纳米金刚石和碳纳米管表面纳米涂层制备及结构性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米金刚石和碳纳米管具备碳材料和纳米材料的双重特性,在众多研究领域拥有巨大的应用潜力。但是它们也同时具备了碳材料热稳定性差和纳米材料易团聚的特点,严重阻碍了它们的广泛应用。采用合适的沉积方法对其进行表面改性是解决这一问题的有效途径。此外,还能赋予纳米金刚石和碳纳米管新的物化性能,扩宽其应用范围。本论文在纳米金刚石和碳纳米管表面准原子层沉积镀硅、镀钛,并通过直接氧化处理钛镀层和ZrOCl2?8H2O恒温水解制备氧化钛和氧化锆涂层,实现了纳米金刚石和碳纳米管表面纳米涂层的均匀沉积改性。
     以SiH4为前驱体在纳米金刚石和碳纳米管表面准原子层沉积硅镀层。反应温度从400 ?C升高到500 ?C,硅镀层由晶态变为非晶态,沉积温度提高到600 ?C,镀层又由非晶态变为晶态。500 ?C时,镀层完全由非晶态硅组成,非常均匀光滑,与基体的同形性也最好。单次循环反应周期的镀层平均厚度为1-2 nm,随着循环次数的增加,镀层逐渐增厚。硅镀层完整连续,能显著提高纳米金刚石和碳纳米管在空气中的抗氧化性能,5 nm金刚石和碳纳米管循环沉积10次镀硅后,加热到1300 ?C的氧化失重仅有1.23%和6.68%。
     采用准原子层沉积方法通过H2还原TiCl4在纳米金刚石和碳纳米管表面镀钛。温度较低为650 ?C时,镀层主要是六方相金属钛,棒状纳米晶均匀分布。反应温度升高至750 ?C时,界面反应更容易,镀层主要为立方相碳化钛,由不规则几何形的纳米颗粒组成,镀层比较光滑。随循环次数的增加镀层逐渐增厚,但结构形貌变化不大。纳米金刚石和碳纳米管镀钛后在乙醇溶液中的分散性变好,悬浮液可稳定存放半年不发生明显分层。
     700 ?C、循环沉积5次镀钛的纳米金刚石和碳纳米管在空气中氧化处理20 min获得氧化钛镀层。温度从500 ?C升高到900 ?C时,氧化钛层的结构由锐钛矿逐渐转变为更加稳定的金红石。涂层由球形氧化钛晶粒组成,均匀连续,完整覆盖基体表面,晶粒大小均在10 nm以下。
     以ZrOCl2?8H2O为前驱体,90 ?C长时间恒温水解,在纳米金刚石和碳纳米管表面沉积完全同形的氧化锆涂层,制备出核壳结构的纳米金刚石(碳纳米管)/氧化锆纳米复合材料。氧化锆壳层为单斜相晶体,且涂层厚度随反应时间的延长而增加。
     选用不同循环次数准原子层沉积镀硅和镀钛的纳米金刚石为原料,在1300 ?C、5 GPa准等静压短时烧结90 s,得到SiC、TiC中介结合的纳米金刚石烧结体。循环沉积10次镀硅、镀钛的样品,镀层厚度适中,抗拉强度值也最高。原位反应形成的中介相在纳米金刚石颗粒周围均匀分布,不仅能抑制纳米晶粒的异常长大,而且有利于获得致密的烧结体。
     纳米金刚石表面涂覆氧化钛或氧化锆涂层有效提高了纳米金刚石电极的电化学活性。锐钛矿结构氧化钛涂覆的纳米金刚石粉末电极对NO2?的氧化有明显的催化作用,在污染物的检测和处理方面有很大的应用潜力。Pt-ZrO2/ND电极则能催化甲醇的氧化,比Pt/ND电极具有更好的电催化活性和稳定性,在直接甲醇燃料电池领域非常有发展前景。
Nanodiamonds and carbon nanotubes, which are nano carbon materials, possess great potential in a variety of application fields. However, they also have the poor thermal stability of carbon and the aggregation of nanopowder, significantly embarrassing their application. Modifying the surface of nanodiamonds and carbon nanotubes with proper deposition methods could effectively resolve the above problems. Besides, the nano-coating with new properties would also broaden the application of nanodiamonds and carbon nanotubes. In this thesis, quasi atomic layer deposition method has been used to coat nanodiamonds and carbon nanotubes with silicon and titanium. Titania and zirconia nano-coatings have also been acquired by oxidizing of titanium and hydrolyzing of ZrOCl2?8H2O, respectively.
