Nature, 1998, 393: 431-435
    [20] Musa I, Munondrasdasa D A I, et al, Ultralow-threshold field emission from conjugated polymers, Nature, 1998, 395(24): 362-365
    [21] Loannis K, Akintunde I A, Field Emission from a Patterned Organic Conducting Composite, Appl. Phys. Lett., 2003, 82(14): 2347-2349
    [22] 赖国洪,彭俊彪,李政林,等, 导电高分子场发射特性研究, 发光学报,2005, 26(1): 105-108
    [23] Iijima S, Helical microtubules of graphitic carbon, Nature, 1991, 358: 56-58
    [24] Thess A, Lee R, Nikolaev P, et al, Crystalline ropes of metallic carbon nanotubes, Science, 1996, 273: 483-487
    [25] Li W Z, Xie S S, Qian L X, et al, Large- scale synthesis of aligned carbon nanotubes, Science, 1996, 274: 1701-1703
    [26] Xie S S, Li W Z, Pan Z W, et al, Mechanical and physical properties on carbon nanotube, Journal of Physics and Chemistry of Solids, 2000, 61: 1153-1158.
    [27] de Heer W A, Chatelain A, Ugarte D, A carbon nanotube field-emission electron source, Science, 1995, 270:1179-1180
    [28] Bonard J –M, Salvetat J –P, Stockli T, et al, Field emission from single-wall carbon nanotube films, Appl. Phys. Lett., 1998, 73(7): 918-920
    [29] Wang Q H, Setlur A A, Lauerhaas J M, et al, A nanotube-based field-emission flat panel display, Appl. Phys. Lett., 1998, 72(22): 2912-2913
    [30] Bower C, Zhou O, Zhu W, et al. Mat. Res. Soc. Symp. Proc., 2000.
    [31] Sohn J I, Lee S, Song Y H, et al, Large field emission current density from well-aligned carbon nanotube field emitter arrays, Current Applied Physics, 2001, 1(1): 61-65
    [32] Wang Y H, Lin J, Huan C H A, Macroscopic field emission properties of aligned carbon nanotubes array and randomly oriented carbon nanotubes layer, Thin Solid Films,2002, 405(1-2): 243-247
    [33] Umnov A G, Matsushita T, Endo M, et al, Field emission from flexible arrays of carbon nanotubes, Chem. Phys. Lett., 2002, 356(3-4): 391-397
    [34] Bonard J M, Frédéric M, St?ckli T, et al, Field Emission Properties of Multiwalled Carbon Nanotubes,Ultramicroscopy, 1998, 73(1-4): 7-15
    [35] Fan S S, Chapline M G, Franhlin N R, et al, Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science, 1999, 283(22): 512-514
    [36] Yu W J, Cho Y S, Choi G S, et al, A stable high power carbon nanotube field-emitter device, Diamond and Related Materials, 2004, 13: 1017-1021
    [37] Jung J E, Jin Y W, Choi J H, et al, Fabrication of triode-type field emission displays with high-density carbon-nanotube emitter arrays, Physica B, 2002, 323:71-77
    [38] Cho Y R, Lee J H, Song Y H, et al, Photolithography-based carbon nanotubes patterning for field emission displays, Materials Science and Engineering, 2001, B79(2):128-132
    [39] Lee N S, Chung D S, Han I T, et al, Application of carbon nanotubes to field emission displays, Diamond and Related Materials, 2001, 10: 265-270
    [40] 史永胜,朱长纯,王琪琨, 基于丝网印刷大面积碳纳米管阴极场发射的研究, 西安交通大学学报,2003, 37(12): 1304-1307
    [41] Kurnosov D A, Baturin A S, Bugaev A S, et al, Influence of the interelectrode distance in electrophoretic cold cathode fabrication on the emission uniformity , Applied Surface Science, 2003, 215:232-236
    [42] Choi W B, Jin Y W, Kim H Y, et al, Electrophoresis deposition of carbon nanotubes for triode-type field emission display , Appl. Phys. Lett., 2001, 78(11): 1547-1549
    [43] Nakayama Y, Akita S, Field-emission device with carbon nanotube for a flat panel display, Synthetic Metals, 2001,117: 207-210
