镍、铝化合物微纳材料的溶剂热合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有特殊形貌、尺寸的无机微纳材料的构筑是当前材料领域研究的热点;探索发展微纳材料设计与合成的新途径、新方法,从而实现对微纳材料的尺寸大小、粒径分布和形貌的控制则始终是纳米材料研究领域中的一个重要课题。氢氧化镍由于具有良好的电化学性能,而被用作电池正极材料的活性物质。而AlOOH和Al203因其在陶瓷、催化剂载体、研磨剂、吸附剂以及光学器件中的潜在应用价值也受到广泛关注。
     本论文主要工作是利用液相合成方法成功地制备了多种形貌、尺寸的镍、铝化合物微纳材料;并对其形成机理以及性质表征等方面进行了系统的研究。
     1.单晶α-Ni(OH)2超长纳米带的控制合成及多孔NiO纳米带的制备
     目前制备一维微纳结构多是借助于模板,且产物多为多晶结构。本文以硫酸镍为镍源,氨水作为碱源,通过简单的水热反应成功地制备了单晶α-Ni(OH)2超长纳米带。结果表明,自纳米带出现直至最终超长纳米带成形,其宽度一直保持在100 nm左右,因此,我们提出结晶-聚集-溶解-“晶种”导向是超长纳米带形成的机理。且进一步以制得的单晶α-Ni(OH)2超长纳米带为前体,通过简单的煅烧,得到了具有多孔结构的NiO纳米短带。
     2.甲醇-水体系中制备α-Ni(OH)2微米级花状结构
     以硝酸镍为镍源,乙醇胺为碱源,在甲醇-水体系中成功地合成了α-Ni(OH)2微米级花状结构。结果表明,该结构由花瓣状的多孔片组成。且溶剂中水的量对产物的形貌和物相都有很大的影响。改变碱源(如NaOH,氨水)则不能得到花状结构,因此,我们推断,乙醇胺的结构和其自身的水解性质对形成花状结构的产物有重要的作用。
     3.PVP辅助、DMF-水混合溶剂下制备高分散性的γ-AlOOH颗粒和y-Al203颗粒
     在PVP的辅助下,于DMF-水混合溶剂中制备出高分散性的γ-AlOOH结构(椭花球、转子、杨桃状和叶片状)。通过控制溶剂中DMF与水的比例、反应物AlCl3的量、反应温度和反应时间,可以得到不同形貌的γ-AlOOH微纳结构。借助不同时间段的TEM图像进行分析,发现制备出的高分散性的γ-AlOOH结构是由极小的纳米颗粒一步组装而成形的(0D-3D)。经过简单的灼烧过程,同样得到了分散性良好的γ-Al203结构,其前体的形貌得以完好的保持。γ-Al203结构的表面出现了许多因水分子逸出遗留的孔隙。
     4.水热法合成纳米片组成的γ-AlOOH三维结构
     在未使用模板、表面活性剂和聚合物等添加剂的情况下,我们采用简单的水热体系,通过体系中引入二甲基亚砜,合成了由纳米片组成的γ-AlOOH三维结构。该产物具有的疏松结构、较大的比表面积以及较强的发光性质,为γ-AlOOH三维结构的实际应用提供了机会。
Fabrication of micro/nanoscale inorganic materials with special morphology and size has been a focus in areas of materials science. The rational design and synthesis of advanced micro/nanostructured materials with controllable morphology and diverse compositions has attracted tremendous interests in the fields of nanoscience and nanotechnology. Nickel hydroxide has been used as the active material of the positive electrode in rechargeable batteries due to its excellent electrochemistry performance. Aluminum oxide hydroxide and alumina have drawn much attention because of their potential application in the fields of ceramics, catalyst supports, abrasives, adsorbents and optical devices.
     This paper focused on controlled synthesis of micro/nanoscale inorganic materials (Ni(OH)2, NiO, AlOOH and Al2O3) with various morphologies by solution-phase method. In addition, formation mechanism and properties of as-obtained micro/nanostructures were also investigated. The detailed information of the paper is listed as follows:
     1. Controlled synthesis of ultralong single-crystalline a-Ni(OH)2 nanbelts and corresponding porous NiO nanobelts
     All of these current 1D micro/nanostructures were prepared under the assistance of templates and were all polycrystalline character. Ultralong single-crystalline a-Ni(OH)2 nanobelts were synthesized through hydrothermal method using NiSO4·6H2O as nickel source and ammonia as basic source. The diameter of the nanobelts (100 nm) did not show significant change during the whole process based on the experiment results. Therefore, it is believed that nucleation-aggregation-dissolution-seed-directed growth mechanism should be the possible formation mechanism for the ultralong single-crystallineα-Ni(OH)2 nanbelts. Furthermore, short porous NiO nanobelts were obtained by annealing the as-prepared ultralong Ni(OH)2 nanobelts.
     2. Fabrication of a-Ni(OH)2 microflowers in the mixed solvent
     a-Ni(OH)2 microflowers were successfully fabricated in the mixed solvents of methanol and water, which Ni(NO3)2·6H2O was selected as nickel source and ethanolamine as OH- provider. On the basis of the experiment results, eachα-Ni(OH)2 microflower is composed of dozens of porous petals. The content of water could considerably influence the morphology and phase of the finally products. When other alkali media, such as sodium hydroxide and ammonia, were employed as reactants instead of ethanolamine, no flowerlike structures could be obtained, which indicates that the formation of flowerlike microstructures may be related to the special structure and basic environment of ethanolamine.
     3. Synthesis of high dispersed y-AlOOH andγ-Al2O3 architectures in the mixed solvents of DMF and water with the assistance of PVP
     We have synthesized high dispersed y-AlOOH architectures in the mixed solvents of DMF and water with the assistance of PVP (ellipsoidal flowerlike, rotor-like, carambola-like, and leaf-like). The volume ratio of DMF to water, the content of AICl3, reaction temperature and reaction time play important roles in the formation of y-AlOOH architectures. In the same way, we studied the formation mechanism through the evolution process observation from TEM images at different times, and found it was a one-step self-assembly mechanism (0D-3D). In addition, high dispersedγ-Al2O3 architectures were synthesized by the thermal decomposition ofγ-AlOOH precursor. The morphology of y-AlOOH could be preserved after heat treatment and a lot of pores left due to the release of gases.
     4. Preparation of 3D y-AlOOH architectures assembled by nanosheets
     3D y-AlOOH architectures assembled by nanosheets were successfully synthesized in the mixture of deinonized water and dimethyl sulfoxide (DMSO) without templates, surfactants and polymers. On basis of the experiment results, it is expected that these novel 3D y-AlOOH microsturctures may be a promising candidate as ceramics, adsorbents, catalysts or optical devices due to its loose texture, large specific surface area and unique optical property.
引文
1. K. Kerman, M. Saito, S. Yamamura, Y. Takamura, E. Tamiya, "Nano material-based electrochemical biosensors for medical applications [J]", Trac-Trend Anal Chem.,2008,27,585-592.
    2. C. W. Welch, R. G. Compton, "The use of nanoparticles in electroanalysis:a review [J]", Anal Bioanal Chem.,2006,384,601-619.
    3. V. N. Bakunin, A. Y. Suslov, G N. Kuzmina, O. P. Parenago, "Synthesis and application of inorganic nanoparticles as lubricant components-a review [J]", J Nanopart. Res.,2004,6,273-284.
    4. M. Lazzari, M. A. L.-Q. "Block Copolymers as a Tool for Nanomaterial Fabrication [J]", Adv.Mater.,2003,15,1583-1594.
    5.F.E. Kruis, H. Fissan, A. Peled, "Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications--a review [J]", Journal of Aerosol Science.,1998,29,511-535.
    6. A. K. A. Silva, E. S. T. Egito, T. Nagashima, I. B. Araujo, E. L. Silva, L. A. L. Soares, A. S. Carrico, "Development of superparamagnetic microparticles for biotechnological purposes [J]", Drug. Dev. Ind. Pharm.,2008,34,1111-1116.
