化学气相沉积法可控制备碳纳米管组装体
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米组装体系综合了物质本征效应、纳米尺度效应、组合引起的新功能等特点而成为纳米材料研究领域的热点课题。碳纳米管有序结构体系的形成,有助于从宏观上展现其独特的电学、力学、热学等性能,在传感器、纳米电子器件等许多重要的领域发挥了独特的作用。本研究工作以二茂铁为催化剂前驱体,环己烷为碳源,采用改进的浮游催化化学气相沉积技术实现了碳纳米管的原位控制组装,得到了多种具有规则几何结构的碳纳米管组装体:利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、拉曼光谱(Raman spectra)等技术对纳米碳管组装体的形貌、结构进行了系统表征,探讨了碳纳米管的组装机制,并对组装体的浸润性能以及在电化学分析领域的应用进行了探索研究。主要研究结果如下:
     1.采用二维模板法构筑系列具有三维规则几何形态的碳纳米管阵列结构。利用平版印刷技术设计不同类型的硅基图案,浮游催化化学气相沉积反应体系下实现了碳纳米管的选择性定点、定位生长,碳纳米管组装体系在二维空间上严格复制了SiO_2基底的几何形状,制备得到了多种碳纳米管三维立体组装结构;研究了浮游催化反应条件下碳纳米管层层生长的基本特征;探索了以锌微晶为牺牲模板组装碳纳米管的新途径。
     2.利用毛细管作用力耦合碳纳米管层层生长特征可控组装泡沫炭体系。以规则几何构型的定向碳纳米管为基体材料,通过液体润湿过程形成的毛细管作用力和碳纳米管之间的范德华力,获得了碳纳米管为基本单元的高密度泡沫炭材料:将毛细管作用力与层层生长技术顺序耦合,根据碳纳米管与不同基体之间结合力大小的差异,构筑了多种碳纳米管组装体系:探讨了毛细管作用力下碳纳米管的组装机制。
     3.微通道内原位自组装构筑碳纳米管规则多面体结构。以微机械加工(MEMS)技术设计Au/SiO_2基片并构筑可开启/封闭型微通道反应器,在微通道限域条件下观察到碳纳米管的奇异自组装现象,制备得到了微米尺度下具有规整多面体形貌的碳纳米管多级组装体系。碳纳米管组装体端部呈规整的多面锥状并具有贯通的中空结构,微通道内碳纳米管多面体生长进程显示其遵循底部生长机制。
     4.弱氧化剂辅助碳纳米管原位自组装构筑炭微米管。采用改进浮游催化化学气相沉积技术,通过在碳纳米管的生长反应过程引入弱氧化剂(H_2O或CO_2)并调控催化剂浓度,在硅基底上获得了以碳纳米管为基本单元的微米尺度的管状结构,揭示了浮游催化体系下碳纳米管初级生长过程中的多级自组装特征。适量弱氧化剂的存在对去除无定形碳、保持催化剂活性起重要作用。
     5.研究了碳纳米管组装体的浸润性能和电化学分析中作为电极材料的应用基础。研究发现,一定结构的碳纳米管组装体呈现超疏水性能,探讨了组装体的浸润性能与其结构之间的关系;将碳纳米管的组装体作为电极材料,初步探索了应用于电化学检测识别多巴胺和半胱氨酸等生物分子的可能性。
Ordered nano-structured materials with nanomaterials as the units have attracted much attention in recent years because of their peculiar properties such as the intrinsic effect,the nanoscale effect and the combination induced new functions.Carbon nanotubes(CNTs) arranged into well-defined configurations to build integrated systems can help to display their novel and enhanced properties.Owing to the perfect mechanical,electrical and thermal performances,CNT architectures with regular geometry structures have exhibited promising applications in sensors,nano-electronics and nano-devices.Therefore,developing various approaches for the assembly of highly organized CNT architectures and investigating their general properties are stongly desirable in CNT research field.
     In the present thesis,CNT architectures with regular geometry structures have been achieved using different synthetic strategies by the floating catalytic chemical vapor deposition(FC-CVD) with ferrocene as catalyst precursors and cyclohexane as carbon sources. The morphologies and structures of the obtained samples have been characterized by scanning electron microscope(SEM),transmission electron microscope(TEM) and Raman spectra,etc. The possible mechanisms of the assembly of CNT architectures have been proposed and discussed in terms of different synthetic strategies.The wettability and electrochemical behavior of the CNT architectures obtained are also explored.Some progresses in the thesis are briefly summarized as follows.
     A series of aligned CNT patterns with regular geometry structures have been fabriacted using the two-dimensional(2D) template method.Patternings of Pt/SiO_2 and Si/SiO_2 substrates are prepared by photolithography,and aligned CNTs grow readily on SiO_2 surface guided by the selective deposition of catalysts on it rather than on Pt or Si areas during the subsequent CVD process.By strictly inheriting the 2D topography of the SiO_2 templates,a wide variety of 3D organized nanotube structures have been built in a well-controlled mode. Furthermore,a new approach with micro-sized Zn crystals as sacrificial template for the assembly of CNTs,as well as the layer by layer(LBL) growth of CNTs is investigated.
     Foam-like micropatterns consisted of CNTs have been realized by using the capillarity as the driving force combined with LBL growth of CNTs.With the CNT patterns grown on the SiO_2 templates as source materials,aligned CNT arrays can be transformed into zipped foam-like structrues after a water-wetting process.The combination of the capillarity and the CNT multi-layer growth has provided a versatile method for the construction of various complex CNT architectures based on different interaction between CNTs and the underlying substrate.The principle of capillarity-assisted self-assembly of CNTs is discussed in detail.