    [44] Uemura S, Yotani J, Ngasaku T, et al. High-luminance carbon nanotube FED, Soc. Inform. Display Int. Symp. Dig. Tdch. Papers, 2000,,37:320
    [45] Chen Y, Shaw D T, Field emission of oriented carbon nanotubes, Appl. Phys. Lett., 2000, 76(24): 2469-2471
    [46] Jung Y S, Jeon D Y, Surface structure and field emission property of carbon nanotubes grown by radio-frequency plasma enhanced chemical vapor deposition, Appl. Surf. Sci., 2002, 193: 129-137
    [47] de Pablo P J, Howell S, Crittenden S, et al, Correlating the location of structural defects with the electrical failure of multiwalled carbon nanotubes, Appl. Phys. Lett., 1999, 75: 3941-3943
    [48] Dean K A, Chalamala B R, Current saturation mechanisms in carbon nanotube field emitters, Appl. Phys. Lett., 2000, 76: 375-377
    [49] Dean K A, von Allmen P, Chalamala B R, et al, Three behavioral states observed in field emission from single-walled carbon nanotubes, J. Vac. Sci. Technol. B, 1999, 17: 1959-1969
    [50] Kroto H W, Heath J R, O’Brian S C, et al, C60: Buckminsterfullerene, Nature, 1985, 318: 162-163
    [51] Kroto H W, Heath J R, O’Brien S C, et al, C60: Buckminsterfullerene, Nature, 1985, 318:162-163
    [52] Casavant Michael John, Macroscopic assemblies of magnetically aligned carbon nanotubes, Thesis for Master, Rice University, 2000
    [53] Dresselhaus M S, Dresselhaus G, Saito R, Phys. Rev. B, 1992, 45:62-66
    [54] Iijima S, Ichihashi T, Single-shell carbon nanotubes of 1-nm diameter, Nature, 1993, 363: 603-605
    [55] Mintmire J W, Dunlap B I, White C T, Are fullerene tubules metallic?, Phys. Rev. Lett., 1992, 68: 631-634
    [56] Dresselhus M S, Dresselhaus G, Saito R, Carbon fibers based on C60 and their symmetry, Phys. Rev. B, 1992, 45(11): 6234-6242
    [57] White C T, Robertson D H, Mintmire J W, Helical and rotational symmetries of nanoscale graphitic tubules, Phys. Rev. B, 1993, 47(9): 5485-5488
    [58] Robertson D H, Brenner D W, Mintmire J W, Energetics of nanoscale graphitic tubules, Phys. Rev. B, 1992, 45: 12592-12595
    [59] Hamada N, Sawada S, Oshiyama A, New one-dimensional conductors:Graphitic microtubules, Phys. Rev. Lett., 1992, 68(10): 1579-1581
    [60] Zhang X F, Zhang X B, Van Tendeloo G, et al, Carbon nano-tubes: their formation process and observation by electron microscopy, J. Crystal. Growth, 1993, 130(3-4): 368-382
    [61] Saito R, Fujita M, Dresselhaus G, et al, Electronic structure of chiral graphene tubules, Appl. Phys. Lett., 1992, 60(18): 2204-2206
    [62] Setton R, Carbon nanotubes: Ⅰ. geometrical considerations, Carbon, 1995, 33(2):135-140(6)
    [63] Ebbesen T W, Lezec H J, Hiura H, et al, Electrical conductivity of individual carbon nanotubes, Nature, 1996, 382: 54-56
    [64] Hsu W K, Hare J P, Terrones M, et al, Condensed-phase nanotubes, Nature, 1995, 377: 687-687
    [65] Yacaman M J, Yoshida M M, Rendon L, et al, Catalytic growth of carbon microtubules with fullerene structure, Appl. Phys. Lett., 1993,62(2): 202-204
    [66] Kong J, Soh H T, Cassell A M, et al, Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers, Nature, 1998, 395: 878-881
    [67] Peigney A, Laurent C, Dobigeon F, et al, Carbon nanotubes grown in-situ by a novel catalytic method, J. Mater. Res., 1997, 12(3): 613-615
    [68] Treacy M M J, Ebbesen T W, Gibson J M, Exceptionally high Young’s Modulus observed for individual carbon nanotubes, Nature, 1996, 381:678-680
