纳米碳纤维的批量制备技术与装置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米碳纤维(简称CNFs)由于其纳米尺度的影响具有优异的物理和化学特性,可用作航天、航空、国防军工尖端技术领域的新材料和民用工业更新换代的新材料。因此,低成本、大批量纳米碳纤维的制备及应用成为世界各国重点研究的项目,期望能占领该技术领域的制高点。我国目前批量生产纳米碳纤维的技术不够成熟,开展纳米碳纤维生长工艺以及反应装置的研究对于纳米碳纤维工业化生产具有重要意义。本文以化学气相沉积(简称CVD)原理为基础,设计研制了双温卧式反应炉和立式沸腾炉;采用溶胶-凝胶和低温自蔓延燃烧技术探索研究了低成本、高效率NiO/MgO催化剂前驱体的制备方法,并以自制的双温卧式反应炉和立式沸腾炉为反应设备,以MgO负载Ni、纳米Ni和二茂铁的乙醇溶液为催化剂制备纳米碳纤维,重点研究了工艺参数对纳米碳纤维产率和结构的影响。
     首先,设计研制了双温卧式反应炉和立式沸腾炉。双温卧式反应炉采用两段式加热,可控制温度梯度并适合多种气氛工作,两段发热元件可以单独或联合操作对炉膛加热,并且能够准确获取并控制蒸发区和生长区的温度,从而能够达到生长不同形态的纳米材料的目的。立式沸腾炉反应器分别采用螺杆送料装置和电子蠕动泵装置将固态和液态催化剂连续导入立式炉中,解决现有的反应装置无法同时对不同形态催化剂连续投放的难题,以达到纳米碳纤维的批量生产。
     其次,低成本、高效率的催化剂是批量生产纳米碳纤维的关键步骤。本文以柠檬酸为还原剂,硝酸镁和硝酸镍为氧化剂,采用溶胶-凝胶和低温自蔓延燃烧制备出NiO/MgO催化剂前驱体。研究了柠檬酸与硝酸盐的配比对催化剂前驱体粒径和自蔓延燃烧的起燃温度的影响,并通过与直接焙烧所得催化剂进行比较,研究了温度对催化剂的烧结性能的影响,以及不同还原温度条件下NiO/MgO催化剂前驱体的催化活性规律;提出了柠檬酸络合低温自蔓延燃烧合成NiO/MgO催化剂前驱体的形成机理。研究结果表明:随柠檬酸与硝酸盐摩尔配比从1:1增加1:4时,催化剂前驱体的颗粒尺寸逐渐减小,自蔓延燃烧起燃温度从200℃升高到350℃。烧结性能的研究表明:直接焙烧所得的催化剂随焙烧温度的升高,催化剂前驱体容易团聚,直至熔结成大颗粒,失去催化活性,而低温自蔓延燃烧法制备催化剂前驱体具有合成温度低,能耗少,产物团聚少,催化效率高等特点,更适合于纳米碳纤维的批量制备。
     第三,以自制的双温卧式反应炉为实验设备,NiO/MgO为催化剂前驱体,研究了影响纳米碳纤维产率的主要因素。研究表明:柠檬酸与硝酸盐的摩尔配比、Ni的载荷量、反应时间、反应温度等对产率具有重要影响。通过对这些影响因素的分析可以找出最佳催化剂前驱体和纳米碳纤维的制备参数。NiO/MgO前驱体的配比为:Ni的载荷量为30~40wt%,硝酸镁和硝酸镍与柠檬酸的摩尔比为1:2。纳米碳纤维的生长工艺参数为:以NiO/MgO为催化剂前驱体,通入Ar+H2(10%)还原约30min,Ar+H2(10%)与CH_4流量比控制在3:1或4:1,纳米碳纤维的生长温度600℃左右,生长时间40~60min。这些研究参数为在立式沸腾炉中连续大量制备纳米碳纤维提供了很好的实验基础。
     第四,以自制立式沸腾炉为反应设备,以最佳摩尔配比的NiO/MgO催化剂前驱体、纳米Ni和二茂铁酒精溶液为催化剂,研究了立式炉中总气流量、原料气空速、风扇转速、催化剂种类等对纳米碳纤维产率的影响,探索了以NiO/MgO为催化剂前驱体进行大量制备纳米碳纤维的工艺,对比了各种催化剂制备的纳米碳纤维的宏观形貌和微观结构。研究表明以Ni/MgO为催化剂,原料气总流量控制在0.8~1.0 m3/h,原料气空速选择范围约为0.16~0.2 m3/(g.h)之间,搅拌风扇转速在1000~1500rpm时纳米碳纤维的产率最高可达每克负载Ni催化剂可以生产14.5g,完全可以达到或超过单炉产量100g/h的生产能力。以纳米Ni作为催化剂时,沸腾炉中纳米镍粉处于悬浮状态,分散性好,不易团聚,但使用纳米Ni作为催化剂价格昂贵。使用二茂铁的乙醇溶液为催化剂制备纳米碳纤维存在明显的不足,铁颗粒的粒径不好控制、反应温度太高(900~1200℃),能耗较大。
     第五,研究了石墨化处理工艺对纳米碳纤维微结构和性能的影响,并提出了纳米碳纤维的石墨化机理。HRTEM、Raman、XRD、NEXAFS以及TGA的分析研究表明通过2800℃的热处理,石墨化纳米碳纤维中非晶碳的含量大幅度降低,晶面间距减小,石墨化程度明显提高,抗氧化温度由617℃升高到857℃。
     本文研究表明,采用立式沸腾炉作为反应设备, NiO/MgO为催化剂前驱体生产纳米碳纤维,具有低成本、低能耗、节约人力、工艺简单、重复性好的特点,是较理想的工业化生产的方法。
Carbon nanofibers (CNFs) have many unique physical and chemical properties due to the nanometer scale effect,which can be applied in aerospace, aviation, national defense, military and civil industry technology field. Therefore bulk production and application of CNFs at a low cost will become key research. At present, large scaled production of CNFs is not available for our country.