    7. P. Tartaj,."Nanomagnets-from fundamental physics to biomedicine [J]", Curr. Nanosci.,2006,2,43-53.
    8. I. Safarik, M. Safarikova, "Magnetic nanoparticles and biosciences [J]", Monatsh Chem.,2002,133,737-759.
    9. C. N. R. Rao, A. K. Cheetham, "Science and technology of nanomaterials:current status and future prospects [J]", J Mater. Chem.,2001,11,2887-2894.
    10. J. Wang, "Nanomaterial-based electrochemical biosensors [J]", Analyst.,2005, 130,421-426.
    11. R.F. Service, "Atom-Scale Research Gets Real [J]", Science,2000,290, 1524-1531.
    12. K. J. Klabunde, "In Nanoscale Materials in Chemistry [M]", Wiley-Interscience: New York,2001.
    13. M. F. Hochella, "Nanoscience and technology:the next revolution in the Earth sciences [J]", Earth Planet. Sci. Lett.,2002,203,593-605.
    14. K. Havancsak, "Nanotechnology at Present and its Promise for the Future [J]", Mater. Sci. Forum 2003,414-415,85-94.
    15. M. C. Roco, "Nanotechnology:convergence with modem biology and medicine [J]", Curt. Opin. Biotechnol.,2003,14,337-346.
    16. C. M. Lieber, "Nanoscale Science and Technology:Building a Big Future from Small Things [J]", MRS Bull,2003,28,486-491.
    17. M. Qhobosheane, S. Santra, P. Zhang, W. H. Tan, "Biochemically functionalized silica nanoparticles [J]", Analyst.,2001,126,1274-1278.
    18. C. Earhart, N. R. Jana, N. Erathodiyil, J. Y. Ying, "Synthesis of carbohydrate-conjugated nanoparticles and quantum dots", Langmuir,2008,24, 6215-6219.
    19. J. Lee, T. Tanaka, J. Lee, H. Mori, "Effect of substrates on the melting temperature of gold nanoparticles [J]", Calphad.,2007,31,105-111.
    20. D. Xie, W. H. Qi, M. P. Wang, "Size and shape dependent melting-thermodynamic properties of metallic nanoparticles [J]", Acta Metall, Sin. 2004,40,1041-1044.
    21. A. T. Ngo, P. Bonville, M. P. Pileni, "Spin canting and size effects in nanoparticles of nonstoichiometric cobalt ferrite[J]", J Appl Phys.,2001,89, 3370-3376.
    22. T. C. Deivaraj, W. X. Chen, J. Y. Lee, "Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol [J]", J. Mater. Chem.,2003,13, 2555-2560.
    23. N. Del Fatti, F. Vallee, "Ultrafast electron interactions in metal clusters [J]", C. R. Physique.,2002,3,365-380.
    24. C. Voisin, D. Christofilos, N. D. Fatti, F. Vallee, B. Prevel, E. Cottancin, J. Lerme, M. Pellarin, M. Broyer, "Size-dependent electron-electron interactions in metal nanoparticles [J]", Phys. Rev. Lett.,2000,85,2200-2203.
    25. H. D. Jang, S. K. Kim, S. J. Kim, "Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties [J]", J Nanopart Res.,2001,3,141-147.
    26. A. Testino, I. R. Bellobono, V. Buscaglia, C. Canevali, M. D'Arienzo, S. Polizzi, R. Scotti, F. Morazzoni, "Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. A systematic approach [J]", J. Am. Chem. Soc.,2007,129,3564-3575.
    27. K. Y. Win, S. S. Feng, "Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs [J]", Biomaterials.,2005,26,2713-2722.
    28. T. Shimizu, T. Teranishi, S. Hasegawa, M. Miyake, "Size evolution of alkanethiol-protected gold nanoparticles by heat treatment in the solid state [J]", J Phys. Chem. B,2003,107,2719-2724.
    29. A. F. Bakuzis, P. C. Morais, F. Pelegrini, "Surface and exchange anisotropy fields in MnFe2O4 nanoparticles:Size and temperature effects [J]", J. Appl. Phys.,1999, 85,7480-7482.
    30. V. P. Drachev, E. N. Khaliullin, W. Kim, F. Alzoubi, S. G. Rautian, V. P. Safonov, R. L. Armstrong, V. M. Shalaev, "Quantum size effect in two-photon excited luminescence from silver nanoparticles [J]", Phys. Rev. B,2004,69, 035318(5pp).
    31. E. Lima, J. M. Vargas, H. R.Rechenberg, R. D. Zysler,"Interparticle Interactions Effects on the Magnetic Order in Surface of Fe3O4 Nanoparticles [J]", J. Nanosci. Nanotechno.,2008,8,5913-5920.
    32. K. Borgohain, J. B. Singh, M. V. R. Rao, T. Shripathi, S. Mahamuni, "Quantum size effects in CuO nanoparticles [J]", Phys. Rev. B,2000,61,11093-11096.
    33. G.Ledoux, J. Gong, F. Huisken, O. Guillois, C. Reynaud, "Photoluminescence of size-separated silicon nanocrystals:Confirmation of quantum confinement [J]", Appl. Phys. Lett.,2002,80,4834-4836.
    34. T. Y. Kim, N. M. Park, K. H. Kim, G. Y. Sung, Y. W. Ok, T. Y. Seong, C. J. Choi, "Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films [J]", Appl. Phys. Lett.,2004,85,5355-5357.
    35. L. Xu, L. Wang, X. F.Huang, J. M. Zhu, H.M. Chen, K. J. Chen, "Surface passivation and enhanced quantum-size effect and photo stability of coated CdSe/CdS nanocrystals [J]", Physica E,2000,8,129-133.
    36. S. B. Qadri, E. F. Skelton, A. D. Dinsmore, J. Z. Hu, W. J. Kim, C. Nelson, B. R. Ratna, "The effect of particle size on the structural transitions in zinc sulfide [J]", J. Appl. Phys.,2001,89,115-119.
    37. R. Banerjee, R. Jayakrishnan, P. Ayyub, "Effect of the size-induced structural transformation on the band gap in CdS nanoparticles [J]", J. Phys.:Condens. Matter,2000,12,10647-10654.
    38. V. N. Pustovit, T. V. Shahbazyan, "Finite-size effects in surface-enhanced Raman scattering in noble-metal nanoparticles:a semiclassical approach [J]", J. Opt. Soc. Am. A,2006,23,1369-1374.
    39. X. Batlle, A. Labarta, "Finite-size effects in fine particles:magnetic and transport properties [J]", J. Phys. D:Appl. Phys.,2002,3,15-42.
    40. P. H. Zhou, D. S. Xue, "Finite-size effect on magnetic properties in Prussian blue nanowire arrays [J]", J. Appl. Phys.,2004,96,610-614.
    41. O. Iglesias, A. Labarta, "Finite-size and surface effects in maghemite nanoparticles:Monte Carlo simulations [J]", Phys. Rev. B,2001,63,184416.
    42. H. Kachkachi, M. Nogues, E. Tronc, D. A. Garanin, "Finite-size versus surface effects in nanoparticles [J]", J. Magn. Magn. Mater.,2000,221,158-163.
    43. H. Kachkachi, A. Ezzir, M. Nogues, E. Tronc, "Surface effects in nanoparticles: application to maghemite gamma-Fe2O3 [J]", Eur. Phys. J.,2000,14,681-689.
    44. W. P. Cai, H. Hofmeister, T. Rainer, "Surface effect on the size evolution of surface plasmon resonances of Ag and Au nanoparticles dispersed within mesoporous silica [J]", Physica E-Low-Dimensional Systems & Nanostructuresl, 2001,11,339-344.
    45. A. Hilger, N. Cuppers, M. Tenfelde, U. Kreibig, "Surface and interface effects in the optical properties of silver nanoparticles [J]", Eur. Phys. J. D,2000,10, 115-118.