    [69] Heer W A, Bacsa W S, Chatelain A, et al, Aligned carbon nanotube films production and optical and electronic properties, Science, 1995, 268: 845-847
    [70] Savas Berber Yaung-Kyun Kwon, David Tomanek, Unusually ctivity of carbon nanotubes, Phys. Rev. Lett., 2000, 84(20): 4613-4616
    [71] Fowler R H, Nordheim L W, Field emission from metallic surface, Proc. R. Soc. London, Ser. A, 1928, 119:173-181
    [72] 成会明, 碳纳米管的制备、结构、物性及应用,北京:化学工业出版社,2002
    [73] Rinzler A G, Hafner J H, Nikolaev P, et al, Unraveling nanotubes: field emission from an atomic wire, Science, 1995, 269:1550-1553
    [74] Obraztsov A N, Volkov A P, Pavlovskii I Y, et al, Role of the curvature of atomic layers in electron field emission from graphitic nanostructured carbon, JETP Lett., 1999, 69: 411-417
    [75] Obraztsova E D, Bonard J –M, Kuznetsov V L, et al, Structural Measurements for Single-wall Carbon Nanotubes by Raman Scattering Technique, Nanostructured Mater., 1999, 12:567-572
    [76] Obraztsov A N, Pavlovsky I, Volkov A P, et al, Aligned carbon nanotube films for cold cathode applications, J. Vac. Sci. Technol. B, 2000, 18:1059-1062
    [77] Bonard J –M, Stockli T, Maier F, et al, Field-emission-induced luminescence from carbon nanotubes, Phys. Rev. Lett., 1998,81: 1441-1444
    [78] Tamura R, Tsukada M, Electronic states of the cap structure in the carbon nanotube, Phys. Rev. B, 1995, 52: 6015-6026
    [79] Carroll D L, Redlich P, Ajayan P M, et al, Structure and localized states at carbon nanotube tips, Phys. Rev. Lett., 1997,78: 2811-2814
    [80] De Vita A, Charlier J –C, Blasé X, et al, Electronic structure at carbon nanotube tips, Appl. Phys. A, 1999, 68: 283-286
    [81] Cassell A M, Franklin N R, Tombler T W, et al, Directed growth of free-standing single-walled carbon nanotubes, J. Am. Chem. Soc., 1999, 121: 7975-7976
    [82] Bonard J M, Tuning the field emission properties of patterned carbon nanotube films, Adv. Mater., 2001, 13(3): 184-189
    [83] Filip V, Nicolaescu D, Tanemura M, et al, Modeling the electron field emission from carbon nanotube films, Ultramicroscopy, 2001, 89(1-3): 39-49
    [84] Nilsson L, Groerling O, Emmenegger C, et al. Appl. Phys. Lett., 2000, 76(15): 2071-2073
    [85] Allmen P V, Fonseca L R C, Ramprasad R. Phys. Stat. Sol(b), 2001, 226(1): 107-113
    [86] Musatov A L, Kiselev N A, Zakharov D N, et al, Field electron emission from nanotube carbon layers grown by CVD process , Appl. Surf. Sci., 2001, 183(1-2): 111-119
    [87] Wei Y, Xie C, Dean K A, et al, Stability of carbon nanotubes under electric field studied by scanning electron microscopy, Appl. Phys. Lett., 2001, 79(27): 4527-4529
    [88] Wang Z L, Gao R P, Heer W A D, In-situ imaging of field emission from individual carbon nanotubes and their structural damage, Appl. Phys. Lett., 2002, 80(5): 856-858
    [89] Zhu W, Bower C, Zhou O, et al. Appl. Phys. Lett., 1999, 75(6): 873-875
    [90] Feng Y T, Deng S Z, Chen J, et al, Effect of carbon nanotube structural parameters on field emission properties, Ultramicroscopy, 2003, 95: 93-97
    [91] Colbert D T, Smalley R E, Electric effects in nanotube growth, Carbon, 1995, 33(7): 921-924
    [92] Saito Y, Hamaguchi K, Mizushima R, et al, Field emission from carbon nanotubes and its application to cathode ray tube lighting elements, Appl. Surf. Sci., 1999, 146(1-4): 305-311
    [93] Lim S C, Choi Y C, Shin Y M, et al,Field-emission properties of vertically aligned carbon-nanotube array dependent on gas exposures and growth conditions,J. Vac. Sci. Technol., 2001, A19(4): 1786-1795