     Well-defined carbon polyhedrons with hierarchical structures made of in situ formed CNTs have been obtained inside space-confined microchannels.Microchannels which can be opened during CNT growth are created by two pieces of Au/SiO_2 substrates face-to-face assembled.The CNT polyhedrons display facetd morphologies and hollow internal structures. It is revealled that the bottom-up growth mechanism is involed in the assembly of the CNT polyhedrons by tracking the growth of the polyhedrons in different channels.
     Aligned micro-sized carbon tubes with CNTs formed in situ act as the basic buliding blocks have been synthesized on the silicon substrate in the presence of weak oxidizer(H_2O or CO_2).It belongs to a multiple self-assembly process and the concentration of catatlysts coming from the thermal decomposition of ferrocene plays the critical role.The weak oxidizer helps to remove amorphous carbon on the surface of catalyst to maintain its catalytic activity and life-span,consequently increase the growth rate of CNTs.
     The wettability of some typical CNT architectures obtained above and their application as electrode in the electroanalysis have been investigated.It is revealed that the CNT architectures possess a super-hydrophobic property and their wettabilities have a close relationship with their assembly.Electrochemical detection of homocysteine and dopamine using CNT patterns as the electrodes is also explored,further work is needed and on-going in this field.
引文
[1]Kroto H W,Heath J R,O' Brien S C.C60:Buckyminister-fullerene.Nature,1985,318:162-163.
    [2]Kraetschmer W,Lamb L D,Fostiropoulos K et al.Solid C60:a new form of carbon.Nature,1991,347:354-358.
    [3]Iijima S.Helical microtubules of graphitic carbon.Nature,1991,354:56-58.
    [4]Iijima S,Ichihashi T.Single-shell carbon nanotubes of 1-nm diameter.Nature,1993,363(6430):603-605.
    [5]Bethune D S,Kiang C H,de Vries M Set al.Cobalt-catalysed drowth of carbon nanotubes with single-atomic-layer walls.Nature,1993,363(6430):605-607.
    [6]Li W Z,Xie S S,Qian L X et al.Large-scale synthesis of aligned carbon nanotubes.Science,1996,274:1701-1703.
    [7]Pan Z W,Xie S S,Chang B Het al.Very long carbon nanotubes.Nature,1998,394:631-632.
    [8]Qin L C,Zhao X L,Hirahara K et al.Materials science - The smallest carbon nanotube.Nature,2000,408(6808):50-50.
    [9]Bachilo S M,Strano M S,Kittrell C et al.Structure-assigned optical spectra of single-walled carbon nanotubes.Science,2002,298(5602):2361-2366.
    [10]Hartschuh A,Pedrosa H N,Novotny L et al.Simultaneous fluorescence and Raman scattering from single carbon nanotubes.Science,2003,301(5638):1354-1356.
    [11]Chen Z H,Appenzeller J,Lin Y M et al.An integrated logic circuit assembled on a single carbon nanotube.Science,2006,311(5768):1735-1735.
    [12]Dresselhaus M S,Dai H.Carbon nanotubes:Continued innovations and challenges.Mrs Bull,2004,29(4):237-239.
    [13]Kostarelos K,Bianco A,Prato M.Hype around nanotubes creates unrealistic hopes.Nature,2008,453(7193):280-280.
    [14]Geim A K,Kim P.Carbon wonderland.Scientific American,2008,298(4):90-97.
    [15]Wildoer J W G,Venema L C,Rinzler A Get al.Electronic structure of atomically resolved carbon nanotubes.Nature,1998,391(6662):59-62.
    [16]shigami M,Cumings J,Zettl Aet al.A simple method for the continuous production of carbon nanotubes.Chem Phys Lett,2000,319:457-459.
    [17]Journet C,Master W K,Bemier P et al.Large-scale production of single-walled carbon nanotubes by the electric-arc technique.Nature,1997,388:756-758.
    [18]Liu C,Cong H T,Li F et al.Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method.Carbon,1999,37:1865-1868.
    [19]Hutchison J L,Kiselev N A,Krinichnaya E P et al.Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method.Carbon,2001,39(5):761-770.
    [20]Wang Z Y,Zhao Z B,Qiu J S.Synthesis of branched carbon nanotubes from coal.Carbon,2006,44:1321-1324.
    [21]Qiu J S,Li Y F,Wang Y P et al.High-purity single-walled carbon nanotubes synthesized from coal by arc discharge.Carbon,2003,41:2170-2173.
    [22]Ando Y,Zhao X L,SugaI T et al.Growing carbon nanotubes.Mater Today,2004,7:22-29.