    46. W. Wernsdorfer, E. Bonet Orozco, K. Hasselbach, A. Benoit, D. Mailly, O. Kubo, H. Nakano, B. Barbara, "Macroscopic Quantum Tunneling of Magnetization of Single Ferrimagnetic Nanoparticles of Barium Ferrite [J]", Phys. Rev. Lett.,1997, 79,4014.
    47.裘式纶,翟庆洲,肖丰收,张宗涛,“纳米材料研究进展Ⅱ:纳米材料的制备,表征与应用[J]”,化学研究与应用,1998,10,331-341.
    48.张立德,“纳米材料与纳米体系物理——面向21世纪的新领域[J]”,中国科学基金,1994,7,198-201.
    49. J. Q. Xiao, J. S. Jiang, C. L. Chen, "Giant magnetoresistance in nonmultilayer magnetic systems [J]", Phys. Rev. Lett.,1992,68,3749-3752.
    50. A. E. Berkowltz, J. R. Mitchell, M. J. Carey, A. P. Young, S. Zhang, F. E. Spada, F. T. Parker, A. Hutten, G Thomas, "Giant magnetoresistance in heterogeneous Cu-Co alloys [J]", Phys. Rev. Lett.,1992,68,3745-3748.
    51. A. P. Davis, "Nanotechnology:syllthetic molecular motors [J]", Nature,1999, 401,120-121.
    52. R. F. Service, "Materials science:small clusters hit the big time [J]", Science, 1996,271,920-922.
    53. C. Macilwain, "Nanotech thinks big [J]", Nature,2000,405,730-732.
    54. M. Anpo, T. Shima, S. Kodama, Y. Kubokawa, "Photocatalytic hydrogenation of propyne with water on small-particle titania:size quantization effects and reaction intermediates [J]", J. Phys. Chem.,1987,91,4305-4310.
    55. J. J. Pietron, R. M. Stroud, D. R. Polison, "Using three dimensions in catalytic mesoporous nanoarchitectures [J]", Nano Lett.,2002,2,545-549.
    56. R. Brringer, H. Gleiter, H. P. Klein, P. Marquit, "Nanocrystalline materials-an approach to a novel solid structure with gas-like disorder [J]", Phys. Lett.,1984, 102,365-369.
    57. H. Gleiter, "Nanocrystalline materials and nanometer-sized glasses [J]", Europhysics News,1989,20,130-133.
    58. Z. L. Cui, L. F. Dong, Z. K. Zhang, "Oxidation behavior of nano-Fe prepared by hydrogen arc plasma method [J]", Nanostructured Mater.,1995,5,829-833.
    59. H.Masui, M. Takeuchi, "Effects, of crystallinity of hole transport layers on organic electroluminescent device performance [J]", Jpn. J. Appl. Phys.,1991,30, L864-L866.
    60. M. S. El-Eskandarany, K. Sumiyama, K. Aoki, et al. "Morphological and structural evolutions of nonequilibrium titanium-nitride alloy powders produced by reactive ball milling [J]", J. Mater. Res.,1992,7,888-893.
    61. M. S. El-Eskandarany, K. Aoki, k. Suzuki, "Formation of amorphous aluminum tantalum nitride powders by mechanical alloying [J]", Appl. Phys. Lett.,1992,60, 1562-1563.
    62. E. Mendelovici, "Mechanochemical transformation of pyrolusite via manganese reduction [J]", J. Mater. Sci. Lett.,1993,12,314-317.
    63. M. S. El-Eskandarany, K. Sumiyama, K. Aoki, et al. "Mechanism of solid-gas reaction for formation of metastable niobium nitride alloy powders by reactive ball-milling [J]", J. Mater. Res.,1994,2891-2898.
    64. G. T. Fei, L. Liu, X. Z. Ding, L. D. Zhang, Q. Q. Zheng, "Preparation of nanocrystalline intermetallic compounds WSi2 and MoSi2 by mechanical alloying [J]", J. Alloy. Compound.,1995,229,280-282.
    65. M. R. Deguire, S. E. Dorris, R. B. Poeppel, et al. "Coprecipitation synthesis of doped lanthanum chromite [J]", J. Mater. Res.,1993,8,2327-2334.
    66. C. W. Lu, J. L. Shi, T. G. Xi, X. H. Yang, Y. X. Chen, "TG-DTA-MS studies on the thermal decomposition behaviour of homogeneously precipitated Zr2(SO4)(OH)6·6H2O [J]", Thernochimica Acta,1994,232,77-84.
    67. J. L. Shi, J. H. Gao, "Preparation of spherical zirconium salt particles by homogeneous precipitation [J]", J. Mater. Sci.,1995,30,793-799.
    68. D. Jezequel, J. Guenot, N. Jouini, et al. "Submicrometer zinc-oxide particles-elaboration in polyol medium and morphological-characteristics [J]", J. Mater. Res.,1995,10,77-83.
    69. O. D. Jayakumar, H. G. Salunke, R. M. Kadam, M. Mohapatra, G. Yaswant, S. K. Kulshreshtha, "Magnetism in Mn-doped ZnO nanoparticles prepared by a co-precipitation method [J]", Nanotechnology,2006,17,1278-1285.
    70. H. M. Yang, X. L. Song, X. C. Zhang, W. Q. Ao, G. Z. Qiu, "Synthesis of vanadium-doped SnO2 nanoparticles by chemical co-precipitation method [J]", Mater. Lett.,2003,57,3124-3127.
    71. M. Z. C. Hu, G A. Miller, E. A. Payzant, C. J. Rawn, "Homogeneous (co)precipitation of inorganic salts for synthesis of monodispersed barium titanate particles [J]", J. Mater. Sci.,2000,35,2927-2936.
    72. R. R. Piticescu, C. Monty, D. Taloi, A. Motoc, S. Axinte, "Hydrothermal synthesis of zirconia nanomaterials [J]", J. Eur. Ceram. Soc.,2001,21, 2057-2060.
    73. R. M. Piticescu, R. R. Piticescu, D. Taloi, V. Badilita, "Hydrothermal synthesis of ceramic nanomaterials for functional applications [J]", Nanotechnology,2003,14, 312-317.
    74. S. Takami, T. Sato, T. Mousavand, S. Ohara, M. Umetsu, T. Adschiri, "Hydrothermal synthesis of surface-modified iron oxide nanoparticles [J]", Mater. Lett.,2007,61,4769-4772.
    75. K. Byrappa, T. Adschiri, "Hydrothermal technology for nanotechnology [J]", Prog. Cryst. Growth Charact. Mater.,2007,53,117-166.
    76. T. Adschiri, Y. Hakuta, K. Sue, K. Arai, "Hydrothermal synthesis of metal oxide nanoparticles at supercritical conditions [J]", J. Nanopart. Res.,2001,3,227-235.
    77. M. Rajamathi, R. Seshadri, "Oxide and chalcogenide nanoparticles from hydrothermal/solvothermal reactions [J]", Curr. Opin. Solid State Mater. Sci., 2002,6,337-345.
    78. C. S. Kim, B. K. Moon, J. H. Park, B. C. Choi, H. J. Seo, "Solvothermal synthesis of nanocrystalline TiO2 in toluene with surfactant [J]", J. Cryst. Growth, 2003,257,309-315.
    79.李懋强,“湿化学法合成陶瓷粉体的原理和方法[J]”,硅酸盐学报,22,85-91.
    80. C. T. Seip, E. E. Carpenter, C. J. O'Connor, V. T. John, S. C. Li, "Magnetic properties of a series of ferrite nanoparticles synthesized in reverse micelles [J]", IEEE Trans. Magn.,1998,34,1111-1113.
    81. J. Lin, W. L. Zhou, C. J. O'Connor, "Formation of ordered arrays of gold nanoparticles from CTAB reverse micelles [J]", Mater. Lett.,2001,49,282-286.