     In this paper, a horizontal double-temperature-zone reaction furnace and a vertical ebullition stove were designed to synthesize CNFs on large scale during the chemical vapor deposition (CVD) process. The cheap and efficient NiO/MgO catalyst precursor has been prepared by a sol-gel self-propagation process in low temperature. CNFs have been synthesized using the double-temperature horizontal reaction furnace and the vertical ebullition furnace as the reaction equipment, Ni / MgO, nano-Ni and ferrocene ethanol solution as catalyst. The effects of technological parameters on the yield and structure of the CNFs have been investigated in detail.
     Firstly, the horizontal double-temperature zone reaction furnace and the vertical ebullition stove were designed. The horizontal double-temperature zone furnace consists of a two stage heating system to control the temperature which is suitable for various gas atmospheres. The furnace can be heated by the two-stage heating element separately or jointly in order to precisely control temperatures of the evaporation and the growth zone, which can synthesize different nanoscale materials with different morphologies. The vertical ebullition stove has two kinds of feeding modes for the bluk production of CNFs. The screw feeding setup and electronic wriggling pump setup can continuously import the solid catalyst and the precursors of liquid catalysts to the vertical reactor, respectively. Thus the large scale production of CNFs is finally achieved by controlling the equipment parameters.
     Secondly, catalysts with low cost and high efficiency are the key step for the mass production of CNFs. NiO/MgO catalyst precursors have been prepared using the citrate as reduction agent, Mg(NO3)2 and Ni(NO3)2 as oxidizing agents by sol-gel and low temperature self-propagating combustion methods. The effects of the ratio of citrate and salt nitrate on the particle size of the catalyst precursors and combustion temperature of the self-propagating combustion have been analyzed. The effect of the temperature on the sintering ability of the catalysts, and the catalyst activity regularity of the NiO/MgO catalyst precursors at different reduction temperature have been investigated by the comparison of the catalyst obtained by the direct sintering. At the same time, the formation mechanism of the Ni/MgO catalyst precursors synthesized by citrate salt self-propagating combustion process has also been proposed. The particle size of the catalyst precursors gradually decreases and combustion temperature increases from 200℃to 350℃with the decrease of the mole ratio of the nitrate slat with citrate acid from 1:1 to 1:4. The catalyst precursor by the direct sintering process aggregates easily to become large particles and lose the catalyst activity with the increase of the sintering temperature. However, the method for the synthesis of catalyst precursors by the low temperature self-propagating method takes great advantages of low synthesis temperature, low power, small aggregation and high catalyst efficiency which is suitable for the mass preparation of CNFs.
     Thirdly, the parameters on the yield of the CNFs have been investigated using the horizontal double-temperature zone reaction furnace as the reaction equipment and NiO/MgO as catalyst precursors. The results show that the ratio of salt nitrate and citrate acid, the loading amounts of nickel in catalyst precursor, reaction time and reaction temperature have important roles in the yield of the CNFs. The best synthesis parameters for the catalyst precursors and CNFs have been obtained. The loading amount of Ni is 30~40wt%, the molar ratio of magnesium nitrate and nickel nitrate with citrate acid is 1: 2. The parameters for the growth of the CNFs are as follows: NiO/MgO is the catalyst precursor, Ar+H2(10%)is provided as the reducing agent for about 30mins, the flow ratio of Ar+H2(10%)with CH4 is 3:1 or 4:1, and the growth temperature of the CNFs is about 600℃for about 40-60min. A very good experimental foundation for continuous mass production of CNFs by use of vertical ebullition stove has been provided by these results.
     Fourthly, the roles of the total gas feed ratio, gas airspeed of the starting materials, rotational speed of the fan, different kinds of catalysts on the yield ratio of the CNFs have been explored using the vertical ebullition furnace as the reaction equipment, Ni / MgO, nanoscale Ni and ferrocene ethanol solution as the catalysts. The morphologies and microstructures of the CNFs synthesized by different catalysts have been compared. The yield of the CNFs is the highest with up to 14.5 g CNFs using 1 g Ni catalyst which can exceed the production ability of 100 g/h when controlling the total gas feed ratio of the starting materials as 0.8~1.0 m3/h, gas airspeed of the starting materials as 0.16~0.2 m3/(g.h) and the rotational speed of the fan as 1000~1500 rpm. The efficiency of the catalysts can be improved increasing the yield of the CNFs using the nanoscale Ni as the catalyst owing to the suspension state of nanoscale Ni in the vertical ebullition furnace with good dispersion. However, the nanosale Ni is expensive. Using the ferrocene ethanol solution as the catalysts precursor takes the disadvantage of the broad Fe particle size distribution. In addition, the growth temperature of the CNFs is high (900-1200℃) with high power consumption.
     Fifthly, the microstructures of carbon nanofibers affected by graphitization process have been analyzed by high resolution transmission electron microscopy (HRTEM), Raman spectra, X-ray diffraction (XRD), near-edge-X-ray absorption fine structure spectroscopy (NEXAFS) and thermogravimetric analysis (TGA). The results show that the content of the amorphous carbon and the spacing between graphite sheets decrease obviously, the oxidation-resistance temperature of the CNFs increases from 617℃to 857℃after heat treatment at 2800℃. The graphitization mechanism including four stages was also proposed.
     In the paper, a simple, economization, low cost, low energy consumption and good reproducibility method is demonstrated to the large production of CNFs in the vertical ebullition stove with NiO/MgO as catalyst precursors. It is a promising method for the mass production of CNFs.
引文
[1]贺福.碳纤维及其应用技术.北京:化学工业出版社, 2004 ,197-199.
    [2] Kroto H W, Heath J R,O'Brien R F,et al. C60:Buckminsterfullerene. Nature, 1985, 318 (14): 162-163.
    [3] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56-58.
    [4] Rodriguez N M, Chambers A, Baker R T K. Catalytic Engineering of carbon nanostructures. Langmuir, 1995, 11: 3862-3866.
    [5] Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis. Applied Catalysis A: General, 2003, 253: 337-358.