    [23]Thess A,Lee R,Nikolaev P et ai.Crystalline ropes of metallic carbon nanotubes.Science,1996,273:483-487.
    [24]Yudasaka M,Komatsu T,Ichihashi T et ai.Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal.Chem Phys Lett,1997,278:102-106.
    [25]Han J H,Choi S H,Lee T Y et al.Effects of growth parameters on the selective area growth of carbon nanotubes.Thin Solid Films,2002,409(1):126-132.
    [26]雷中兴,刘静,王建波等 催化剂结构与形态对碳纳米管生长的影响.新型炭材料,2003,18(4):271-276.
    [27]王茂章,李峰,杨全红等.由不同碳源合成及制备纳米碳管的进展.新型炭材料,2003,18(4):250-264.
    [28]李颖,李轩科,刘朗.不同原料气催化热解法制备碳纳米管的研究.新型炭材料,2004,19(4):298-302.
    [29]Yacaman M J,Yoshida M M,Rendon L et al.Catalytic growth of carbon microtubules with fullerene structure.Appl Phys Lett,1993,62:202-204.
    [30]Amelinckx S,Zhang X B,Bernaerts D.A formation mechanism for catalytically grown helix-shaped graphite nanotubes.Science,1994,265:635-639.
    [31]Wang Y,Wei F,Luo G H.The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor.Chem Phys Lett,2002,364:568-572.
    [32]Kong J,Cassell A M,Dai H J.Chemical vapor deposition of methane for single-walled carbon nanotubes.Chem Phys Lett,1998,292(4-6):567-574.
    [33]Ci L J,Rao Z L,Zhou Z P et al.Double wall carbon nanotubes promoted by sulfur in a floating iron catalyst CVD system.Chem Phys Lett,2002,359(1-2):63-67.
    [34]Lauerhaas J M,Dai J Y,Setlur A A et al.The effect of arc parameters on the growth of carbon nanotubes.J Mater Res,1997,12:1536-1544.
    [35]Dai H,Wang E W,Lieber C M.Probing electrical transport in nanomaterials:Conductivity of individual carbon nanotubes.Science,1996,272:523-526.
    [36]Ebbesen T W,Lezec H J,Hiura H et al.Electrical conductivity of individual carbon nanotubes.Nature,1996,382(6586):54-56.
    [37]韦进全,张先锋,王昆林.碳纳米管宏观体,北京:清华大学出版社,2006.
    [38]Yan Y,Chan-Park M B,Zhang Q.Advances in carbon-nanotube assembly.Small,2007,3(1):24-42.
    [39]魏飞,张强,骞伟中等.碳纳米管阵列研究进展.新型炭材料,2007,22(3):271-282.
    [40]Mei Y F,Wu X L,Qiu T et al.Anodizing process of Al films on Si substrates for forming alumina templates with short-distance ordered 25 nm nanopores.Thin Solid Films,2005,492(1-2):66-70.
    [41]Kiselev N A,Musatov A L,Kukovitskii E F et al.Influence of electric field and emission current on the configuration of nanotubes in carbon nanotube layers.Carbon,2005,43(15):3112-3123.
    [42]Teo K B K,Chhowalla M,Amaratunga G A J et al.Fabrication and electrical characteristics of carbon nanotube-based microcathodes for use in a parallel electron-beam lithography system.J Vac Sci Technol B,2003,21(2):693-697.
    [43]Cheng Y,Fan S S.Applications of oriented batch-CNT.Int J Nonlinear Sci,2002,3(3-4):759-762.
    [44]Kyotani T,Tsai L-F,Tomita A.Formation of ultrafine carbon tubes by using an anodic aluminum oxide film as a template.Chem Mater,1995,7(8):1427-1428.
    [45]Orikasa H,Inokuma N,Okubo S et al.Template synthesis of water-dispersible carbon nano “Test Tubes” without any post-treatment.Chem Mater,2006,18:1036-1040.
    [46]Kyotani T,Nakazaki S,Xu W et al.Chemical modification of the inner walls of carbon nanotubes by HNO_3 oxidation.Carbon,2001,39:771-785.
    [47]Yuan Z H,Huang H,Dang H Y et al.Field emission property of highly ordered monodispersed carbon nanotube arrays.Appl Phys Lett,2001,78(20):3127-3129.
    [48]Li J,Papadopoulos C,Xu J M.Highly-ordered carbon nanotube arrays for electronics applications.Appl Phys Lett,1999,75(3):367-369.
    [49]Li D C,Dai L M,Huang S M et al.Structure and growth of aligned carbon nanotube films by pyrolysis.Chem Phys Lett,2000,316(5-6):349-355.
    [50]Huang S M,Dai L M,Mau A W H.Patterned growth and contact transfer of well-aligned carbon nanotube films.J Phys Chem B,1999,103(21):4223-4227.
    [51]Takagi D,Homma Y,Hibino H.Single-walled carbon nanotube growth from highly activated metal nanoparticles.Nano Lett,2006,6(12):2642-2645.
    [52]Qu L,Dai L.Direct growth of three-dimensional multicomponent micropatterns of vertically aligned single-walled carbon nanotubes interposed with their multi-walled counterparts on Al-activated iron substrates.J Mater Chem,2007,17:3401-3405.
    [53] Yuan D, Ding L, Chu H. Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett, 2008, 8(8):2576-2579.
    