     Silicon film was coated on nanodiamonds and carbon nanotubes by quasi atomic layer deposition from SiH4. With deposition temperature increasing from 400 to 500 ?C, the structure of the film changes from polycrystalline to amorphous. When the temperature continues to go up from 500 to 600 ?C, the film converts from amorphous to polycrystalline. At 500 ?C, the almost amorphous film is much more even and conformal. The thickness of the coating deposited per cycle is 1-2 nm on average. By repeating the deposition cycle, the thickness of the coating increases. Continuous silicon film could effectively protect nanodiamonds and carbon nanotubes from oxidation. After heating in air to 1300 ?C, the weight loss of 10 times Si-coated 5 nm diamonds and carbon nanotubes are only 1.23% and 6.68%.
     Quasi atomic layer deposition was also utilized to coat nanodiamonds and carbon nanotubes with titanium from gaseous H2 and TiCl4. The coating deposited at 650 ?C is mainly hexagonal phase Ti, consisting of stick-like nanoparticles. While the relatively smooth coating deposited at 750 ?C is almost cubic phase TiC, for higher temperature promotes the interface reaction. By repeating the deposition cycle, the thickness of the coating increases, but the structure and morphology of the coating does not change much. With titanium coating, the dispersible stability of nanodiamonds and carbon nanotubes in ethanol improves dramatically.
     By oxidizing Ti-coated (700 ?C, 5 cycles) nanodiamonds and carbon nanotubes in air for 20 min, titania coating was obtained on the surface. With the oxidizing temperature increasing from 500 to 900 ?C, the structure of the coating changes from anatase to more stable rutile. The entire surface of nanodiamonds and carbon nanotubes is covered by continuous titania coating, which is composed of spherical nanoparticles less than 10 nm.
     Extremely conformal zirconia coating was deposited on nanodiamonds and carbon nanotubes by long time isothermal hydrolyzing of ZrOCl2?8H2O at 90 ?C. Core-shell structural nanodiamonds (carbon nanotubes) / zirconia nanocomposites were successfully prepared. The thickness of the monoclinic phase zirconia coating increases with the hydrolyzing time.
     SiC and TiC bonded nanodiamond compacts were sintered at 1300 ?C, 5 GPa for 90 s from silicon and titanium coated nanodiamonds deposited by different cycles. The tensile strength of the compacts sintered from 10 times deposited samples is the highest for the proper thickness of the coating. The bonding phase formed in situ distributes homogeneously among the nanodiamond particles, which could not only prevent the nanoparticle from abnormal grain growth but also lead to the sintering of the compact.
     Coating nanodiamonds with titania or zirconia could improve the electrochemical activity of nanodiamond electrodes. Anatase coated nanodiamond powder electrode could catalyse the oxidation of NO2?, which would possess great potential in detecting and treating pollutant. Pt-ZrO2/ND electrode, more active and stable than Pt/ND electrode, could catalyse the oxidation of methanol, which would be candidate in direct methanol fuel cells.
引文
1 K. T. Lau, D. Hui. The Revolutionary Creation of New Advanced Materials - Carbon Nanotube Composites. Composite: Part B, 2002, 33: 264.
    2王茂章.第三届全国新型炭材料学术研讨会, 1995, 1.
    3王光祖.纳米金刚石物理化学性质的研究.超硬材料与工程, 2001, 2: 4.
    4 A. I. Lyamkin, E. A. Petrov, A. P. Ershov, G. V. Sacovich, A. M. Staver, V. M. Titov. Production of Diamond from Explosives (in Russian).ДАНССР, 1988, 33: 705-706.
    5 N. R. Greiner, D. S. Phillips, J. D. Johnson, F. Volk. Diamonds in Detonation Soot. Nature, 1988, 333(2): 440-442.
    6卢炳秀,丁忠修.粉碎法纳米金刚石的应用.珠宝科技, 2004, 5: 47.