    82. J. Zhang, L. D. Sun, C. S. Liao, C. H. Yan, "Size control and photoluminescence enhancement of CdS nanoparticles prepared via reverse micelle method [J]", Solid State Commun.,2002,124,45-48.
    83. E. M. Egorova, A. A. Revina, "Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin [J]", Colloids Surf. A,2000,168,87-96.
    84. V. Pillai, P. Kumar, M. S. Multani, D. O. Shah, "Structure and magnetic properties of nanoparticles of barium ferrite synthesized using microemulsion processing [J]", Colloid. Surfaces A,1993,80,69-75.
    85. L. Motte, C. Petit, L. Boulanger, P. Lixon, M. P. Pileni, "Synthesis of cadmium sulfide in situ in cadmium bis(2-ethylhexyl) sulfosuccinate reverse micelle: polydispersity and photochemical reaction [J]", Langmuir,1992,8,1049-1053.
    86. H. Gleiter, "Nanocrystalline materials [J]", Prog. Mater. Sci.,1990,33,223-315.
    87. G. Pacheco-Malagon, A. Garcia-Borquez, D. Coster, A. Sklyarov, S. Petit, J. J. Fripiat, "TiO2-Al2O3 nanocomposites [J]", J. Mater. Sci.,1995,10,1264-1269.
    88. X. Z. Ding, "Effect of hydrolysis water on the preparation of nano-crystalline titania powders via a sol-gel process [J]", J. Mater. Sci. Lett.,1995,14,21-22.
    89. X. T. Dong, G. Y. Hong, D. C. Yu, et al. "Synthesis and properties of cerium oxide nanometer powders by pyrolysis of amorphous citrate [J]", J. Mater. Sci. Technol., 1997,13,113.
    90. D. H. Chen, X. R. He, "Synthesis of nickel ferrite nanoparticles by sol-gel method [J]", Mater. Res. Bull.,2001,36,1369-1377.
    91. H. Xu, D. H. Qin, Z. Yang, H. L. Li, "Fabrication and characterization of highly ordered zirconia nanowire arrays by sol-gel template method [J]", Mater. Chem. Phys.,2003,80,524-528.
    92. B. J. Hwang, R. Santhanam, D. G. Liu, "Characterization of nanoparticles of LiMn2O4 synthesized by citric acid sol-gel method [J]", J. Power. Sources,2001, 97,443-446.
    93.俞建群,徐政,贾殿赠,“纳米氧化物的合成新方法[J]”,功能材料与器件学报,1999,5,267-271.
    94.徐甲强,牛新书,刘艳丽,“W03纳米微粒的制备及气敏特性研究进展[J]”,功能材料,2002,33,33-35.
    95. M. Tomoki, T. Jun,.et al. "Gold-loaded tungstenoxide sensor for detection of ammoniainair [J]", Chem. Lett.,1992,6,639-647.
    96. A. Masami, S. Seiichi, et al. "H2S and CH3SH sensorus-ingathick film of fold-loaded tungsten oxide [J]", Chem. Lett.,1994,12,335-361.
    97.刘敏,韩恩山,朱令之等,“氢氧化镍的制备及其电化学行为研究进展[J]”,电源技术,2002,26,172-175.
    98. A. Crdssent, V. Pralong, A. Audemer, et al. "Electrochemical performance comparison between β-type mixed nickel cobalt hydroxides prepared by various synthesis routes [J]", Solid State Sciences,2001,3,65-80.
    99. Z. R. Zhang, R. W. Hicks, T. R. Pauly, "Mesostructured forms of y-A12O3 [J]", J. Am. Chem. Soc.,2002,124,1592-1593.
    1.刘敏,韩恩山,朱令之等,“氢氧化镍的制备及其电化学行为研究进展[J]”,电源技术,2002,26,172-175.
    2.丁万春,袁安保,张鉴清等,"Co(OH)2包覆的Ni(OH)2电化学性能研究[J]”,电源技术,2000,24,204-206.
    3. A. Crdssent, V. Pralong, A. Audemer, et al. "Electrochemical performance comparison between β-type mixed nickel cobalt hydroxides prepared by various synthesis routes [J]", Solid State Sciences,2001,3,65-80.
    4. S. Anand, R. P. Das, R. Acharya, "Preparation, characterization and electrolytic behavior of p-nickel hydroxide [J]", J. Power Sources,2002,109,494-499.
    5. R. D. Armstrong, B. R. Horrocks, "The double layer structure at the metal-solid electrolyte interface", Solid State Ionics,1997,94,181-187.
    6.徐艳辉,陈长聘,吴俊,林秀峰等,"a-Ni(OH)2活性物质的初步探索”,电源技术,1999,23,209-211.
    7. H. Bode, K. Dehmelt, J. Witte, "Zur kenntnis der nickel hydroxidelectrode—Ⅰ. Uber das nickel (Ⅱ)-hydroxidhydrat [J]", Electrochimica Acta,1996,11, 1079-1087.
    8.解晶莹,张全生等,“镍氢氧化物研究进展[J]”,电源技术,1999,23,238-244.
    9. M. C. Bernard, P. Bernard, M. Keddam, et al. "Characterisation of new nickel hydroxides during the transformation of a-Ni(OH)2 to β-Ni(OH)2 [J]", J. Power Sources,1996,63,247-254.
    10. P. Vishnu Kamath, Mridula Dixit, L. Indira, A. K. Shukla, V. Ganesh Kumar, N. Munichandraiah, "Stabilized a-Ni(OH)2 as electrode material for alkaline secondary cells [J]", J. Electrochem Soc.,1994,141,2956-2959.
    11.范祥青等,“高活性Ni(OH)2的制备及电极性能[J]”,电池,1995,25,55-58.
    12. M. H. Cao, X.Y. He, J. Chen, C. W. Hu, "Self-assembled nickel hydroxide three-dimensional nanostructures:a nanomaterial for alkaline rechargeable batteries [J]", Cryst. Growth Des.,2007,7,170-174.
    13. J. X. Zhu, Z. Gui, Y. Y. Ding, Z. Z. Wang, Y. Hu, M. Q. Zou, "A facile route to oriented nickel hydroxide nanocolumns and porous nickel oxide [J]", J. Phys. Chem. C,2007,111,5622-5627.
    14. F. S. Cai, G. Y. Zhang, J. Chen, X. L. Gou, H. K. Liu, S. X. Dou, "Ni(OH)2 tubes with mesoscale dimensions as positive-electrode materials of alkaline rechargeable batteries [J]", Angew. Chem. Int. Ed.,2004,43,4212-4216.
    15. F. F. Tao, M. Y. Guan, Y. Jiang, J. M. Zhu, Z. Xu, Z. L. Xue, "An easy way to construct an ordered array of nickel nanotubes:the triblock-copolymer-assisted hard-template method [J]", Adv. Mater.,2006,18,2161-2164.
    16. L. H. Zhuo, J. C. Ge, L. H. Cao, B. Tang, "Solvothermal synthesis of CoO, Co3O4, Ni(OH)2 and Mg(OH)2 nanotubes [J]", Cryst. Growth Des.,2009,9,1-6.
    17. J. H. Liang, Y. D. Li, "Synthesis and characterization of Ni(OH)2 single-crystal nanorods [J]", Chem. Lett.,2003,32,1126-1127.
    18. L. P. Xu, Y. S. Ding, C. H. Chen, L. L. Zhao, C. Rimkus, R. Joesten, S. L. Suib, "3D flowerlike a-Ni(OH)2 hydroxide with enhanced electrochemical activity synthesized by microwave-assisted hydrothermal method [J]", Chem. Mater., 2008,20,308-316.
    19.彭成红,刘澧浦,李祖鑫等,“纳米氢氧化镍材料的研制[J]”,电池,2001,31,175-177.
    20. H. Ssto, T. Minami, S. Takata, T. Yamada, "Transparent conducting p-type NiO thin films prepared by magnetron sputtering [J]", Thin Solid Films,1993,236, 27-31.