    [6] Gulijk C V, De Lathouder K M, Haswell R. Characterizing herring bone structures in carbon nanofibers using selected area electron diffraction and dark field transmission electron microscopy. Carbon, 2006, 44 (14): 2950-2956.
    [7] Gruen D M. Nanocrystalline diamond fitms. Annu Rev Mater Sci, 1999, 29: 211-259
    [8] Ajayan P M , Ebbesen T. Nanometre-size tubes of carbon. Rep Prog Phys, 1997, 60: 1025-1062.
    [9] wei B, Zhang J, Liang J, et al. The mechanism of phase transformation from carbon nanotube to diamond. Carbon, 1998, 36 (7-8): 997-1001.
    [10] Hou Y Q, Zhuang D M, Zhang G, et al. Preparation of diamond films by hot filament chemical vapor deposition and nucleation by carbon nanotubes. Appl Surf Sci, 2002:185 (3-4): 303-308.
    [11] Zhu Y Q, Sekine T, Kobayashi T, et al. Collapsing carbon nanotubes and diamond formation under shock waves. Chem Phys Lett, 1998, 287: 689–693.
    [12] Yusa H. Nanocrystalline diamond directly transformed from carbon nanotubes under high pressure. Diamond Relat Mater, 2002, 11(1): 87-91.
    [13] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696) : 666-669.
    [14] Rodriguez N M. A review of Catalytically grown carbon nanofibers. J Mater Res, 1993, 8: 3233-3282.
    [15] Oberlin A, Endo M, Koyama T. Filamentous growth of carbon through benzene decomposition. J Cryst Growth, 1976, 32: 335-349.
    [16] Tibbetts G G, Beetz C P Jr. Mechanical properties of vapour-grown carbon fibers.J Phys D: Appl Phys, 1987, 20: 292-297.
    [17] Tibbetts G G, Endo M, Beetz C P Jr. Carbon Fibers Grown From the Vapor Phase: a Novel Material. SAMPE J, 1986, 22 (5): 30-350.
    [18] Downs W B, Baker R T K. Novel Carbon Fiber: Carbon Filament Structures Carbon , 1991, 29 ( 8): 1173-1179.
    [19] Wang Y , Santiago Aviles J J. Large negative magnetoresistance and two-dimen sional weak localization in carbon nanofibers fabricated using electrospinning. J Appl Phys, 2003, 94 (3): 1721-1727.
    [20] Zenis Y, Wen Y著.谢欣宇译.可用作纳米纤维复合材料的连续纳米碳纤维.国外纺织技术, 2003, 6: 9-11.
    [21]萧弘毅,陈联泰.极细碳纤维的开发及应用. http://www.tmmfa.org.tw/出版物/magazine/第32期/3257.htm. 2000-12-01.
    [22] Zussman E, Chen X, Ding W, et al. Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon, 2005, 43 (10): 2175-2185
    [23] Rutledge S L, Shaw H C, Benavides J B, et al. Self assembly and correlated properties of electrospun carbon nanofibers. Diamond and Related Materials, 2006, 15 (4-8): 1070-1074.
    [24] Jeong J S, Moon J S, Jeon S Y, et al. Mechanical properties of electrospun PVA/MWNTs composite nanofibers. Thin Solid Films, 2007, 515 (12): 5136-5141.
    [25] Fennessey S F, Farris R J. Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns. Polymer, 2004, 45 (12): 4217-4225.
    [26] Hwang J Y, Lee S H, Sim K S, et al. Synthesis and hydrogen storage of carbon nanofibers. Synthetic Metal, 2002,126: 81-85.
    [27] Tang Y H, Wang N, Zhang Y F, et al. Synthesis and characterization of amorphous carbon nanowires. Appl Phys Lett, 1999, 75 (19): 2921-2923.
    [28]朱宏伟,吴德海,徐才录.碳纳米管.北京:机械工业出版社, 2003, 46-47
    [29] Terrones M. Carbon Nanotubes and Related Structures: New materials for the Twenty-first CenturyCarbon. 2000, 38 ( 5): 787-788.
    [30] Hammel E, Tang X, Trampert M, et al. Carbon nanofibers for composite applications. Carbon, 2004, 42: 1153-1158.
    [31]舒卫国.碳纤维复合材料在民品中的应用.纤维复合材料, 2004, 3: 54-59.
    [32] Chen C F, Lin C L, Wang C M. Carbon monoxide-assisted frowth of carbonnanotubes. Appl Phys Lett, 2003, 82 (15): 2515-2517.
    [33] Jiang N, Koie R, Inaoka T, et al. Carbon nanofibers synthesized by decomposition of alcohol at atmospheric pressure. Appl Phys Lett, 2002, 81 (3): 526-528.
    [34] Kuno T I, Ryu J T, Oyama T, et al. Characterization of low temperature growthcarbon nanofibers synthesized by using plasma enchanced chemical vapor desposition. Vacuum, 2002, 66: 341-345.
    [35] Merkulov V I, Melechko A V, Guillorn M A, et al. Controlled alignment of carbon nanofibers in a large-scale synthesis process. Appl Phys Lett, 2002, 80 (25): 4816-4818.
    [36] Hash D, Bose D, Govindan T R, et al. Simulation of the dc plasma in carbon nanotube growth. J Appl Phys, 2003, 93 (10): 6284-6290.
    [37] Ma X C, Wang E G, Zhou W Z, et al. Polymerized carbon nanobell and their field-emission properties. Appl Phys Lett, 1999, 75 (20): 3105-3107.
    [38] Sharma S, Sunkara M K, Miranda R. A novel low temperature synthesis method for semiconductor nanowires. Mat Res Soc Symp Proc, 2001, 676: Y161-Y166.
    [39] Hoshi F, Tsugawa K, Goto A, et al. Field emission and structure of aligned carbon nanofibers desposited by ECR-CVD plasma method. Diamond and Related Material, 2001, 10: 254-259.
    [40] Cruden B A, Cassell A M, Ye Q, et al. Reactor design considerations in hot filament/direct current plasma synthesis of carbon nanofibers. J Appl Phys, 2003, 94 (6): 4070-4078.