    [94] Dean K A, Chalamala B R, The environmental stability of field emission from single-walled carbon nanotubes, Appl. Phys. Lett., 1999, 75(19): 3017-3019
    [95] Monteiro O R, Mammana V P, Salvadori M C, et al, Microstructure and electron emission properties of films prepared from single-wall and multi-wall nanotubes containing powders, Applied Physics A, 2000, 71:121-124
    [79] Jonge N D, Lamy Y, Schoots K, et al, High brightness electron beam from a multi-walled carbon nanotube, Nature, 2002, 420(28): 393-395
    [96] Choi J H, Choi S H, Han J H, et al, Enhanced electron emission from carbon nanotubes through density control using in situ plasma treatment of catalyst metal, J. Appl. Phys., 2003, 94(1): 487-490
    [97] Kim D H, Kim C D, Lee H R, Effects of the ion irradiation of screen-printed carbon nanotubes for use in field emission display applications, Carbon, 2004, 42: 1807-1812
    [98] Lou C G, Zhang X B, Lei W, et al, New method to fabricate field-emission cathode of carbon nanotubes, Appl. Surf. Sci., 2005, 251(1-4): 254-257
    [99] Xu X P, Brandes G R, A method for fabricating large-area, patterned, carbon nanotube field emitters, Appl. Phys. Lett., 1999, 74(17):2549-2551
    [100] Zhu W, Kochanshi G P, Jin S, et al, Electron field emission from chemical vapor deposited diamond, J. Vac. Sci. Technol., 1996, B14(3): 2011-2019
    [101] Kwo J L, Tsou C C, Yokoyama M, et al, Field emission characteristics of carbon nanotube emitters synthesized by arc discharge, J. Vac. Sci. Technol., 2001, B19(2): 23-26
    [102] Yue G Z, Qiu Q, Gao B, et al, Generation of continuous and pulsed diagnostic imaging X-ray radition using a carbon-nanotube-based field-emission cathode, Appl. Phys. Lett., 2002, 81(2):355-357
    [103] Saito Y, Uemura S, Field emission from carbon nanotubes and its application to electron sources, Carbon, 2000, 38: 169-182
    [104] Purcell S T, Bincent P, Journet C, et al, Hot nanotubes: stable heating of individual multiwall carbon nanotubes to 2000K induced by the field-emission current, Phy. Rev. Lett., 2002, 88(10):105502
    [105] Vincent P, Purcell S T, Journet C, et al, Modelization of resistive heating of carbon nanotubes during field emission, Phys. Rev., 2002, B66(7): 075406
    [106] Kim J M, Choi W B, Lee N S, et al, Field emission from carbon nanotubes for displays, Diamond and Related Materials, 2000, 9: 1184-1189
    [107] Deng S Z, Wu Z S, Xu N S, et al, Characterization of a high voltage flat panel display unit using nanotube-based emitters, Ultramicroscopy, 2001,89: 105-109
    [108] Ito F, Tomihari Y, Okada Y, et al, Carbon-nanotube-based triode-field-emission displays using gated emitter structure, IEEE Electron Devices Letters, 2001, 22(9): 426-428
    [109] Groning O, Kiittel O M, Emmenegger C, et al, Field emission properties of carbon nanotubes, J. Vac. Sci. Technol., 2000, B18(2): 665-678
    [110] Oh S J, Cheng J, Zhang H, et al, Room-temperature fabrication of high-resolution carbon nanotube field-emission cathodes by self-assembly, Appl Phys Lett, 2003, 82: 2512-2514
    [111] 张兆祥, 张耿民, 侯士敏, 等. 碳纳米管的薄膜场发射, 真空科学技术学报, 2003, 23(1): 27-31
    [112] Du C S, Heldbrant David, Pan N, Preparation and preliminary property study of carbon nanotubes films by electrophoretic deposition, Materials Letters, 2002, 57: 434-438
    [113] Yamamoto K, Akita S, Nakayama Y, Orientation of carbon nanotubes using electrophoresis, Jpn. J. Appl. Phys. 1996, 35: L917-L918