    21. S. H. Song, P. Xiao, "Electrical properties of the oxide film formed on nickel during high-temperature oxidation [J]", Materials Science and Engineering A, 2002,323,27-31.
    22. K. M. Dooley, S. Y. Chen, J. R. H. Ross, "Stable nickel-containing catalysts for the oxidative coupling of methane [J]", J. Catal.,1994,145,402-408.
    23. X. Wang, J. Song, L. Gao, J. Jin, H. Zheng, Z. Zhang, "Optical and electrochemical properties of nanosized NiO via thermal decomposition of nickel oxalate nanofibres [J]", Nanotechnology,2005,16,37-39.
    24. K. C. Liu, M. A. Anderson, "Porous nickel oxide/nickel films for electrochemical capacitors [J]",J. Electrochem. Soc.,1996,143,124-130.
    25. V. Srinivasan, J. W. Weidner, "An electrochemical route for making porous nickel oxide electrochemical capacitors [J]", J. Electrochem. Soc.,1997,144, L210-L213.
    26.郑昌琼,冉均国,“新型无机材料[M]”, 2002.
    27. Z. L. Wang, "Characterizing the structure and properties of individual wire-like nanoentities [J]", Adv. Mater.,2000,12,1295-1298.
    28. J. T. Hu, T. W. Odom, C. M. Lieber, "Chemistry and physics in one dimension:synthesis and properties of nanowires and nanotubes [J]", Acc. Chem. Res.,1999,32,435-445.
    29. S. Matsui, Y. Ochiai, "Focused ion beam applications to solid state devices [J]", Nanotechnology,1996,7,247-258.
    30.全慧娟,席红安,李勤等,“镍催化热解乙炔制备碳纳米纤维[J]”,无机化学学报,2005,20,735-739.
    31.吴旭峰,凌一鸣,“激光烧蚀法制备准一维纳米材料[J]”,激光技术,2005,29,575-578.
    32.陶德良,谢征芳,何农跃,“碳化硅纳米管的制备及表征[J]”,无机化学学报,2006,22,945-948.
    33.谢毅,“特殊纳米结构的化学自组装[J]”,无机化学学报,2002,18,1-7.
    34.吴强,胡征,王喜章等,“孔性氧化铝模板与一维纳米新材料的制备[J]”,无机化学学报,2002,18,647-653.
    35. K. Zhang, J. B. Wang, X. L. Lu, L. Y. Li, Y. W. Tang, and Z. Y. Jia, "Structural evolution of hydrothermal-synthesized Ni(SO4)o.3(OH)i.4 nanobelts during ex situ heat treatment and in situ electron irradiation [J]", J. Phys. Chem. C,2009,113, 142-147.
    36. L. H. Dong, Y. Chu, and W. D. Sun, "Controllable synthesis of nickel hydroxide and porous nickel oxide nanostructures with different morphologies [J]", Chem. Eur. J.,2008,14,5064-5072.
    37. D. G Evans, X. Duan, "Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine [J]", Chem. Commun.,2006,485-496.
    38. Y. W. Tang, Z. Y. Jia, Y. Jiang, L.Y. Li, J. B. Wang, "Simple template-free solution route for the synthesis of Ni(SO4)0.3(OH)1.4 nanobelts and their thermal degradation [J]", Nanotechnology,2006,17,5686-5690.
    39. A. R. Roosen, W. C. Carter, "Simulations of microstructural evolution: anisotropic growth and coarsening [J]", Physica A,1998,261,232-247.
    40. J. Lu, Y. Xie, F. Xu, L. Y. Zhu, " Study of the dissolution behavior of selenium and tellurium in different solvents-a novel route to Se, Te tubular bulk single crystals [J]", J. Mater. Chem.,2002,12,2755-2761.
    41. B. Gates, Y. D. Yin, Y. N. Xia, "A solution-phase approach to the synthesis of uniform nanowires of crystalline selenium with lateral dimensions in the range of 10-30 nm[J]", J. Am. Chem. Soc.,2000,122,12582-12583.
    42. Z. H. Liang, Y. J. Zhu, X. L. Hu, "β-nickel hydroxide nanosheets and their thermal decomposition to nickel oxide nanosheets [J]", J. Phys. Chem. B,2004, 108,3488-3491.
    43. S. Z. Li, H. Zhang, J. B. Wu, X. Y. Ma, D. R. Yang, " Shape-control fabrication and characterization of the airplane-like FeO(OH) and Fe2O3 nanostructures [J]", Cryst. Growth Des.,2006,6,351-353.
    44. J. X. Zhu, Z. Gui, Y. Y. Ding, Z. Z. Wang, Y. Hu, M. Q. Zou, "A facile route to oriented nickel hydroxide nanocolumns and porous nickel oxide [J]", J. Phys. Chem. C,2007,111,5622-5627.
    1. S. K. Dhar, S. R. Ovshinsky, P. R. Gifford, D. A. Corrigan, M. A. Fetcenko, S. Benkatesan, "Nickel/metal hydride technology for consumer and electric vehicle batteries-a review and up-date [J]", J. Power Sources,1997,65,1-7.
    2. R. F. Nelson, "Power requirements for batteries in hybrid electric vehicles [J]", J. Power Source,2000,91,2-26.
    3.王殿龙,刘颖,藏长松等.“影响MH/Ni电池正极放电容量的因素[J]”,电池,2004,34,64-66.
    4.丁万春,袁安保,张鉴清等."Co(OH)2包覆的Ni(OH)2电化学性能研究[J]”,电源技术,2000,24,204-206.
    5. A. Cressent, V. Pralong, A. Audemer, et al. "Electrochemical performance comparison between β-type mixed nickel cobalt hydroxides prepared by various synthesis routes [J]", Solid State Sciences,2001,3,65-80.
    6. S. Anand, R. P. Das, R. Acharya, "Preparation, characterization and electrolytic behavior of β-nickel hydroxide [J]", J. Power Sources,2002,109,494-499.
    7. S. A. Cheng, W. H. Leng, J. Q. Zhang, C. N. Cao, "Electrochemical properties of the pasted nickel electrode using surface modified Ni(OH)2 powder as active material [J]", J, Power Sources,2001,101,248-252.
    8. Z. L. Wang, J. H. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays [J]", Science,2006,312,242-246.
    9. J. X. Huang, A. R. Tao, S. Connor, R. R. He, P. D. Yang, "A general method for assembling single colloidal particle lines [J]", Nano Lett.,2006,6,524-529.
    10. C. Burda, X. B. Chen, R. Narayanan, M. A. El-Sayed, "Chemistry and properties of nanocrystals of different shapes [J]", Chem. Rev.,2005,105,1025-1102.
    11. L. S. Zhong, J. S. Hu, H. P. Liang, A. M. Cao, W. G. Song, L. J. Wan, "Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment [J]", Adv. Mater.,2006,18,2426-2431.
    12. S. Karan, B. Mallik, "Nanoflowers grown from phthalocyanine seeds:organic nanorectifiers [J]", J. Phys. Chem. C,2008,112,2436-2447.
    13. H. Kawasaki, T. Yonezawa, T. Watanabe, R. Arakawa, "Platinum nanoflowers for surface-assisted laser desorption/ionization mass spectrometry of biomolecules [J]", J. Phys.Chem. C,2007,111,16278-16283.
    14. Y. Liu, X. M. Li, Z. K. Xu, Z. S. Hu, "Preparation of flower-like and rod-like boehmite via a hydrothermal route in a buffer solution [J]", J. Phys. Chem. Solid, 2010,71,206-209.
    15. X. X. Yu, J. G Yu, B. Cheng, et al. "Synthesis of hierarchical flower-like AlOOH and TiO2/AlOOH superstructures and their enhanced photocatalytic properties [J]", J. Phys. Chem. C,2009,113,17527-17535.