    [41]徐国财,张立德.纳米复合材料.北京:化学工业出版社, 2002, 61-78.
    [42] Te H C, Chen J M, Kuo R R, et al. Fabrication of well-aligned carbon nanofiber array and its gaseous-phase adsorption behavior. Appl Phys Lett, 2004, 84 (7): 1186-1188.
    [43] Tu J P, Zhu L P, Hou K, et al. Synthesis and frictional properties of array film of amorphous carbon nanofibers on anodic aluminum oxide. Carbon, 2003, 41: 1257-1263.
    [44] Gu S Y, Ren J, Wu Q L. Preparation and structures of electrospun PAN nanofibers as a precursor of carbon nanofibers. Synthetic Metals, 2005,155 (1): 157-161.
    [45] Gu S Y, Ren J, Vancso G J. Process optimization and empirical modeling for electrospun polyacrylonitrile (PAN) nanofiber precursor of carbon nanofibers. European Polymer Journal, 2005, 41 (11): 2559-2568
    [46]王琪琨,刘卫华,朱长纯,等.电弧法获得的几种奇异碳纳米管的研究.西安交通大学学报, 2001, 35 (4): 382-385.
    [47] Vander Wal R L, Berger G M, Ticich T M. Carbon nanotubes synthesis in a flame with independently prepared laser-ablated catalyst particles. J Nanosci Nanotech, 2003, 3 (3): 241-245.
    [48] Honda S, Lee K Y, Fujimoto K, et al. Formation of carbon nanofiber films by RF magnetron sputtering method. Physica B, 2002, 323: 347-349.
    [49]魏飞,罗国华,李志飞,等.一种流化床连续制备碳纳米管的方法及其反应装置.中国专利, ZL01118349.7, 2001-12-26.
    [50]瞿美臻,于作龙,刘宝春,等.移动床催化裂解法连续制备碳纳米管,中国专利, 01111561.0, 2001-10-17.
    [51]瞿美臻,周固民,赵社涛,等.一种连续制备碳纳米管的反应装置和工艺,中国专利,02113678.5, 2003-11-12.
    [52]瞿美臻,于作龙,周德蓉,等.回转型移动床反应器连续制备碳纳米管,中国专利, 01108769.2, 2003-04-02.
    [53]于作龙,崔美臻.碳纳米管的批量制备和应用.中国高新技术企业, 2000, 3-4: 19-21.
    [54] Tibbetts G G, Gorkiewicz D W. A new reactor for growing carbon fibers from liquid and vapor phase hydrocarbons. Carbon, 1993, 31 (5): 809-814.
    [55] Ci L J, Li Y H, Wei B Q, et al. Preparation of carbon nanofibers by the floating catalyst method. Carbon, 2000, 38 (14): 1933-1937.
    [56]范月英,成会明,苏革,等.气相生长纳米碳纤维的研究进展.新型碳材料, 1999, 14 (2): 14-17.
    [57] Zhou J H, Sui Z J, Li P, et al. Structural characterization of carbon nanofibers formed from different carbon-containing gases. Carbon, 2006, 44 (15): 3255-3262.
    [58] Carneiro O C, Rodriguez N M, Baker R T K. Growth of carbon nanofibers from the iron–copper catalyzed decomposition of CO/C2H4/H2 mixtures. Carbon, 2005, 43 (11): 2389-2396.
    [59] Kato T, Matsumoto, Saito T, et al. Effect of carbon source on formation of vapor-grown carbon fiber. Carbon, 1993, 31: 937-940.
    [60] De bokx P K, Kock, A J H M, Boellaard E, et al. The formation of filamentous carbon on iron and nickel-catalysts. 1. Thermodynamics. J Catal, 1985, 96 (2): 454-467.
    [61] Amelinckx S, Zhang X B, Bernaerts D, et al. Formation mechanism forcatalytically grown helix-shaped graphite nanotubes. Science, 1994, 265: 635-637.
    [62] Hernadi K,Fonseca A,et al. Fe-catalyzed carbon nanotube formations. Carbon, 1996, 34: 1249-1254.
    [63] Martin-Gullon I, Vera, Conesa J A, et al. Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor. Carbon, 2006, 44 (8): 1572-1580.
    [64]李文治.一种有序排列的碳纳米管及其制备方法和专用装置.中国专利, ZL96120461.3, 1997-11-19.
    [65]沈俭一,王常青,孙清,等.一种制备碳纳米管的催化剂及其制法.中国专利, CN11482060A, 2004-03-17.
    [66]陈萍,张鸿斌,林国栋,等.过渡金属催化剂及用于制备均匀管径碳纳米管的方法.中国专利, CN1170631A, 1998-01-21.
    [67]成会明,范月英,魏永良,等.一种使用硫生长促进剂大量制备纳米碳纤维的方法.中国专利, CN1258637, 2000-07-05.
    [68]徐军明,张孝彬,李昱,等.用于制备成束多壁纳米碳管的金属氧化物催化剂及其制备和使用方法.中国专利, CN1477057A, 2001-02-25.
    [69] Kim M S, Rodriguez N M, Baker R T K. The interaction of hydrocarbons with copper-nickel and nickel in the formation of carbon filaments. Journal of Catalysis, 1991, 131: 60-73.
    [70] Kim M S, Rodriguez N M, Baker R T K. The role of interfacial phenomena in the structure of carbon desposits. Journal of Catalysis, 1992, 134: 253-268.
    [71] Chambers A, Rodriguez N M, Baker R T K. Influence of copper on the structural characteristics of carbon nanofibers produced from the cobalt-catalyzed decomposition of ethylene. J Mater Res, 1996, 11 (2): 430-436.
    [72] Kim M S, Rodriguez N M, Baker R T K, et al. The interplay between sulfur adsorption and carbon deposition on cobalt catalysts. J Catal, 1993, 143: 449-453.
    [73] Kato T, Kusakabe K, Morooka S. Process of formation of vapor grown carbon fibers by gas phase reaction using ultrafine iron catalyst particles. J Mater Sci Lett, 1992, 11:674-680.