    7相英伟.超细金刚石粉末的显微结构和热稳定性.金刚石与磨料磨具工程, 1999, 110: 5-9.
    8邹芹.纳米金刚石结构、表面状态分析及其处理方法. [燕山大学工学硕士学位论文]. 2004: 13-17.
    9冶银平,陈建敏,徐康等.含纳米金刚石的复合镍刷镀层的摩擦学特性.表面技术, 1996, 25(4): 27-29.
    10杨冬青,张华堂,伶晓辉等.纳米金刚石复合镀铬层的摩擦学性能.金属热处理, 2002, 27(6): 15-18.
    11王光祖.纳米结构金刚石发展研讨会文集.杭州, 1997, 7.
    12 G. V. akavich, et al. Zhurnal Vsesoyznogo Khimicheskogo Obshchestvaim. O. I. Mendeleeva, 1990, 5: 600-602.
    13 I. K. hepovestskii, et al. Effect of Metal Lubricants Containing Ultradisperse Diamond on Wear Resistance Elements. Sverkhtverd Mater., 1994(3): 62-63.
    14 N. L. Chkhalo, M. V. Fedorchenko, E. P. Krulyakov, et al. Ultradispersed Diamond Powders of Detonation Nature for Polishing X-Ray Mirrors. Nucl. Instr. Methods Phys. Res. A, 1995, 359: 155-156.
    15恽寿榕,黄风雷,马峰等.超微金刚石—二十一世纪新材料.世界科技研究与发展, 2000, 22(1): 39-46.
    16金洙吉,张锡水,王离钦等.磁流体研磨法研磨陶瓷球的试验研究.哈尔滨工业大学学报, 1995, 27(3): 130-134.
    17雏建斌,胡志孟,高峰等.中华人民共和国专利, CN1304968.
    18 W. Zhu, G. P. Kochanski, S. Jin. Low-Field Electron Emission from Undoped Nanostructured Diamond. Science, 1998, 282(20): 1471-1473.
    19 G. P. Bogatyreva, M. A. Marinich, E. V. Ishchenko, V. L. Gvyazdovskaya, G. A. Bazalii, N. A. Oleinik. Application of Modified Nanodiamonds as Catalysts of Heterogeneous and Electrochemical Catalyses. Phys. Sol. State, 2004, 46: 738-741.
    20 T. Tsoncheva, V. Mavrodinova, L. Ivanova, M. Dimitrov, S. Stavrev, C. Minchev. Nickel Modified Ultrananosized Diamonds and Their Applications as Catalysts in Methanol Decomposition. J. Mol. Catal. A, 2006, 259: 223-230.
    21 T. Tsoncheva, M. Dimitrov, L. Ivanova, D. Paneva, D. Mitev, B. Tsintsarski, I. Mitov, S. Stavrev, C. Minchev. Iron Oxide Modified Diamond Blends Containing Ultradispersed Diamond. J. Colloid Interface Sci., 2006, 300: 183-189.
    22 X. Kong, L. C. Huang, S. C. V. Liau, C. C. Han, H. C. Chang. Polylysine-Coated Diamond Nanocrystals for Maldi-Tof Mass Analysis of DNA Oligonucleotides. Anal. Chem., 2005, 77: 4273-4277.
    23 I. A. Novoselova, E. N. Fedoryshena, E. V. Panov, A. A. Bochechka, L. A. Romanko. Electrochemical Properties of Compacts of Nano- and Microdisperse Diamond Powders in Aqueous Electrolytes. Phys. Solid State, 2004, 46: 748-750.
    24 J. B. Zang, Y. H. Wang, S. Z. Zhao, L. Y. Bian, J. Lu. Electrochemical Properties of Nanodiamond Powder Electrodes. Diam. Relat. Mater., 2007, 16: 16-20.
    25 L. H. Chen, J. B. Zang, Y. H. Wang, L. Y. Bian. Electrochemical Oxidation of Nitrite on Nanodiamond Powder Electrode. Electrochimica Acta, 2008, 53: 3442-3445.
    26 W. Zhao, J. J. Xu, Q. Q. Qiu, H. Y. Chen. Nanocrystalline Diamond Modified Gold Electrode for Glucose Biosensing. Biosens. Biotechnol., 2006, 22: 649-655.