    16. L. B. Feng, A. H. Liu, M. Liu, Y. Y. Ma, J. Wei, B. Y. Man, "Synthesis, characterization and optical properties of flower-like ZnO nanorods by non-catalytic thermal evaporation [J]", J. Alloy. Compound,2010,492,427-432.
    17. L. Kong, J. X. Yang, H. P. Zhou, et al. "A surfactant-free, precursor-induced method to flower-like ZnO nanostructures [J]", Current Nanoscience,2009,5, 474-478.
    18. X. X. Yang, W. Lei, X. B. Zhang, et al. "Growth and optical and field emission properties of flower-like ZnO nanostructures with hexagonal crown [J]",2009, 517,4385-4389.
    19. H. Li, Y. H. Ni, J. M. Hong, "Ultrasound-assisted preparation, characterization and properties of flower-like ZnO microstructures [J]", Scripta Materialla,2009, 60,524-527.
    20. M. Umetsu, M. Mizuta, K. Tsumoto, et al. "Bioassisted room-temperature immobilization and mineralization of zinc oxide-the structural ordering of ZnO nanoparticles into a flower-type morphology [J]", Adv. Mater.,2005,17, 2571-2575.
    21. W. Zhang, J. Chen, X. Wang, et al. "Self-assembled three-dimensional flower-like a-Fe2O3 nanostructures and their application in catalysis [J]", Appl. Organometal.Chem.,2009,23,200-203.
    22. X. H. Liu, J. J. Guo, Y. C. Cheng, et al. "Surfactant-free fabrication of a-Fe2O3 structures with flower-like morphology in aqueous solution [J]", J. Cryst. Growth, 2008,311,147-151.
    23. C. Q. Wang, D. R. Chen, X. L. Jiao, "Flower-like In2O3 nanostructures derived from novel precursor:synthesis, characterization, and formation mechanism [J]", J. Phys. Chem. C,2009,113,7714-7718.
    24. M. Vaseem, A. Umar, S. H. Kim, et al. "Low-temperature synthesis of flower-shaped CuO nanostructures by solution process:formation mechanism and structural properties [J]", J. Phys. Chem. C,2008,112,5729-5735.
    25. D. P. Volanti, D. Keyson, L. S. Cavalcante, et al. "Synthesis and characterization of CuO flower-nanostructure processing by a domestic hydrothermal microwave [J]", J. Alloys Comounds,2008,459,537-542.
    26. H. X. Zhang, J. Feng, M. L. Zhang, "Preparation of flower-like CuO by a simple chemical precipitation method and their application as electrode materials for capacitor [J]", Mater. Res. Bulletin,2008,43,3221-3226.
    27. Z. H. Liang, Y. J. Zhu, "Synthesis of uniformly sized Cu2O crystals with star-like and flower-like morphologies [J]", Mater. Lett.,2005,59,2423-2425.
    28. G.Gao, L. Xiang, "Emulsion-phase synthesis of highly dispersed Cu2O aggregates:from microspheres, to flower-like cubes, to octahedra [J]", J. Electrochemical Society,2009,156, k91-k96.
    29. Z. R. Li, X. L. Li, X. X. Zhang, et al. "Hydrothermal synthesis and characterization of novel flower-like zinc-doped SnO2 nanocrystals [J]", J. Cryst. Growth,2006,291,258-261.
    30. R. Yu, L. Yan, P. Zheng, et al. "Controlled synthesis of CeO2 flower-like and well-aligned nanorod hierarchical architectures by a phosphate-assisted hydrothermal route [J]", J. Phys. Chem. C,2008,112,19896-19900.
    31. X. M. Ni, Q. B. Zhao, J. Cheng, H. G. Zheng, B. B. Li, D. G. Zhang, "High-yield synthesis of nickel flowers from nickel hydroxide precursor [J]", Chem. Lett., 2005,34,1408-1409.
    32. B. H. Liu, S. H. Yu, S. F. Chen, C. Y. Wu, "Hexamethylenetetramine directed synthesis and properties of a new family of a-nickel hydroxide organic-inorganic hybrid materials with high chemical stability [J]", J. Phys. Chem. B,2006,110, 4039-4046.
    33. Y. Y. Luo, G H. Li, G. T. Duan, L. D. Zhang, "One-step synthesis of spherical a-Ni(OH)2 nanoarchitectures[J]", Nanotechnology,2006,17,4278-4283.
    34. L. P. Zhu, G. H. Liao, Y. Yang, H. M. Xiao, J. F. Wang, S. Y. Fu, "Self-assembled 3D flower-like hierarchical β-Ni(OH)2 hollow architectures and their in situ thermal conversion to NiO [J]", Nanoscale Res. Lett.,2009,4,550-557.
    35. J. Liu, S. F. Du, L. Q. Wei, H. D. Liu, Y. J. Tian, Y. F. Chen, "Template-free synthesis of NiO hollow microspheres covered with nanoflakes [J]", Mater. Lett., 2006,60,3601-3604.
    36. X. F. Song, L. Gao, "Facile route to nanoporous NiO structures from the a-Ni(OH)2/EG precursor and application in water treatment [J]", J. Am. Ceram. Soc,2008,91,4105-4108.
    37. L. X. Yang, Y. J. Zhu, H. Tong, Z. H. Liang, W. W. Wang, "Hierarchical β-Ni(OH)2 and NiO carnations assembled from nanosheet building blocks [J]", Cryst. Growth Des.,2007,7,2716-2719.
    38. M. H. Cao, X. Y. He, J. Chen, C. W. Hu, "Self-assembled nickel hydroxide three-dimensional nanostructures:a nanomaterial for alkaline rechargeable batteries [J]", Cryst. Growth Des.,2007,7,170-174.
    39. L. P. Xu, Y. S. Ding, C. H. Chen, L. L. Zhao, C. Rimkus, R. Joesten, S. L. Suib, "3D flowerlike a-nickel hydroxide with enhanced electrochemical sctivity synthesized by microwave-assisted hydrothermal method [J]", Chem. Mater., 2008,20,308-316.
    40. D. H. Chen, D. R. Chen, X. L. Jiao, Y. T. Zhao, "Hollow-structured hematite particles derived from layered iron (hydro)oxyhydroxide-surfactant composites [J]", J. Mater. Chem.,2003,13,2266-2270.
    41. Z. F. Pu, M. H. Cao, J. Yang, K. L. Huang, C. W. Hu, "Controlled synthesis and growth mechanism of hematite nanorhombohedra, nanorods and nanocubes [J]" Nanotechnology,2006,17,799-804.
    42. T. Sugimoto, A. Muramatsu, "Formation mechanism of monodispersed a-Fe2O3 particles in dilute FeCl3 solutions [J]", J. Colloid Interface Sci.,1996,184, 626-638.
    43. G. C. Xi, Y. Y. Peng, W. C. Yu, Y. T. Qian, "Synthesis, characterization, and growth mechanism of tellurium nanotubes [J]", Cryst. Growth Des.,2005,5, 325-328.
    44. S. L. Xiong, C. Z. Yuan, X. G. Zhang, B. J. Xi, Y. T. Qian, "Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors [J]", Chem. Eur. J.,2009,15,5320-5326.
    1. H. W. Hou, Y. Xie, Q. Yang, Q. X. Guo, C. R. Tan, "Preparation and characterization of γ-AlOOH nanotubes and nanorods [J]", Nanotechnology, 2005,16,741-745.
    2.钱逸泰,“结晶化学导论[M]”,中国科技大学出版社,2005.
    3. Z. R. Zhang, R. W. Hicks, T. R. Pauly, "Mesostructured forms of γ-A12O3 [J]", J. Am. Chem. Soc.,2002,124,1592-1593.
    4. J. Bugosh, "Colloidal alumina—the chemistry and morphology of colloidal boehmite [J]", J. Chem. Phys.1961,65,1789-1793.