    [54] Ren Z F, Huang Z P, Xu J W et al. Synethesis of large arrays of well-aligned carbon nanotubes on glass. Science, 1998,282:1105-1107.
    
    [55] Tu Y, Huang Z P, Wang D Z et al. Growth of aligned carbon nanotubes with controlled site density. Appl Phys Lett, 2002, 80:4018-4020.
    
    [56] Ago H, Komatsu T, Ohshima S et al. Dispersion of metal nanoparticles for aligned carbon nanotube arrays. Appl Phys Lett, 2000, 77:79-81.
    
    [57] Murakami Y, Chiashi S, Miyauchi Y et al. Growth of ver tically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem Phys Lett, 2004, 385:298-303.
    
    [58]Noda S, Sugime H, Osawa T et al. A simple combinatorial method to discover Co-Mo binary catalysts that grow vertically aligned single-walled carbon nanotubes. Carbon, 2006, 44(8):1414-1419.
    
    [59] Cassell A M, Li J, Stevens R M D et al. Vertically aligned carbon nanotube heterojunctions. Appl Phys Lett, 2004, 85(12):2364-2366.
    
    [60]Akasaka T, Watari F. Nano-architecture on carbon nanotube surface by biomimetic coating. Chem Lett, 2005, 34(6):826-827.
    
    [61]Mukhopadhyay K, Lal D, Ram K et al. An easy and novel way to get 2D/3D architecture of carbon nanotube bundles. Synthetic Met, 2006, 156(14-15):963-965.
    
    [62] Paloniemi H, Lukkarinen M, Aaritalo T et al. Layer-by-layer electrostatic self-assembly of single-wall carbon nanotube polyelectrolytes. Langmuir, 2006,22(1):74-83.
    
    [63] Yan X B, Tay B K, Yang Y et al. Fabrication of three-dimensional ZnO-Carbon nanotube (CNT) hybrids using self-assembled CNT micropatterns as framework. J Phys Chem C, 2007, 111(46): 17254-17259.
    
    [64] Ago H, Murata K, Yumura M et al. Ink-jet printing of nanoparticle catalyst for site-selective carbon nanotube growth. Appl Phys Lett, 2003, 82(5):811-813.
    
    [65] Bennett R D, Hart A J, Miller A C et al. Creating patterned carbon nanotube catalysts through the microcontact printing of block copolymer micellar thin films. Langmuir, 2006, 22(20):8273-8276.
    
    [66] Huang S M, Dai L M, Mau A W H. Controlled fabrication of large-scale aligned carbon nanofiber/nanotube patterns by photolithography. Adv Mater, 2002, 14(16):1140-1143.
    
    [67] Huang S M, Mau A W H, Turney T W et al. Patterned growth of well-aligned carbon nanotubes: A soft-lithographic approach. J Phys Chem B, 2000,104(10):2193-2196.
    
    [68] Fan S S, Chapline M G, Franklin N R et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 1999, 283(5401):512-514.
    
    [69] Pan Z W, Zhu H G, Zhang Z T et al. Patterned growth of vertically aligned carbon nanotubes on pre-patterned Iron/silica substrates prepared by sol-gel and shadow masking. J Phys Chem B, 2003, 107:1338-1344.
    
    [70]Franklin N R, Dai H J. An enhanced CVD approach to extensive nanotube networks with directionality. Adv Mater, 2000, 12(12):890-894.
    
    [71] Huang S M, Cai X, Liu J. Growth of millimeter-long and horizontally aligned single walled carbon nanotubes on flat substrates. J Am Chem Soc, 2003,125:5636-5637.
    
    [72]Hata K, Futaba D N, Mizuno K et al. Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes. Science, 2004,306(5700):1362-1364.
    
    [73] Hiraoka T, Yamada T, Hata K et al. Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils. J Am Chem Soc, 2006,128(41):13338-13339.
    
    [74] Zhang G Y, Mann D, Zhang L et al. Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. PNAS, 2005,102(45):16141-16145.
    
    [75]Nasibulin A G, Brown D P, Queipo P et al. Effect of CO_2 and H_2O on the synthesis of single-walled CNTs. Phys Stat Sol, 2006, 243(13):3087-3090.
    