    [74] Smith R C, Carey J D, Poa C H P, et al. Electron field emission from room temperature grown carbon nanofibers. J Appl Phys, 2004, 95 (6): 3153-3157.
    [75] Tang Y H, Zheng Y F, Lee C S, et al. Carbon monoxide-assisted frowth of carbon nanotubes. Chem Phys Lett, 2001, 342: 259-264.
    [76] Pradhan D, Sharon M, Kumar M, et al. Nano-octopus:a new form of branching carbon nanofiber. J Nanosci Nanotech, 2003, 3 (3): 215-217.
    [77] Fan Y Y, Cheng H M, Wei Y L, et al. The influence of preparation parameters on the mass production of vapor grown carbon nanofibers. Carbon, 2000, 38: 789-795.
    [78] Endo M, Kim Y A, Takeda T. Structural characterization of carbon nanofibers obtained by hydrocarbon pyrolysis. Carbon, 2001, 39: 2003-2010.
    [79] Melechko A V, Merkulov V I, Lowndes D H, et al. Transition between base and tip carbon nanofiber growth modes. Chem Phys Lett, 2002,356:527~533.
    [80] Wei B Q, Vajtai R, Jung Y, et al. Microfabrication technology : Oraganized assembly of carbon nanotubes. Nature, 2002, 416: 495-496.
    [81] Teo K B K, Singh C, Chhowalla M. Catalytic synthesis of carbon nanotubes an nanofibers. Encyclopedia of Nanoscience and Nanotechnology, 2003, 1: 665-686.
    [82] Nerushec O A, Morjan R E, Ostrovskii K I, et al. The temperature dependence of Fe-catalysed growth of carbon nanotubes on silicon substrates. Physica B, 2002, 323: 51-59.
    [83] Singh C, Quested T, Boothroyd C B, et al. Synthesis and characterization of carbon nanofibers produced by the floating catalyst method. J Phys Chem B, 2002, 106: 10915-10922.
    [84]张兵,郭燕川,陈丽娟,等.载气对注入CVD制备碳纳米管和碳纳米纤维的影响.化学学报, 2004, 62 (22): 2253-2258.
    [85] Baker R T K, Alonzo J R, Dumesic J A. Effect of the surface state of iron on filamentous carbon formation. J Catal, 1982, 77 (1): 74-84.
    [86] Holstein W L. The roles of ordinary and soret diffusion in the metal-catalyzed formation of filamentous carbon. J Catal, 1995, 152 (1): 42-51.
    [87]杜金红,苏革,白朔,等.螺旋形炭纤维的固相催化生长机制.中国科学(E辑), 2003, 33 (7): 604-607
    [88] Kock A J H M, De bokx P K, Boellaard E, et al. The formation of filamentous carbon on iron and nickel catalysts. 2. Mechanism. J Catal, 1985, 96 (2): 468-480.
    [89] Yoon Y J, Baik H K. Catalytic growth mechanism of carbon nanofibers through chemical vapor deposition. Diamond and Related Materials. 2001, 10: 1214-1217.
    [90] Poirier E, Chahine R, Bose T K. Hydrogen adsorption in carbon nanostructures.International Journal of Hydrogen Energy, 2001, 26: 831–835.
    [91] Lueking A D, Yang R T, Rodriguez N M, et al. Hydrogen Storage in Graphite Nanofibers: Effect ofSynthesis Catalyst and Pretreatment Conditions. Langmuir, 2004, 20:714-721.
    [92] Marella M, Tomaselli M. Synthesis of carbon nanofibers and measurements of hydrogen storage. Carbon, 2006, 44 (8): 1404-1413.
    [93] Dan L, Alexandru R B, Ioan M, et al. Hydrogen uptake by carbon nanofibers catalyzed by palladium. International Journal of Hydrogen Energy, 2004, 29 (1): 97-102.
    [94] Browning D J, Gerrard M L, Lakeman J B, et al. Studies into the storage of hydrogen in carbon nanofibers: proposal of a possible mechanism. Nanoletters, 2002, 2:201-205.
    [95] Gupta B K, Srivastava O N. Further studies on microstructural characterization and hydrogenation behaviour of graphitic nanofibres. Int J Hydrogen Energy, 2001, 26: 857-859.
    [96]毛宗强,徐才录,阎军,等.碳纳米纤维储氢性能初步研究.新型碳材料, 2000, 1 5(1): 64-67.
    [97] Champers A, Park C, Baker R T K, et al. Hydrogen storage in graphite nanofibers. J Phys Chem B, 1998, 102: 4253-4256.
    [98] Lidholobov V A, Fenelonov V B, Okkel L G, et al. New carbon-carbonaccous composites for catalysis and adsorption. React Kinet Cata Lett, 1995, 54 (2): 381-411.
    [99] Santiago-Aviles J J, Wang Y. Magnetoconductance, carrier concentration and mobility measurement in electrospun carbon nanofibers. Carbon , 2003, 41: 2653– 2689.
    [100] Putley E H. The Hall effect and related phenomena. London: Butterworth, 1960, 66–93.
    [101] Gupta V, Mathur R B, Bahl O P, et al. Structural and transport properties of bromine intercalated carbon fibers. Carbon 1995, 33 (11): 1633–1631.
    [102] Woolf L D, Chin J, Lin-Liu Y R, et al. Electrical transport conductance properties of benzene-derived graphite fibers. Phys Rev B,1984,30(2): 861–869.
    [103] Endo M, Kim Y A, Hayashi T, et al. Vapor-grown carbon fibers (VGCFs); basic propertiesand their battery applications. Carbon 2001, 39 (9): 1287–1297.
    [104] Zhang L, Austin D, Merkulov V I, et al. Four-probe charge transport measurements on individual vertically aligned carbon nanofibers. Appl PhysLett , 2004, 84 (20): 3972-3973.
    [105] Tibbetts G G, Doll G L, Gorkiewicz D W, et al. Physical properties of vapor grown carbon fibers. Carbon, 1993,31(7):1039.