    27 A. Kruger, Y. Liang, G. Jarre, J. Stegk. Surface Functionalization of Detonation Nanodiamond Suitable for Biological Applications. J. Mater. Chem., 2006, 11: 2322-2328.
    28张英,袁若,柴雅琴等.纳米金修饰玻碳电极测定邻苯二酚.工作简报, 2007, 43(3): 281-283.
    29姚佳良,彭红瑞,张志琨.纳米碳管的性质及应用技术.青岛化工学院学报, 2002, 23(2): 39-43.
    30 N. Kossovsky, A. Gelman, H. J. Hnatyszyn, et al. Surface-Modified Diamond Nanoparticles as Antigen Delivery Vehicles. Bioconjugate Chem., 1995, 6: 507-511.
    31 H. Makita, K. Nishomura, N. Jiang, et al. Ultrahigh Particle Density Seeding with Nanocrystal Diamond Particles. Thin Solid Film, 1996, 281(282): 279-281.
    32三岛直志,深贝俊夫,河崎佳明.电子写真感光体.日本公开特许,平728267, 1995.
    33文潮,关锦清,刘晓新,李迅.爆轰合成纳米金刚石的生产及应用研究进展.工业金刚石, 2007, 5: 33-41.
    34王光祖,张运生,郭留希,赵清国,刘杰.纳米金刚石的应用.金刚石与磨料磨具工程, 2003, 4: 41-44.
    35 S. Iijima. Helical Microtubules of Graphitic Carbon. Nature, 1991, 354: 56-58.
    36刘吉平,孙洪强.碳纳米材料.北京:科学出版社, 2004, 3: 32-40.
    37 T. W. Ebbesen, P. M. Ajayan. Large Scale Synthesis of Carbon Nanotube. Nature, 1992, 358: 220.
    38 S. Amelinckx, X. B. Zhang, D. E. Bernaerts, et al. A Formation Mechanism for Catalytically Grown Helix-Shaped Graphite Nanotubes. Science, 1994, 265: 635.
    39 S. Bandow, S. Asaka, Y. Saito, et al. Phys. Rev. Lett., 1998, 80(17): 3779.
    40 A. Peigney, C. H. Laurent, E. Flahaut, R. Bacsa, A. Rousset. Specific Surface Area of Carbon Nanotubes and Bundles of Carbon Nanotubes. Carbon, 2000, 39: 507.
    41 G. H. Cao, T. Cagin, W. A. Goddard. Energetics, Structure, Mechanical and Vibrational Properties of Single-Walled Carbon Nanotubes. Nanotechnology, 1998, 9: 184.
    42杨全红.纳米碳管的表面空隙及其储氢性能关系. [博士后工作报告].沈阳:中国科学院金属研究所, 2001: 15-18.
    43 M. M. Treacy, T. W. Ebbesen, J. M. Gibson. Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotube. Nature, 1996, 381: 678.
    44 W. E. Wong, P. E. Sheehan, C. M. Lieber. Science, 1997, 277: 1971.
    45 E. T. Thostenson, Z. Ren, T. Chou. Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review. Compos. Sci. Technol., 2001, 61: 1899-1912.
    46 K. T. Lau, D. Hui. Effectiveness of Using Carbon Nanotubes as Reinforcements for Advanced Composite Structures. Carbon, 2002, 40: 1597-1617.
    47 X. L. Xie, Y. W. Mai, X. P. Zhou. Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix: A Review. Mat. Sci. Eng. R, 2005, 49: 89-112.
    48 W. A. Curtin, B. W. Sheldon. CNT-Reinforced Ceramics and Metals. Materials Today, 2004, 11: 44-49.
    49 H. Dai. Carbon Nanotubes: Opportunities and Challenges. Surf. Sci., 2002, 500: 218-241.
    50 L. Zhu, Y. Sun, D. W. Hess, C. P. Wong. Well-Aligned Open-Ended Carbon Nanotube Architectures: An Approach for Device Assembly. Nano Lett., 2006, 6(2): 243-247.