    [76]Nasibulin A G, Brown D P, Queipo P et al. An essential role of CO_2 and H_2O during single-walled CNT synthesis from carbon monoxide. Chem Phys Lett, 2006,417:179-184.
    [77]刘霁欣,任钊,段连运等.水对氩气中催化法分解甲烷制备单壁碳纳米管的影响.化学学报,2004,62(8):775-782.
    [78]Ci L J,Wei J Q,Wei B Q et al.Carbon nanofibers and single-wailed carbon nanotubes prepared by the floating catalyst method.Carbon,2001,39(3):329-335.
    [79]Hou H Q,Schaper A K,Jun Z et al.Large-scale synthesis of aligned carbon nanotubes using FeCl3 as floating catalyst precursor.Chem Mater,2003,15(2):580-585.
    [80]Lin C C,Huang C M,Kuo C S et al.Continuous production of carbon nanotubes and carbon fibers with methane,nitrogen,and Fe(CO)_5 using a CVD vertical reactor.J Chin Inst Chem Eng,2004,35(6):595-601.
    [81]Dong L F,Chirayos V,Bush J et al.Floating-potential dielectrophoresis-controlled fabrication of single-carbon-nanotube transistors and their electrical properties.J Phys Chem B,2005,109(27):13148-13153.
    [82]Huang J Q,Zhang Q,Wei F et al.Liquefied petroleum gas containing sulfur as the carbon source for carbon nanotube forests.Carbon,2008,46(2):291-296.
    [83]Wang X B,Liu Y Q,Zhu D B.Two- and three-dimensional alignment and patterning of carbon nanotubes.Adv Mater,2002,14(2):165-167.
    [84]Huang S M,Dai L M.Microscopic and macroscopic structures of carbon nanotubes produced by pyrolysis of iron phthalocyanine.J Nanoparticle Res,2002,4:145-155.
    [85]Kumar M,Ando Y.A simple method of producing aligned carbon nanotubes from an unconventional precursor-Camphor.Chem Phys Lett,2003,374:521-526.
    [86]Xiang R,Luo G,Qian W et al.Large area growth of aligned CNT arrays on spheres:Towards large scale and continuous production.Chem Vap Deposition,2007,13:533-536.
    [87]Rao C N R,Sen R,Satishkumar B C et al..Large aligned-nanotube bundles from ferrocene pyrolysis.Chem Commun,1998:1525-1526
    [88]Andrews R,Jacques D,Rao A M et al.Continuous production of aligned carbon nanotubes:a step closer to commercial realization.Chem Phys Lett,1999,303:467-474.
    [89]Cheng H M,Li F,Su Get al.Large-scale and low-cost synthesis of single-wailed carbon nanotubes by the catalytic pyrolysis of hydrocarbons.Appl Phys Lett,1998,72:3282-3284.
    [90]Zhu H W,Xu C L,Wu D H et al.Direct synthesis of long single-walled carbon nanotube strands.Science,2002,296(5569):884-886.
    [91]Li Y L,Kinloch I A,Windle A H.Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis.Science,2004,304(5668):276-278.
    [92]Zhang Z J,Wei B Q,Ramanath Get al.Substrate-site selective growth of aligned carbon nanotubes.Appl Phys Lett,2000,77(23):3764-3766.
    [93]Wei B Q,Vajtai R,Jung Y et al.Organized assembly of carbon nanotubes-Cunning refinements help to customize the architecture of nanotube structures.Nature,2002,416(6880):495-496.
    [94]Wei B Q,Vajtai R,Jung Y et al.Assembly of highly organized carbon nanotube architectures by chemical vapor deposition.Chem Mater,2003,15(8):1598-1606.
    [95]Cao A Y,Ajayan P M,Ramanath G et al.Silicon oxide thickness-dependent growth of carbon nanotubes.Appl Phys Lett,2004,84(1):109-111.
    [96]Jung Y J,Wei B Q,Vajtai R et al.Mechanism of selective growth of carbon nanotubes on SiO_2/Si patterns.Nano Lett,2003,3(4):561-564.
    [97]Chen Y,Yu J.Patterned growth of carbon nanotubes on Si substrates without predeposition of metal catalysts.Appl Plays Lett.,2005 87:033103-033105.
    [98]Zhang Z J,Zhou Y,Yue Y.Control the relative length of carbon nanotubes from site to site on one silicon substrate.Appl Phys Lett,2005,87(22):223121-223123.
    [99]Cao A Y,Ajayan P M.Zigzag assembly of carbon nanotubes inside Au microtrenches.J Phys Chem B,2004,108(20):6160-6163.
    [100]Cao A Y,Zhang X F,Xu C Let al.Synthesis of well-aligned carbon nanotube network on a gold-patterned quartz substrate.Appl Surf Sci,2001,181(3-4).234-238.
    [101]Huang S M, Mau A W H. Selective growth of aligned carbon nanotubes on a silver-patterned substrate by the silver mirror reaction. J Phys Chem B, 2003,107:3455-3458.
    
    [102]Huang S M, Mau A H W. Aligned carbon nanotubes patterned photolithographically by silver. Appl Phys Lett, 2003, 82:796-798.
    
    [103]Cao A Y, Veedu V P, Li X S et al. Multifunctional brushes made from carbon Nanotubes. Nat Mater, 2005,4:540-545.
    
    [104]Li X S, Cao A Y, Jung Y J et al. Bottom-up growth of carbon nanotube multilayers: Unprecedented growth. Nano Lett, 2005, 5(10):1997-2000.
    