    [114] Lee K Y, Honda S, Katayama M, et al, Controlling the density of vertically aligned carbon nanotubes by dc bias sputtering with gas mixtures, Diamond and Related Materials, 2004, 13: 1228-1231
    [115] Anderson W A, J. Vac. Sci. Technol., Role of space charge in field emission cathodes, 1993, B11: 383-386
    [116] Murakami H, Hirakawa M, Tanaka C, et al, Field emission from well-aligned, patterned, carbon nanotube emitters, Appl. Phys. Lett., 2000, 76(13): 1776-1778
    [117] Lee C J, Park J, Han S, et al, Growth and field emission of carbon nanotubes on sodalime glass at 550oC using thermal chemical vapor deposition, Chem. Phys. Lett., 2001, 337: 398-402
    [118] Choi Y C, Shin Y M, et al, Patterned growth and field emission properties of vertically aligned carbon nanotubes, Diamond and Related Materials, 2001, 10(8): 1457-1464
    [119] Chen Y, Deng S Z, Xu N S, et al, Physical origin of non-linearity in Fowler-Nordheim plats of aligned large area multi-walled nitrogen-containing carbon nanotubes. Mater. Sci. Eng. A, 2002, 327:16-19
    [120] Baughman R H, Zakhidov A A, De Heer W A, Carbon nanotubes-the route toward applications, Science, 2002, 297(5582): 787-792
    [121] Adessi Ch, Devel M, Theoretical study of field emission by single-wall carbon nanotubes, Phys. Rev. B, 2000, 62(20): R13314-R13317
    [122] Kim W S, Lee J , Jeong T W, et al, Improved emission stability of single-walled carbon nanotube field emitters by plasma treatment, Appl. Phys. Lett., 2005, 87: 163112-1-3
    [123] Zhu Y W, Cheong F C, Yu T, et al, Effects of CF4 plasma on the field emission properties of aligned multi-wall carbon nanotube films, Carbon, 2005, 43: 395-400
    [124] Ahn K S, Kim J S, Kim C O, et al, Non-reactive rf treatment of multiwall carbon nanotube with inert plasma for enhanced field emission, Carbon, 2003, 41: 2481-2485
    [125] Lin I N, Chen Y H, Cheng H F, Modification of emission properties of diamond films due to surface treatment process, Diamond and Related Materials., 2000, 9(9-10): 1574-1581
    [126] Hart A, Satyanarayana B S, Miline W I, et al, Effect of surface treatment and back contact material on field emission from tetrahedral amorphous carbon, Diamond and Related Materials, 1999, 8(2-5): 809-813
    [127] Raiko V, SpItzl R, Aschermann B, et al, Field emission observations from CVD diamond-coated silicon emitters, Thin Solid Films, 1996, 290: 190-195
    [128] Satyanarayana B S, Robertson J, Milne W I, Low threshold field emission from nanoclustered carbon grown by cathodic arc, J. Appl. Phys., 2000, 87: 3126-3131
    [129] Llie A, Hart A, Flewitt A J, et al, Effect of work function and surface microstructure on field emission of tetrahedral amorphous carbon, J. Appl. Phys., 2000, 88: 6002-6010
    [130] Kuttel O M, Groning O, Emmenegger C, et al, Field emission from diamond, diamond-like and nanostructured carbon films, Carbon, 1999, 37:745-752
    [131] Shiraishi M, Ata M, Work function of carbon nanotubes, Carbon, 2001,39:1913-1917
    [132] Bonard J M, Kurt R, Klinke C, Influence of the deposition conditions on the field emission properties of patterned nitrogen carbon nanotube films, Chem. Phys. Lett., 2001, 343: 21-27
    [133] Kanazawa Y, Oyama T, Murakami L, et al, Improvement in electron emission from carbon nanotube cathodes after Ar plasma treatment, Vac. Sci. Technol. B 2004, 22(3):1342-1344