    51 K. A. Williams, P. C. Eklund. Chem. Phys. Lett., 2000, 320: 352.
    52 C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, M. S. Dresselhaus. Science, 1999, 286: 1127.
    53 S. M. Lee, Y. H. Lee. Appl. Phys. Lett., 2000, 76(20): 2877.
    54 H. N. G. Wadley, X. Zhou, R. A. Johnson, M. Neurock. Mechanisms, Models and Methods of Vapor Deposition. Progress in Materials Science, 2001, 46: 329-377.
    55刘吉平,廖莉玲.无机纳米材料.北京:科学出版社, 2003: 84-93.
    56 M. Leskel?, M. Ritala. Atomic Layer Deposition (ALD): From Precursors to Thin Film Structures. Thin Solid Films, 2002, 409: 138-146.
    57 M. D. Groner, J. W. Elam, F. H. Fabreguette, S. M. George. Electrical Characterization of Thin Al2O3 Films Grown by Atomic Layer Deposition on Silicon and Various Metal Substrates. Thin Solid Films, 2002, 413: 186-197.
    58 J. Kim, H. Hong, K. Oh, C. Lee. Properties Including Step Coverage of TiN Thin Films Prepared by Atomic Layer Deposition. Appl. Surf. Sci., 2003, 210: 231-239.
    59 Y. S. No, T. W. Kim, H. S. Lee, H. L. Park. Microstructural and Interband Transition Properties in CdTe Quantum Dots Grown on ZnTe Buffer Layers by Using Atomic Layer Epitaxy. Applied Surface Science, 2005, 243: 143-147.
    60 Y. S. Kim, S. J. Yun. Studies on Polycrystalline ZnS Thin Films Grown by Atomic Layer Deposition for Electroluminescent Applications. Applied Surface Science, 2004, 229: 105-111.
    61国外资料汇编.硅烷法制取高纯硅.北京:科学出版社, 1972: 116.
    62 C. Sasaoka, A. Usui. Self-Limiting Adsorption of Thermally Cracked SiCl2H2 on Si Surfaces. Applied Surface Science, 1994, 82/83: 348-353.
    63 C. M. Chiang, J. E. Rowe, R. A. Malic, A. Sen, M. L. Steigerwald, A. P. Mills. A New CVD Reaction for Atomic Layer Deposition of Silicon. Applied Surface Science, 1996, 107: 189-196.
    64 H. Akazawa. Evaluation of Thin Si Films Grown on Ge (100) by Synchrotron-Radiation-Excited Atomic Layer Epitaxy and Chemical Vapor Deposition from Si2H6. Journal of Crystal Growth, 1997, 173: 343-351.
    65 K. Ohtsuka, T. Yoshida, T. Oizumi, A. Murai, T. Kurabayashi, J. Nishizawa. Low-Temperature Deposition of Si and SiO2 Thin-Film Layers in an Ultrahigh Vacuum System. Journal of Crystal Growth, 2000, 209: 331-334.
    66 Y. Suda, N. Hosoya, K. Miki. Si Submonolayer and Monolayer Digital Growth Operation Techniques using Si2H6 as Atomically Controlled Growth Nanotechnology. Applied Surface Science, 2003, 216: 424-430.
    67 H. Rauscher. The Interaction of Silanes with Silicon Single Crystal Surfaces: Microscopic Processes and Structures. Surface Science Reports, 2001, 42: 236.
    68朱自莹,顾仁敖,陆天虹.拉曼光谱在化学中的应用.沈阳:东北大学出版社, 1998: 202.
    69 P. W. Chen, Y. S. Ding, Q. Chen, F. L. Huang, S. R. Yun. Spherical Nanometer-Sized Diamond Obtained from Detonation. Diamond and Related Materials, 2000, 9: 1722-1725.
    70 S. Prawer, K. W. Nugent, D. N. Jamieson, J. O. Orwa, L. A. Bursill, J. L. Peng. The Raman Spectrum of Nanocrystalline Diamond. Chemical Physics Letters, 2000, 332: 93-97.
    71 J. Birrell, J. E. Gerbi, O. Auciello, J. M. Gibson, J. Johnson, J. A. Carlisle. Interpretation of the Raman Spectra of Ultrananocrystalline Diamond. Diamond & Related Materials, 2005, 14: 86-92.