    [106] Park C, Baker R T K. Catalytic behavior of graphite nanofiber supported nickel particles. 3. The effect of chemical blocking on the performance of the system. J Phys Chem B, 1999,103: 2453-2459.
    [107]赵稼祥.纳米碳纤维及其应用.高科技纤维与应用, 2003, 28(2): 7-10.
    [108] Schimmel H G, Nijkamp G, Kearley G J, et al. Hydrogen adsorption in carbon nanostructures compared. Materials Science and Engineering B, 2004, 108 (1-2): 124-129.
    [109] Shen K, Xu H F, Jiang Y B, et al. The role of carbon nanotube structure in purification and hydrogen adsorption. Carbon, 2004, 42 (11): 2315-2322.
    [110] Huang C W, Wu H C, Li Y Y. Hydrogen storage in platelet graphite nanofibers. Separation and Purification Technology, 2007, 58 (1): 219-223.
    [111] Fan Y Y, Liao B, Liu M, et al. Hydrogen uptake in vaporgrown carbon nanofibers. Carbon, 1999, 37: 1649-1652.
    [112] Danilov M O, Melezhyk A V, Kolbasov G Ya. Carbon nanofibers as hydrogen adsorbing materials for power sources. Journal of Power Sources, 2008, 176(1): 320-324.
    [113] Che G, Lakshmi B B, Martin C R, et al. Metal-nanocluster-filled carbon nanofibers: catalytic properties and possible applications in electrochemical energy storage and production. Langmuir, 1999,15 (3): 750-758.
    [114] Tribolet P, Kiwi-Minsker L. Carbon nanofibers grown on metallic filters as novel catalytic materials. Catalysis Today, 2005, 102-103: 15-22.
    [115] Endo M, Kim YA, Ezaka M, Osada K, et al. Selective and efficient impregnation of metal nanoparticles on cup-stacked-type carbon nanofiber. Nano Lett , 2003, 3: 723–728.
    [116] Joel A J, Matthew J B, Sharlene R H,et al. Dispersion and film properties of carbon nanofiber pigmented conductive coatings. Progress in Organic Coatings, 2003, 47: 198-206.
    [117] Xu J, Donohoe J P, Charles U P Jr. Preparation, electrical and mechanical properties of vapor grown carbon fiber/inyl ester composites. Composites: Part A , 2004, 35: 693-701.
    [118] Chen C F, Lin C L, Wang C M. Field emission from aligned carbon nanofibers grown in situ by hot filament chemical vapor desposition. Appl Phys Lett, 2003,82 (15): 2515-2517.
    [119] Iwata N, Hata Y, Yoshikuni M, et al. Preparations of carbon nanofiber emitters for diode type field emission display with organic luminescence thin films. Materials Science and Engineering: C, 2007,27 (5-8): 1174-1180.
    [120] Tao X Y, Zhang X B, Zhang L, et al. Synthesis of multi-branched porous carbon nanofibers and their application in electrochemical double-layer capacitors. Carbon, 2006, 44 (8): 1425-1428.
    [121] Adhyapak P V, Maddanimath T, Pethkar S, et al. Application of electrochemically prepared carbon nanofibers in supercapacitors. Journal of Power Sources, 2002, 109: 105-110.
    [122] Arai S, Endo M. Carbon nanofiber-Copper composite powder prepared by electrodeposition. Electrochemistry Communications, 2003, 5: 797-799.
    [123] Price R L, Ellison K, Haberstroh K M, et al. Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber composites. Joural of Biomedical Materials Research Part A, 2004, 70A (1): 129-138.
    [124] Price R L, Waid M C, Haberstroh K M, et al. Selective bone cell adhesion on formulations containing carbon nanofibers. Biomaterials, 2003, 24: 1877-1887.
    [125] Chena M Y, Baib Z, Tanb S C, et al. Friction and wear scar analysis of carbon nanofiber-reinforced polymeric composite coatings on alumina/aluminum composite. Wear, 2002, 252: 624-634.
    [126] Chena M Y, Baib Z, Tanb S C, et al. Microstructure and friction behavior of polymeric composite coatings on alumina/alumina composite. Surface and Coatings Technology, 2002, 151-152: 478-482.
    [127]俄罗斯研究聚酰亚胺、纳米碳纤维复合材料. http://cnfrp.net, 2009-06-26.
    [128]余涛.纳米技术成果在俄罗斯的应用.科技大视野, 2002, 1: 62-64.
    [129]李拯宇.韩国开发成碳纳米管设备,实验室技术走向实际. http://news. so hu.com/20060820/n244896766.shtml, 2006-08-20.
    [130]董映壁.俄罗斯专家研制出碳纳米管连续生产装置. http://it.sohu.com/73/ 00/article212750073.shtml. 2003-09-02.
    [131]钟邦克.精细化工过程催化作用.北京:中国石化出版社, 2002, 21-27.
    [132] Jung H S, Kim H, Ahn J P, et al. Fabrication of recyclable catalyst supports for synthesis of carbon nanofibers. Metals and Materials International, 2004,10: 199-212.
    [133]尾崎萃,田丸谦二,田部浩三,等.催化剂手册.催化剂翻译小组译.第一版,北京:化学工业出版社, 1982, 600-602.
    [134]赫格达斯L L.催化剂设计-进展与展望.彭少逸译.第一版,北京:烃加工出版社, 1989, 10-16.
    [135] Zinfer I, Nadezhda S, Vladimir K, et al. Development of methods of growing carbon nanofibers on silica glass fiber supports. Catalysis Today, 2005, 102: 85-88.
    [136] Lim S, Yoon S H, Korai Y, et al. Selective synthesis of thin carbon nanofibers: I. Over nickel–iron alloys supported on carbon black Carbon. 2004, 42 (8-9): 1765-1781.
    [137] Ochoa-Femandez E, Chen D, Yu Z X, et al. Carbon nanofiber supported Ni catalyst: Effects of nanostructure of supports and catalyst preparation. Catalysis Today, 2005, 102: 45-47.