    [134] Wei Y, Chalamala B R, Rossi G, et al, Fabrication of molybdenum carbide and hafnium carbide field emitter arrays, J. Vac. Sci. Technol. B, 2001, 19: 42-46
    [135] Mackie W A, Morrissey J L, Hinrichs C H, et al, Field emission hafnium carbide, J. Vac. Sci. Technol. A, 1992, 10(4): 2852-2856
    [136] Sato T, Yamamoto S, Fabrication and characterization of HfC coated Si field emitter arrays, J. Vac. Sci. Technol. B, 2003, 21: 1589-1593
    [137] Baturin A S, Nikolski K N, Knyazev A I, Doping of graphite by an alkaline-earth metal to reduce the work function, Technical Physics, 2004, 49(3): 342-344
    [138] Collins P G, Zettl A, Unique characteristics of cold cathode carbn-nanotube-matrix field emitters, Phys. Rev. B, 1997, 55: 9391-9399
    [139] Kowalska E, Czerwosz E, Dluzewski P A, et al, Electrion emission properties of CNT films grown by catalytic method on different types of substrates, Diamond Relat. Mater. 2004, 13(4-8): 1008-1011
    [140] Tersoff J, Contact resistance of carbon nanotubes, Appl. Phys. Lett., 1999, 74: 2122-2124
    [141] Hart A, Satyanarayana B S, Miline W I, et al, Field emission from tetrahedral amorphous carbon as a function of surface treatment and substrate material, Appl. Phys. Lett. 1999, 74(11): 1594-1596
    [142] Zhi C Y, Bai X D, Wang E G, Enhanced field emission from carbon nanotubes by hydrogen plasma treatment, Appl. Phys. Lett., 2002, 81: 1690-1692
    [143] Rao A M, Richter E, Bandow S, et al, Diameter-selective Raman scattering from vibrational modes in carbon nanotubes, Science, 1997, 275:187-191
    [144] Kawashima Y, Kategiri G, Fundamentals, overtones, and combinations in the Raman spectrum of graphite, Phys Rev. B 1995, 52: 10053-10059
    [145] Sveningsson M, Merjan R E, Nerushev O A, et al, Raman spectroscopy and field-emission properties of CVD-grown carbon-nanotube film, Appl. Phys. A, 2001, 73: 409-418
    [146] Li W Z, Zhang H, Wang C Y, et al, Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor, Appl. Phys. Lett., 1997: 70(20):2684-2687
    [147] Kawashima Y, Katagiri G, Observation of the out-of-plane mode in the Raman scattering from the graphite edge plane, Phys. Rev., 1999, B59: 62-64
    [148] Kasuya A, Sasaki Y, Saita Y, et al, Evidence for size-dependent discrete dispersions in single-wall nanotubes, 1997, 78: 4434-4437
    [149] Li W Z, Zhang H, Wang C Y, et al, Raman Characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor, 1997,70: 2684-2686
    [150] Zhou G, Duan W H, Gu B L, Electronic structure and field-emission characteristics of open-ended single-walled carbon nanotubes, Phys. Rev. Lett., 2001, 87: 095504
    [151] Huang J Y, Yasuda H, Mori H, Highly curved carbon nanostructures produced by ball-milling, Chem. Phys. Lett., 1999, 303:130-134
    [152] Grieco W J, Howard J B, Rainey L C, et al, Fullerenic carbon in combustion-generated soot, Carbon, 2000, 38:597-614
    [153] Hiura H, Ebessen T W, Fujita J, Role of sp3 defect structures in graphite and carbon nanotubes, Nature, 1994, 367: 148-151
    [154] Obraztsov A N, Volkov A P, Pavlovsky I, Field emission from nanostructured carbon materials, Diamond and Related Materials., 2000, 9: 1190-1195
    [155] Yu J, Wang E G, Bai X D, Electron field emission from carbon nanoparticles prepared by microwave-plasma chemical-vapor deposition, Appl. Phys. Lett., 2001, 78(15): 2226-2228
    [156] 黄得欢, 纳米技术与应用,北京:中国纺织大学出版社, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700