    72 K. Schulmeister, W. Mader. TEM Investigation on the Structure of Amorphous Silicon Monoxide. J Non-Cryst Solids, 2003, 320: 143-150.
    73程光煦.拉曼布里渊散射—原理及应用.北京:科学出版社, 2001: 244.
    74 V. N. Popov. Carbon Nanotubes: Properties and Application. Materials Science and Engineering R, 2004, 43: 61-102.
    75 N. S. Xu, J. Chen, S. Z. Deng. Effect of Heat Treatment on the Properties of Nano-Diamond under Oxygen and Argon Ambient. Diam. Relat. Mater., 2002, 11: 249-256.
    76 F. Cataldo, A. P. Koscheev. A Study on the Action of Ozone and on the Thermal Stability of Nanodiamond. Fullerenes Nanotubes Carbon Nanostruct., 2003, 11: 201-218.
    77 X. G. Li, I. M. Hsing. The Effect of the Pt Deposition Method and the Support on Pt Dispersion on Carbon Nanotubes. Electrochim. Acta, 2006, 51: 5250-5258.
    78 D. J. Guo, H. L. Li. Highly Dispersed Ag Nanoparticles on Functional MWNT Surfaces forMethanol Oxidation in Alkaline Solution. Carbon, 2005, 43: 1259-1264.
    79何丽君,王春明.超薄铜膜包覆的金刚石纳米复合粉体制备与表征.化学学报, 2004, 62(1): 34-36.
    80 F. Kokai, A. Koshio, M. Shiraishi, T. Matsuta, S. Shimoda, M. Ishihara, Y. Koga, H. Deno. Modification of Carbon Nanotubes by Laser Ablation. Diam. Relat. Mater., 2005, 14: 724-728.
    81 Y. Zhang, N. W. Franklin, R. J. Chen, H. J. Dai. Metal Coating on Suspended Carbon Nanotubes and Its Implication to Metal-Tube Interaction. Chem. Phys. Lett., 2000, 331: 35-41.
    82 Y. M. Cho, C. W. Kim, H. S. Moon, Y. M. Choi, S. H. Park, C. K. Lee, S. W. Han. Electronic Structure Tailoring and Selective Adsorption Mechanism of Metal-Coated Nanotubes. Nano Lett., 2008, 8(1): 81-86.
    83 L. J. Pan, T. Shoji, A. Nagataki, Y. Nakayama. Field Emission Properties of Titanium Carbide Coated Carbon Nanotube Arrays. Adv. Eng. Mater., 2007, 9(7): 584-587.
    84 T. Yildirim, S. Ciraci. Titanium-Decorated Carbon Nanotubes as a Potential High-Capacity Hydrogen Storage Medium. Phys. Rev. Lett., 2005, 94(17): 175501.
    85 R. Mota, S. B. Fagan, A. Fazzio. First Principles Study of Titanium-Coated Carbon Nanotubes as Sensors for Carbon Monoxide Molecules. Surf. Sci., 2007, 601: 4102-4104.
    86 G. A. Chiganova, V. A. Boonger, A. S. Chiganov. Electrophoretic Technology of Hydrosols of Ultradispersed Diamond and Modification of Its Surface. Colloid J., 1993, 55(5): 774-775.
    87 L. V. Agibalova, A. P. Voznyakovskii, V. Y. Dolmatov. Structure of Suspensions of Explosion-Synthesized Ultradispersed Diamonds. Sverkhtv Mater., 1998, (4): 87-89.
    88 S. R. Mishra, H. S. Rawat, S. C. Mehendale, et al. Optical Limiting in Single-Walled Carbon Nanotube Suspensions. Chemical Physics Letters, 2000, 317: 5102514.
    89莫畏,邓国珠,陆德祯等.钛冶金.北京:冶金工业出版社, 1979: 14-15.
    90马慧娟.钛冶金学.北京:冶金工业出版社, 1982: 21-22.
    91 J. G. Yu, Y. R. Su, B. Cheng, M. H. Zhou. Effects of PH on the Microstructures and Photocatalytic Activity of Mesoporous Nanocrystalline Titania Powders Prepared via Hydrothermal Method. Journal of Molecular Catalysis A: Chemical, 2006, 258: 104-112.