    [105]Xiang R, Luo G, Qian W et al. Encapsulation, compensation, and substitution of catalyst particles during continuous growth of carbon nanotubes. Adv Mater, 2007,19(17):2360-2363.
    
    [106]Ajayan P M, Stephan O, Colliex C et al. Aligned carbon nanotubes formed by cutting a polymer resin-nanotube composite. Science, 1994, 265:1212-1214.
    
    [107]Deheer W A, Bacsa W S, Chatelain A et al. Aligned Carbon Nanotube Films - Production and Optical and Electronic-Properties. Science, 1995, 268(5212):845-847.
    
    [108]Jiang K L, Li Q Q, Fan S S. Nanotechnology: Spinning continuous carbon nanotube yarns - Carbon nanotubes weave their way into a range of imaginative macroscopic applications. Nature, 2002, 419(6909):801-801.
    
    [109]Zhang M, Atkinson K R, Baughman R H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science, 2004, 306(5700): 1358-1361.
    
    [110]Zhang M, Fang S L, Zakhidov A A et al. Strong, transparent, multifunctional, carbon nanotube sheets. Science, 2005, 309(5738):1215-1219.
    
    [111]Liu H, Li S H, Zhai J et al. Self-assembly of large-scale micropatterns on aligned carbon nanotube films. Angew Chem Int Edit, 2004, 43(9):1146-1149.
    
    [112]Chakrapani N, Wei B Q, Carrillo A et al. Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams. P Natl Acad Sci USA, 2004,101(12):4009-4012.
    
    [113]Futaba D N, Hata K, Yamada T et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nature Mater, 2006, 5(12):987-994.
    
    [114]Kaur S, Sahoo S, Ajayan P M et al. Capillarity-driven assembly of carbon nanotubes on substrates into dense vertically aligned arrays. Adv Mater, 2007,19:2984-2987.
    
    [115]Fan J G, Dyer D, Zhang G et al. Nanocarpet effect: Pattern formation during the wetting of vertically aligned nanorod arrays. Nano Lett, 2004,4(11):2133-2138.
    
    [116]Lay M D, Novak J P, Snow E S. Simple route to large-scale ordered arrays of liquid-deposited carbon nanotubes. Nano Lett, 2004,4:603-606.
    
    [117]Xin H J, Woolley A T. Directional oientation of carbon nanotubes on surfaces using a gas flow cell. Nano Lett, 2004, 4:1481-1484.
    
    [118]Hedberg J, Dong L, Jiao J. Air flow technique for large scale dispersion and alignment of carbon nanotubes on various substrates. Appl Phys Lett., 2005, 86:143111-143113.
    
    [119]Shimoda H, Oh S J, Geng H Z et al. Self-assembly of carbon nanotubes. Adv Mater, 2002, 14:899-901.
    
    [120]Tsukruk V V, Ko H, Peleshanko S. Nanotube surface arrays:weaving, bending, and assembling on patterned silicon. Phys Rev Lett, 2004,92(6):065502-065505.
    
    [121]Ko H, Peleshanko S, Tsukruk V V. Combing and bending of carbon nanotube arrays with confined microfluidic flow on patterned surfaces. J Phys Chem B, 2004, 108:4385-4393.
    
    [122]Chen J, Weimer W A. Room-temperature assembly of directional carbon nanotube strings. J Am Chem Soc., 2002,124:758-759.
    
    [123]Ko H, Tsukruk V V. Liquid-crystalline processing of highly oriented carbon nanotube arrays for thin-film transistors. Nano Lett, 2006, 6(7):1443-1448.
    
    [124]Yaglioglu O, Martens R, Hart A J et al. Conductive carbon nanotube composite microprobes. Adv Mater, 2008, 20:357-362.
    