    5. C. L. Lu, J. G Lv, L. Xu, X. F. Guo, W. H. Hou, Y. Hu, H. Huang, "Crystalline nanotubes of y-AlOOH and γ-Al2O3:hydrothermal synthesis, formation mechanism and catalytic performance [J]", Nanotechnology,2009,20, 215604(9pp),
    6. B. Tang, J. C. Ge, L. H. Zhuo, G L. Wang, J. Y. Niu, Z. Q. Shi, Y. B. Dong, "A facile and controllable synthesis of γ-Al2O3 nanostructures without a surfactant [J]", Eur. J. Inorg. Chem.,2005,4366-4369.
    7. D. B. Kuang, Y. P. Fang, H. Q. Liu, C. Frommen, D. Fenske, "Fabrication of boehmite AlOOH and γ-Al2O3 nanotubes via a soft solution route [J]", J. Mater. Chem.,2003,13,660-662.
    8. Z. L. Wang, J. H. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays [J]", Science 2006,312,242-246.
    9. J. X. Huang, A. R. Tao, S. Connor, R. R. He, P. D. Yang, "A general method for assembling single colloidal particle lines [J]", Nano Lett.2006,6,524-529.
    10. C. Burda, X. B. Chen, R. Narayanan, M. A. El-Sayed, "Chemistry and properties of nanocrystals of different shapes [J]", Chem. Rev.2005,105,1025-1102.
    11. J. Zhang, S. Y. Wei, J. Lin, J. J. Luo, S. J. Liu, H. S. Song, E. Elawad, X. X. Ding, J. M. Gao, S. R. Qi, C. C. Tang, "Template-free preparation of bunches of aligned boehmite nanowires [J]", J. Phys. Chem. B,2006,110,21680-21683.
    12. X. Y. Chen, H. S. Huh, S. W. Lee, "Hydrothermal synthesis of boehmite (γ-AlOOH) nanoplatelets and nanowires:pH-controlled morphologies [J]" Nanotechnology,2007,18,285608(5pp).
    13. X. X. Yu, J. G Yu, B. Cheng, M. Jaroniec, "Synthesis of hierarchical flower-like AlOOH and TiO3/AlOOH superstructures and their enhanced photocatalytic properties [J]", J. Phys. Chem. C,2009,113,17529-17535.
    14. L. Zhang, Y. J. Zhu, "Microwave-assisted solvothermal synthesis of AlOOH hierarchically nanostructured microspheres and their transformation to γ-AI2O3 with similar morphologies [J]", J. Phys. Chem. C,2008,112,16764-16768.
    15. Y. L. Feng, W. C. Lu, L. M. Zhang, X. H. Bao, B. H. Yue, Y. Lv, X. F. Shang, "One-step synthesis of hierarchical cantaloupe-like AlOOH superstructures via a hydrothermal route [J]", Cryst. Growth Des.,2008,8,1426-1429.
    16. Y. Zhu, H. W. Hou, G L. Tang, Q. Y. Hu, "Synthesis of three-quarter-like y-AlOOH superstructures with high adsorptive capacity [J]", Eur. J. Inorg. Chem., 2010,872-878.
    17. Q. Y. Lu, J. Q. Hu, et al. "Synthesis of nanocrystalline CuMS2(M=In or Ga) through a solvothermal process [J]", Inorg. Chem.,2000,39,1606-1607.
    18. S. Oliver, A. Kuperman, et al. "Lamellar aluminophosphates with surface patterns that mimic diatom and radiolarian microskeletons [J]", Nature,1995, 378,47-49.
    19. J. Yang, J. H. Zeng, S. H. Yu, et al. "Formation process of CdS nanorods via Solvothermal Route [J]", Chem. Mater.,2000,12,3259-3263.
    20. J. Q. Hu, Q. Y. Lu, K. B. Tang, et al. "Synthesis and characterization of SiC nanowires through a reduction-carburization route [J]", J. Phys. Chem. B,2000, 104,5251-5254.
    21. Y. Xiong, Y. Xia, "Shape-controlled synthesis of metal nanostructures:the case of palladium [J]", Adv. Mater.,2003,19,3385-3391.
    22. G K. Priya, P. Padmaja, K. G K. Warrier, A. D. Damodaran, G.Aruldhas, "Dehydroxylation and high temperature phase formation in sol-gel boehmite characterized by fourier transform infrared spectroscopy [J]" J. Mater. Sci. Lett. 1997,16,1584-1587.
    23. W. Z. Ostwald, Phys. Chem.,1900,34,495-501.
    24. I. Pastoriza-Santos, L. M. Liz-Marzan, "N, N-dimenthylformamide as a reaction medium for metal nanoparticle synthesis [J]", Adv. Funct. Mater.2009,19, 679-688;
    25. F. Kim, S. Connor, H. Song, T. Kuykendall, P. Yang, "Platonic gold nanocrystals [J]", Angew. Chem. Int. Ed.2004,43,3673-3677;
    26. Y. Sun, B. Mayers, T. Herricks, Y. Xia, "Polyol synthesis of uniform silver nanowires:a plausible growth mechanism and the supporting evidence [J]", Nano Lett.2003,3,955-960.
    27. Y. H. Zheng, Y. Cheng, Y. S. Wang, F. Bao, L. H. Zhou, X. F. Wei, Y. Y. Zhang, Q. Zheng, "Quasicubic a-Fe2O3 nanoparticles with excellent catalytic performance [J]", J. Phys. Chem. B 2006,110,3093-3097.
    28. J. Zhang, S. J. Liu, J. Lin, H. S. Song, J. J. Luo, E. M. Elssfah, E. Ammar, Y. Huang, X. X. Ding, J. M. Gao, S. R. Qi, C. C. Tang, "Self-assembly of flowerlike AlOOH (boehmite) 3D nanoarchitectures [J]", J. Phys. Chem. B 2006,110, 14249-14252.
    29. Y. Zeng, T. Zhang, H. T. Fan, W. Y. Fu, G Y. Lu, Y. M. Sui, H. B. Yang, "One-pot synthesis and gas-sensing properties of hierarchical ZnSnO3 nanocages [J]", J. Phys. Chem. C 2009,113,19000-19004.
    30. J. T. Zhang, J. F. Liu, Q. Peng, X. Wang, Y. D. Li, "Nearly monodisperse Cu2O and CuO nanospheres:preparation and applications for sensitive gas sensors [J]", Chem. Mater.2006,18,867-871;
    31. I. Pastoriza-Santos, L. M. Liz-Marzan, "Synthesis of silver nanoprisms in DMF [J]", Nano Lett.2002,2,903-905;
    32. Y. Chang, J. J. Teo, H. C. Zeng, "Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres [J]", Langmuir 2005,21,1074-1079.
    33. Z. Q. Yu, C. X. Wang, X. T. Gu, C. Li, "Photoluminescent properties of boehmite whisker prepared by sol-gel process [J]", J. Lumin.2004,106,153-157.
    34. L. Oster, D. Weise, N. Kristiapoller, "A study of photostimulated thermoluninescence in C-doped α-Al2O3 crystals [J]", J. Phys. D:Appl. Phys. 1994,27,1732-1736.
    35. K. H. Lee, J. H. Crawford Jr, "Luminescence of the F center in sapphire [J]", Phys. Rev. B 1979,19,3217-3221.
    36. F. Lei, B. Yan, H. H. Chen, Q. Zhang, J. T. Zhao, "Surfactant-assisted hydrothermal synthesis, physical characterization, and photoluminescence of PbWO4 [J]", Cryst. Growth Des.2009,9,3730-3736.
    37. P. Raybaud, M. Digne, R. Iftimie, W. Wellens, P. Euzen, H. Toulhoat, "Morphology and surface properties of boehmite (γ-AlOOH):a density functional theory study [J]", J. Catal.,2001,201,236-246.
    38. H. Y. Zhang, G. B. Shan, H. Z. Liu, et al. "Preparation of (Ni/W)-γ-Al2O3 microspheres and their application in adsorption desulfurization for model gasoline [J]", Chem. Eng. Commun.,2007,194,938-945.