    92 M. S. Zhang, W. F. Zhang, Z. Yin. Phase Transition and Phonon Confinement Effect in Nanophase Titanium Dioxide.光散射学报, 2001, 13(2): 95-101.
    93 S. L. Shi, J. Liang. Electronic Transport Properties of Multiwall Carbon Nanotubes/Yttria Stabilized Zirconia. J. Appl. Phys., 2007, 101(2): 023708.
    94 R. Martel. Nanotube Electronics: High-Performance Transistors. Nat. Mater., 2002, 1(4): 203-204.
    95 Y. H. Yang, Z. J. Wang, M. H. Yang, J. S. Li, F. Zheng, G. L. Shen, R. Q. Yu. Electrical Detection of Deoxyribonucleic Acid Hybridization Based on Carbon-Nanotubes/Nano Zirconium Dioxide/Chitosan-Modified Electrodes. Anal. Chim. Acta, 2007, 584: 268-274.
    96 T. Y. Luo, T. X. Liang, C. S. Li. Addition of Carbon Nanotubes during the Preparation of Zirconia Nanoparticles: Influence on Structure and Phase Composition. Powder Technol., 2004, 139:118-222.
    97 F. Lupo, R. Kamalakaran, C. Scheu, N. Grobert, M. Rühle. Microstructural Investigations on Zirconium Oxide-Carbon Nanotube Composites Synthesized by Hydrothermal Crystallization. Carbon, 2004, 42: 1995-1999.
    98 Y. Shan, L. Gao. Synthesis and Characterization of Phase Controllable ZrO2-Carbon Nanotube Nanocomposites. Nanotechnology, 2005, 16: 625-630.
    99 L. Q. Jiang, L. Gao. Fabrication and Characterization of ZnO-Coated Multi-Walled Carbon Nanotubes with Enhanced Photocatalytic Activity. Mater. Chem. Phys., 2005, 91: 313-316.
    100 Y. X. Liang, Y. J. Chen, T. H. Wang. Low-Resistance Gas Sensors Fabricated from Multiwalled Carbon Nanotubes Coated with a Thin Tin Oxide Layer. Appl. Phys. Lett., 2004, 85: 666-668.
    101 D. B. Farmer, R. G. Gordon. Atomic Layer Deposition on Suspended Single-Walled Carbon Nanotubes via Gas-Phase Noncovalent Functionalization. Nano Lett., 2006, 6(4): 699-703.
    102 G. Korneva, H. H. Ye, Y. Gogotsi, D. Halverson, G. Friedman, J. C. Bradley, K. G. Kornev. Carbon Nanotubes Loaded with Magnetic Particles. Nano Lett., 2005, 5(5): 879-884.
    103 J. Gubicza, T. Ungár, Y. Wang, G. Voronin, C. Pantea, T. W. Zerd. Microstructure of Diamond-SiC Nanocomposites Determined by X-Ray Line Profile Analysis. Diamond & Related Materials, 2006, 15: 1452-1456.
    104 C. Pantea, G. A. Voronin, T. W. Zerda, J. Z. Zhang, L. P. Wang, Y. B. Wang, T. Uchida, Y. S. Zhao. Kinetics of SiC Formation during High P-T Reaction between Diamond and Silicon. Diamond & Related Materials, 2005, 14: 1611-1615.
    105 G. A. Voronin, T. W. Zerda, J. Qian, Y. Zhao, D. He, S. N. Dub. Diamond-SiC Nanocomposites Sintered from a Mixture of Diamond and Silicon Nanopowders. Diamond and Related Materials, 2003, 12: 1477-1481.
    106瞿光辉.超硬材料烧结体制造.郑州:全国磨料磨具行业情报网, 1993: 168.
    107王亚珍,陈飞,吴天奎. Nano-TiO2修饰金电极对NO2?的电化学检测. Journal of Jianghan University, 2005, 33(4): 26-28.
    108 Y. D. Zhao, W. D. Zhang, Q. M. Luo, S. F. Y. Li. The Oxidation and Reduction Behavior of Nitrite at Carbon Nanotube Powder Microelectrodes. Microchemical Journal, 2003, 75: 189-198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700