    [125]Hong N T, Yim J H, Koh K H et al. Field electron emission from free-standing flexible PDMS-supported carbon-nanotube-array films. J Vac Sci Technol B, 2008, 26(2):778-781.
    [126]Meitl M A,Zhou Y X,Gaur Aet al.Solution casting and transfer printing single-walled carbon nanotube films.Nano Lett,2004,4:1643-1647.
    [127]Baughman R H,Zakhidov A A,de Heer W A.Carbon nanotubes - the route toward applications.Science,2002,297(5582):787-792.
    [128]Chert Q L,Xue K H,Shen Wet al.Fabrication and electrochemical properties of carbon nanotube array electrode for supercapacitors.Electrochim Acta,2004,49(24):4157-4161.
    [129]Hudanski L,Minoux E,Gangloff Let al.Carbon nanotube based photocathodes.Nanotechnology,2008,19(10):105201-105300.
    [130]Misewich J A,Martel R,Avouris Pet al.Electrically induced optical emission from a carbon nanotube FET.Science,2003,300(5620):783-786.
    [131]Wu Z C,Chert Z H,Du X et al.Transparent,conductive carbon nanotube films.Science,2004,305(5688):1273-1276.
    [132]LeMieux M C,Roberts M,Barman Set ai.Self-sorted,aligned nanotube networks for thin-film transistors.Science,2008,321(5885):101-104.
    [133]Zaric S,Ostojic G N,Kono J et al.Optical signatures of the Aharonov-Bohm phase in single-walled carbon nanotubes.Science,2004,304(5674):1129-1131.
    [134]Wang F,Dukovic G,Brus L E et al.The optical resonances in carbon nanotubes arise from excitons.Science,2005,308(5723):838-841.
    [135]Wei J Q,Zhu H W,Wu D H et al.Carbon nanotube filaments in household light bulbs.Appl Plays Lett,2004,84(24):4869-4871.
    [136]Cao A Y,Dickrell P L,Sawyer W Get al.Super-compressible foamlike carbon nanotube films.Science,2005,310(5752):1307-1310.
    [137]Ajayan P M,Tour J M.Materials science-Nanotube composites.Nature,2007,447(7148):1066-1068.
    [138]Harris P J F.Carbon nanotube composites.Inter Mater Rev,2004,49(1):31-43.
    [139]Hinds B J,Chopra N,Ranteil T et al.Aligned multiwalled carbon nanotube membranes.Science,2004,303(5654):62-65.
    [140]Srivastava A,Srivastava O N,Talapatra Set al.Carbon nanotube filters.Nat Mater,2004,3:610-614.
    [141]Vohrer U,Kolaric I,Haque M H et al.Carbon nanotube sheets for the use as artificial muscles.Carbon,2004,42:1159-1164.
    [142]Li H J,Wang X B,Song Y L et al.Super-"amphiphobic" aligned carbon nanotube films.Angew Chem lnt Edit,2001,40(9):1743-1746.
    [143]Liu H,Zhai J,Jiang L.Wetting and anti-wetting on aligned carbon nanotube films.Soft Matter,2006,2(10):811-821.
    [144]Qu L T,Dai L M,Stone Met al.Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off.Science,2008,322(5899):238-242.
    [145]Collins P G,Zettl A,Bando H et al.Nanotube nanodevice.Science,1997,278(5335):100-103.
    [146]朱静,范守善,戴宏杰等.纳米材料和器件.北京:清华大学出版社,2003.
    [147]Zhang Q,Zhou W,Qian W et al.Synchronous growth of vertically aligned carbon nanotubes with pristine stress in the heterogeneous catalysis process.J Phys Chem C,2007,111:14638-14643.
    [148]Pinault M,Pichot V,Khodja H et al.Evidence of sequential lift in growth of aligned multiwalled carbon nanotube multilayers.Nano Lett,2005,5(12):2394-2398.
    [149]Ajayan P M,Iijima S.Capilarity-induced filling of carbon nanotubes.Nature,1993,361:333-334.
    [150]Gogotsi Y,Carbon Nanomaterials.Publisher:CRC Press,2006.
    [151]吕瑞涛,黄正宏,康飞宇.金属填充碳纳米管的制备研究进展.材料科学与工程学报,2006,24(5):772-777.
    [152]Correa-Duarte M A,Wagner N,Rojas-Chapana J et al.Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth.Nano Lett,2004,4(11):2233-2236.
    [153]Correa-Duarte M A,Wahner N,Rojas-Chapana Jet al.3D networks as scaffolds for cell seeding and growth.Nano Lett,2004,4:2233-2236.
    [154]Iwasaki T,Robertson J,Kawarada H.Mechanism analysis of interrupted growth of single-walled carbon nanotube arrays.Nano Lett,2008,8(3):886-890.
    [155]Kenis P J A,Ismagilov R F,Takayama Set al.Fabrication inside microchannels using fluid flow.Acc Chem Res,2000,33:841-847.
    [156]鞠景喜,曾吕风,张利雄等.微通道反应器在微.纳米材料合成中的应用研究进展.化工进展,2006,25(2):152-158.
    [157]Park S H,Qin D,Xia Y N.Crystallization of mesoscale particles over large areas.Adv Mater,1998,10(13):1028-1032.
    [158]Xia Y N,Yin Y D,Lu Y et al.Template-assisted self-assembly of spherical colloids into complex and controllable structures.Adv Func Mater,.2003,13(12):907-918.
    [159]Yang P,Rizvi A H,Messer Bet al.Patterning porous oxides within microchannel networks.Adv Mater,2001,13(6):427-431.