    [138] Takenaka S, Kobayashi S, Ogihara H, et al. Ni/SiO2 catalyst effective for methane decomposition into hydrogen and carbon nanofiber. Journal of Catalysis, 2003, 21: 779–787.
    [139] Zheng G B, Kouda K, Sano H, et al. A model for the structure and growth of carbon nanofibers synthesized by the CVD method using nickel as a catalyst. Carbon, 2004, 42: 635–640.
    [140]赵九生,时其昌,马福善,等.催化剂生产原理.北京:科学出版社, 1986, 112-157.
    [141]路勇,余长春,丁雪加,等.负载型镍金属催化剂上甲烷与二氧化碳重整制合成气.催化学报, 1996, 3: 212-216.
    [142] Chen P, Zhang H B, Lin G D, et al. Growth of carbon nanotures by catalytic decomposition of CH4 or CO on a Ni-MgO catalyst. Carbon, 1997, 35 (10-11): 1495-1501.
    [143] Bradford M C J, Vannice M A. Catalytic reforming of methane with carbon dioxide over nickel catalyst:Catalyst characterization and activity. Appl Catal A,Gen, 1996, 142: 73-96.
    [144]梁英,范晶,贾志杰.水热法合成NiO-MgO纳米粒子.应用化学, 2007, 24(6): 626-629.
    [145] Bradford M C J,Vannice M A. CO2 reforming of CH4. Catal Rev-Sci Eng, 1999, 41(1): 1-42.
    [146]许峥,李玉敏,张继炎,等.甲烷二氧化碳重整制合成气的镍基催化剂性能:碱助剂的作用.催化学报, 1997,18(5): 364-367.
    [147]索掌怀,徐秀峰,马华宪,等.制备方法对Ni/MgO/Al2O3在甲烷二氧化碳重整反应中催化性能的影响.催化学报, 2002, 21(5): 411-414.
    [148] Ruckenstein E, Hu Y H. The effect of precursor and preparation conditions of MgO on the CO2 reforming of CH4 over NiO/MgO catalysts. Appl Catal A,Gen, 1997, 154: 185-205.
    [149]陈萍,张鸿斌,林国栋,等.高等化学学报, 1998, 19: 765-769.
    [150]陈程雯,蔡云,林银钟,等.催化裂解CH4制备碳纳米管的影响因素.化学物理学报, 2002, 15(2): 123-126.
    [151]李凤仪,彭年才,王敏炜,等.催化剂制备条件对碳纳米管的影响.分子催化, 2003, 17(1): 65-71.
    [152] Ni-MgO固溶体的形成对Ni/MgO-AN催化CO2重整CH4反应活性和稳定性的影响.王玉和,刘红梅,徐柏庆.催化学报, 2005, 26(12): 1117-1122.
    [153] Bowen R, Derby B. Self propagating high temperature synthesis of ceramic materials. British Ceram Trans, 1997, 96(1): 25-31.
    [154]王晓辉,周延春. La2CuO4前驱物粉末的自蔓延燃烧合成及其晶化.材料研究学报,2001, 15(4): 387-393.
    [155] Huang J, Zhuang H, Li W. Synthesis and characterization of nano crystalline BaFe12O19 powders by low temperature combustion. Materials Research Bulletin, 2003, 38: 149-159.
    [156]刘建华,于美,李松梅.溶胶-凝胶燃烧合成制备NiO纳米颗粒的研究.材料工程, 2006,增刊1:110-112.
    [157]殷声.燃烧合成.北京:冶金工业出版社, 1999, 5-6.
    [158]张家埭.碳材料工程基础.北京:冶金工业出版社, 1992, 8-9.
    [159] Yoshida T, Tanaka T, Yoshida H, et al. Study on the dispersion of nickel ions in the NiO-MgO system by X-ray absorption fine structure. J Phy Chem, 1996, 100 (6): 2302-2306.
    [160] Wen J G, Huang Z P, Wang D Z, et al. Growth and Characterization of aligned carbon nanotubes frompatterned nickel nanodots and uniform thin films. J Mater Res, 2001, 11: 3246-53.
    [161] Kaatz F H, Siegal M P, Overmyer D L, et al. Diameter control and emission properties of carbon nanotubesgrown using chemical vapor deposition. Mater Sci Eng C, 2002, 1009: 1-4.
    [162] Bai J B. Growth of nanotube/nanofiber coils by CVD on an alumina substrate. Mater Lett, 2002, 4212: 1-5.
    [163] Arena F, Licciardello A, Parmaliana A. The role of Ni2+ diffusion on the reducibility of NiO/MgO system: A combined TRP-XPS study .Catal Lett, 1990, 6 (1): 2663-2666.
    [164] Arena F, Frusteri F, Parmaliana A , et al. On the reduction of NiO forms in magnesia supported catalysts. Reaction Kinetics and Catalysis Letters, 1990, 42 (1): 121-126.
    [165]中本一雄.无机和配合物的红外和拉曼光谱.黄德如,汪仁庆译.北京:化学工业出版社, 1986: 23-87.
    [166]沈湘黔,景茂祥,王涛平,等.有机凝胶-热还原法制备超细金属镍、铁纤维.稀有金属材料与工程. 2006, 35 (6): 945-950.
    [167]许力仁,游源祥,郭志彻,等.成长纳米碳管的装置.中国专利. zl03208040.9, 2004-11-24.
    [168]蔡建国,周永传.轻化工设备及设计.北京:化学工业出版社, 2006, 258-260.
    [169]塞尔普P G,弗尔R,瓦拉斯C,等.用流化床选择性地制备有序碳纳米管的方法.中国专利. CN1549792.A, 2004-11-24.
    [170] Wei F, Zhang Q, Qian W Z, et al. The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor: A multiscale space–time analysis. Powder Technology, 2008, 183 (1): 10-20.
    [171]巴克霍尔茨S,卡基M,米彻尔V,等.流化床制备碳纳米管的方法.中国专利. CN200780013608.6, 2009-04-29.