    [160]Huang Y,Duan X F,Cui Yet al.Logic gates and computation from assembled nanowire building blocks.Science,2001,294(5545):1313-1317.
    [161]Gogotsi Y,Libera J A,Kalashnikov N et al.Graphite polyhedral crystals.Science,2000,290:317-320.
    [162]Zhang G,Jiang X,Wang E.Tubular graphite cones.Science,300,2003:472-474.
    [163]Zhang L,Li Z,Tan Yet al.Influence of a top crust of entangled nanotubes on the structure of vertically aligned forests of single-walled carbon nanotubes.Chem Mater,2006,18:5624-5629.
    [164]王姗,张颖,房喻.纳米颗粒材料的制备及其组装.胶体与聚合物,2003,21(2):33-38.
    [165]Fan J,Yudasaka M,Miyawaki J.Control of hole opening in single-wall carbon nanotubes and single-wall carbon nanohorns using oxygen.J Phys Chem B,2006,110:1587-1591.
    [166]Wen Q,Qian W,Wei F et al.CO_2-assisted sWNT growth on porous catalysts.Chem Mater,2007,19:1226-1230.
    [167]Zhu Z P,Su D S,Weinberg G et al.Supermoleeular self-assembly of graphene sheets:formation of
    tube-in-tube nanostructures.Nano Lett,2004,4(11):2255-2259.
    [168]Ohara P C,Gelbart W M.Interplay between Hole Instability and Nanoparticle Array Formation in Ultrathin Liquid Films.Langmuir,1998,14:3418-3424.
    [169]Thiele U,Mertig M,Pompe.W.Dewetting of an evaporating thin liquid film:heterogeneous nucleation and surface instability.Phys Rev Lett 1998,80(13):2869-2872.
    [170]Maillard M,Motte L,Ngo A T et al.Rings and Hexagons Made of Nanocrystals:A Marangoni Effect.J Phys Chem B,2000,104:11871-11877.
    [171]Maillard M,Motte L,Pileni M-P.Rings and Hexagons Made of Nanocrystals.Adv Mater,2001,13(3):200-204.
    [172]Pileni P M.Nanocrystal self-assemblies:fabrication and collective properties.J Phys Chem B,2001,105:3358-3371.
    [173]Li H J,Wang X B,Song Y Let al.Porous aligned carbon nanotube films for ultrahydrophobic surfaces.Chem J Chinese U,2001,22(5):759-761.
    [174]Feng L,Li S H,Li Y S et al.Super-hydrophobie surfaces:From natural to artificial.Adv Mater,2002,14(24):1857-1860.
    [175]Wang Z,Koratkar N,Ci L et al.Combined micro-/nanoscale surface roughness for enhanced hydrophobic stability in carbon nanotube arrays.Appl Phys Lett,2007,90(14):143117-143119.
    [176]Jiang L,Zhao Y,Zhai J.A lotus-leaf-like superhydrophobic surface:A porous microsphere/nanofiber composite film prepared by electrohydrodynamics.Angew Chem Int Ed,2004,43:4338-4341.
    [177]Agui L,Yanez-Sedeno P,Pingarron J M.Role of carbon nanotubes in electroanalytical chemistry A review.Analytica Chimica Acta,2008,622:11-47.
    [178]Luo H,Shi Z,Li N et al.Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode.Anal Chem,2001,73:915-920.
    [179]Sherigara B S,Kutner W,Souza F.Eleetroeatalytic properties and sensor applications of fullerenes and carbon nanotubes.Eiectroanalysis,2003,15(9):753-772.
    [180]赫春香,赵常志,唐祯安等.碳纳米管修饰电极对多巴胺和抗坏血酸的电催化氧化.化学分析,2003,31(8):958-960.
    [181]Chen J,Liu Y,Minett A Iet al.Flexible,aligned carbon nanotube/conducting polymer electrodes for a lithium-ion battery.Chem Mater,2007,19:3595-3597.
    [182]Solak A O,Eichorst L R,Clark W Jet al.Modified carbon surfaces as "organic electrodes"that exhibit conductance switching.Anal Chem,2003,75:296-305.
    [183]Pan ZW,Dai ZR,Wang ZL.Nanobelts of semiconducting oxides.Science,2001,291:1947-1949.
    [184]董亚杰,李亚栋.一维纳米材料的合成、组装与器件.科学通报,2002,47(9):641-649.
    [185]郭敏,刁鹏,蔡生民.水热法制备高度取向的氧化锌纳米棒阵列.高等学校化学学报,2004,25(2):345-347.
    [186]Sun XM,Chen X,Deng ZX,et al.A CTAB-assisted hydrothermal orientation growth of ZnO nanorods.Mater.Chem.Phys.,2002,78:99-104.
    [187]Choopun S,Tabata H,Kawai T.Self-assembly ZnO nanorods by pulsed laser deposition under argon atmosphere.J.Crystal Growth,2005,274:167-172.
    [188]Yan H,He R,Pham J,et al.Adv.Mater.2003,15(5):402-405.
    [189]Jiang C,Zhang W,Zou G,et al.Precursor-induced hydrothermal synthesis of flowerlike cupped-end microrod bundles ofZnO.J.Phys.Chem.B,2005,109:1361-1363
    [190]Wang J,Gao L.Synthesis of uniform rod-like,multi-pod-like ZnO whiskers and their photoluminescence properties.J.Crystal.Growth,2004(262):290-294.
    [191]Gao T,Huang Y,Wang T.The synthesis and photoluminescence of multipod-like zinc oxide whiskers.J.Phys.-Condens.Mat,2004,(16):1115-1121.
    [192]刘超峰,郑燕青,仲维卓等.氧化锌纳米晶取向连.人工晶体学报,1999,28(3):244-248.
    [193]施尔畏,陈之战,李汶军等.水热结晶学.北京:科学出版社,2004:222-237.
    [194]田雅娟,陈尔凡,程远杰等.四脚状氧化锌晶须及应用.硅酸盐学报,2000,28(2):165-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700