    [172] Kapteijin J A, Moulijn A E, van Diepen F. Catalyst deactivation: is it predictable? What to do? Applied Catalysis A, 2001, 212: 3-16.
    [173] Helveg S, Carlos C L, Sehested J, et al. Atomic-scale imaging of carbon nanofiber grow. Nature, 2004, 427: 426-429.
    [174] Ermakova M A, Ermakov D Y, Chuvilin A L, et al. Decompostion of methane over iron catalysts at the range of moderate temperatures: The influence of structure of the catalytic systems and the reaction conditions on the yield of carbon and morphology of carbon filaments. J Catal, 2001,201: 183-197.
    [175]吕德义,徐丽萍,徐铸德,等. CVD法制备碳纳米管的TG-DTA研究.化学物理学报, 2002, 15 (2): 118-122.
    [176] Nolan P E, Lynch D C, Cutler A H. Carbon despositon and hydrocarbon formation on groupⅧmetal catalysts. J Phys Chem B, 1998, 109: 241-251.
    [177]张蓉晖,成会明,沈祖洪.一种气相生长纳米碳纤维的制备方法.中国专利. 96115390, 1997-12-24.
    [178]程继鹏,张孝彬,孙沿林,等.竖直浮动催化CVD法合成毫米级定向纳米碳纤维束.无机化学学报, 2004,20 (11): 1353-1356.
    [179]刘勇,孙晓刚,朱正吼,等.化学气相沉积法制备大面积定向碳纳米管.材料导报, 2006, 20 (5): 120-122.
    [180]王福贞,马文存.气相沉积应用技术.北京:机械工业出版社, 2006, 5-27.
    [181]高新民.真空热处理电炉的构造与使用.北京:机械工业出版社,1985, 3-9.
    [182]王天泉.电阻炉设计.北京:航空工业出版社, 2000, 86-87.
    [183]阎承沛.真空热处理工艺与设备设计.北京:机械工业出版社, 1998,120-124.
    [184]顾文卿.风机设计计算安装维护及故障排除实用技术手册.中国科技文化出版社, 2008, 4-12.
    [185]刘湘东,于才渊,周德仁.常用工业干燥设备及应用.北京:化学工业出版社, 2005, 13-17.
    [186]李绍芬.化学与催化反应工程.北京:化学工业出版社, 1986, 20-26.
    [187]肖志英.流化床反应器设备设计计算.河北化工, 2004, 4: 55-56.
    [188]《真空设计手册》编写组.真空设计手册.北京:国防工业出版社, 1979: 424-436.
    [189]达道安,李旺奎.真空设计手册.北京:国防工业出版社, 1991, 352-614.
    [190]李学舟.真空沉积技术.杭州:浙江大学出版社, 1994, 8-17.
    [191] De Jong K P, Geus J W. Carbon nanofibers: catalytic synthesis and applications. Catal Rev Sci Eng, 2000, 42: 481-510.
    [192]甄开吉.催化作用基础.北京:科学出版社. 2005: 354-390.
    [193] Matasumoto Y, Oo M T, Nakao M, et al. Preparation of carbon nanofibers by hot filament-assisted sputtering. Mater Sci Eng B, 2000,74 (1-3) :218221.
    [194] Flahaut E, Laurent Ch, Peigney A. Catalytic CVD synthesis of double and tripe-walled carbon nanotubes by the control of the catalyst preparation. Carbon, 2005, 43: 375-383.
    [195] Hiura H, Ebbesen T W, Takahashi H. et al. Raman studies of carbon nanotubes. Chem Phy Lett, 1993, 202 (6): 509-512.
    [196]韩和相,汪兆平,李国华,等.多壁碳纳米管的拉曼散射.光散射学报, 1999, 11 (3): 187-189.
    [197] Wagner R S, Ellis W C. Vapor -liquid-Solid Mechanism of single Crystal Growth. Appl Phys Lett, 1964, 4 (5): 89-90.
    [198]朱春野,谢自立,郭坤敏.气相生长纳米碳纤维的形态控制.无机材料学报, 2004, 19 (3): 599-604.
    [199] Edie D D. The effect of processing on the structure and properties of carbon fibers [J]. Carbon, 1998, 36(4): 345-362.
    [200] Zou G F, Zhang D W, Dong C, et al. Carbon nanofibers:synthesis, characterization, and electrochemical properties. Carbon, 2006, 44: 828-832.
    [201] Endo M, Takeuchi K, Hiraoka T, et al. Stacking nature of graphene layers in carbon nanotubes and nanofibers. J Phys Chem Solids, 1997, 58 (11): 1702-1712.
    [202] Coffman F L, Cao R, Pianetta P A, et al. Near-edge X-ray absorption of carbon materials for detemining bond hybridization in mixed SP2 / SP3 bonded material. Appl Phys Lett, 1996, 69: 568-571.
    [203] Matthews M J, Pimenta M A, Dresselhaus G. Origin of dipersive effects of the Raman D band in carbon materials. Phys Rew B, 1999, 59 (10): R6585-6588
    [204] Wang Y, Santiago S, Santiago-Aviles J J. Raman characterization of carbon nanofibers prepared using electrospinning. Synthetic Metals, 2003, 138: 423-427.
    [205] Tang Y H, Zhang P, Kim P S, et al. Amorphous carbon nanowires investigated by near-edge-X-ray absorption fine structures. Appl Phys Lett, 2001, 79 (23):3773-3775.
    [206] Ma Y, Chen C T, Meigs G, Randall K, Sette F. High-resolution K-shell photoabsorption measurements of simple molecules.Phys Rev A, 1991, 44 (3):1848-1858.
    [207] Banerjee S, Hemraj B T, Balasubramanian M. Surface chemistry and structure of purified, ozonized, multiwalled carbon nanotubes probed by NEXAFS and vibrational spectroscopies. Chem Phys Chem, 2004, 5: 14165-1422.
    [208] Rouzaud J N, Oberlin A. Structure, microtexture and optical properties of anthracene and saccharose-base carbons. Carbon, 1989, 27 (4): 517-529.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700