    39. M. Bartsch, B. Saruhan, M. Schmucker, et al. "Novel low-temperature processing route of dense mullite ceramics by reaction sintering of amorphous SiO2-coated γ-Al2O3 particle nanodomposites [J]", J. Am. Ceram. Soc.,1999,82,1388-1392.
    40. L. Lietti, P. Saruhan, I. Nova, et al. "NOx storage reduction over Pt-Ba/γ-Al2O3 catalyst [J]", J. Catal.,2001,204,175-191.
    41. X. W. Chen, T. Zhang, P. Ying, et al. "A novel catalyst for hydrazine decomposition:molybdenum carbide supported on γ-Al2O3 [J]", Chem. Commun., 2002,3,288-289.
    42. J. X. Zhu, Z. Gui, Y. Y. Ding, Z. Z. Wang, Y. Hu, M. Q. Zou, "A facile route to oriented nickel hydroxide nanocolumns and porous nickel oxide [J]", J. Phys. Chem. C,2007,111,5622-5627.
    1. J. Fang, H.You, P. Kong, Y. Yi, X. Song, B. Ding, "Dendritic silver nanostructure growth and evolution in replacement reaction [J]", Cryst. Growth Des.2007,7, 864-867.
    2. S. Champ, J. A. Dickinson, P. S. Fallon, B. R. Heywood, M. Mascal, "Hydrogen-bonded molecular ribbons as templates for the synthesis of modified mineral phase [J]", Angew. Chem. Int. Ed.,2000,39,2716-2719.
    3. H. Colfen, L. M. Qi, Y. Mastai, L. Borger, "Formation of unusual 10-petal BaSO4 structures in the presence of a polymeric additive [J]", Cryst. Growth Des.2002, 2,191-196.
    4. P. T. Zhao, K. X. Huang, "Preparation and characterization of netted sphere-like CdS nanostructures [J]", Cryst. Growth Des.2008,8,717-722.
    5. A. Parfenov, I. Gryczynski, J. Malicka, C. D. Geddes, J. R. Lakowicz, "Enhanced fluorescence from fluorophores on fractal silver surfaces [J]", J. Phys. Chem. B, 2003,107,8829-8833.
    6. R. J. Chimentao, I. Kirm, F. Medina, X. Rodriguez, Y. Cesteros, P. Salagre, J. E. Sueiras, "Different morphologies of silver nanoparticles as catalysts for the selective oxidation of styrene in the gas phase [J]", Chem. Commun.2004, 846-847.
    7. L. M. Sander, "Fractal growth processes [J]", Nature,1986,322,789-793.
    8. L. H. Lu, A. Kobayashi, Y. Kikkawa, K. Tawa, Y. Ozaki, "Oriented attachment-based assembly of dendritic silver nanostructures at room temperature [J]", J. Phys. Chem. B 2006,110,23234-23241.
    9. X. W. Lou, C. L. Yuan, L. A. Archer, "An unusual example of hyperbranched metal nanocrystals and their shape evolution [J]", Chem. Mater.,2006,18, 3921-3923.
    10. Y. L. Wang, P. H. C. Camargo, S. E. Skrabalak, H. C. Gu, Y. N. Xia, "A facile, water-based synthesis of highly branched nanostructures of silver [J]", Langmuir, 2008,24,12042-12046.
    11. G. Lu, C. Li, G. Shi, "Synthesis and characterization of 3D dendritic gold nanostructures and their use as substrates for surface-enhanced raman scattering [J]", Chem. Mater.,2007,19,3433-3440.
    12. L. Lu, R. Capek, A. Kornowski, N. Gaponik, A. Eychmuller, "Selective fabrication of ordered bimetallic nanostructures with hierarchical porosity [J]", Angew. Chem. Int. Ed.2005,44,5997-6001.
    13. L. Lu, A. Eychmuller, "Ordered macroporous bimetallic nanostructures:design, characterization, and applications [J]", Acc. Chem. Res.,2008,41,244-253.
    14. M. Aizawa, A. M. Cooper, M. Malac, J. M. Buriak, "Silver nano-lnukshuks on germanium [J]", Nano Lett.,2005,5,815-819.
    15. X. Zhang, F. Shi, X. Yu, H. Liu, Y. Fu, Z. Wang, L. Jiang, X. Li, "Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters:toward super-hydrophobic surface [J]", J. Am. Chem. Soc.2004,126,3064-3065.
    16. S. Guo, L. Wang, E. Wang, "Templateless, surfactantless, simple electrochemical route to rapid synthesis of diameter-controlled 3D flowerlike gold microstructure with "clean" surface [J]", Chem. Commun.,2007,3163-3165.
    17. F. Shi, Y. Song, J. Niu, X. Xia, Z. Wang, X. Zhang, "Facile method to fabricate a large-scale superhydrophobic surface by galvanic cell reaction [J]", Chem. Mater., 2006,18,1365-1368.
    18. Y. Song, W. A. Steen, D. Pena, Y. Jiang, C. J. Medforth, Q. Huo, J. L. Pincus, Y. Qiu, D. Y. Sasaki, J. E. Miller, J. A. Shelnutt, "Foamlike nanostructures created from dendritic platinum sheets on liposomes [J]", Chem. Mater.,2006,18, 2335-2346.
    19. Y. Song, R. M. Garcia, R. M. Dorin, H. Wang, Y. Qiu, J. A. Shelnutt, "Synthesis of platinum nanocages by using liposomes containing photocatalyst molecules [J]", Angew. Chem. Int. Ed.2006,45,8126-8130.
    20. Y. Song, R. M. Dorin, R. M. Garcia, Y. Jiang, H. Wang, P. Li, Y. Qiu, F. Swol, J. E. Miller, J. A. Shelnutt, "Synthesis of platinum nanowheels using a bicellar template [J]", J. Am. Chem. Soc.,2008,130,12602-12603.
    21. J. P. Xiao, Y. Xie, R. Tang, M. Chen, X. B. Tian, "Novel ultrasonically assisted templated synthesis of palladium and silver dendritic nanostructures [J]", Adv. Mater.,2001,13,1887-1891.
    22. S. Wang, H. Xin, "Fractal and dendritic growth of metallic Ag aggregated from different kinds of y-irradiated solutions [J]", J. Phys. Chem. B,2000,104, 5681-5685.
    23. S. Pang, T. Kondo, T. Kawai, "Formation of dendrimer-like gold nanoparticle assemblies [J]", Chem. Mater.,2005,17,3636-3641.
    24. F. Jia, K. Wong, L. Zhang, "Electrochemical synthesis of nanostructured palladium of different morphology directly on gold substrate through a cyclic deposition/dissolution route [J]", J. Phys. Chem. C,2009,113,7200-7206.
    25. G T. Duan, W. P. Cai, Y. Y. Luo, Z. G Li, Y. Li, "Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced raman scattering effect [J]", Appl. Phys. Lett.,2006,89,211905-211907.
    26. H. J. Chen, E. Kern, C. Ziegler, A. Eychmuller, "Ultrasonically assisted synthesis of 3D hierarchical silver microstructures [J]", J. Phys. Chem. C,2009,113, 19258-19262.
    27. P. Colomban, "Raman study of the formation of transition alumina single crystal from protonic β/β" aluminas", J. Mater. Sci. Lett.,1988,7,1324-1326.
    28. G. K. Priya, P. Padmaja, K. G K. Warrier, A. D. Damodaran, G. Aruldhas, "Dehydroxylation and high temperature phase formation in sol-gel boehmite characterized by fourier transform infrared spectroscopy [J]" J. Mater. Sci. Lett. 1997,16,1584-1587.
    29. J. Zhang, S. J. Liu, J. Lin, H. S. Song, J. J. Luo, E. M. Elssfah, E. Ammar, Y. Huang, X. X. Ding, J. M. Gao, S. R. Qi, and C. C. Tang, "Self-assembly of flowerlike AlOOH (boehmite) 3D nanoarchitectures [J]", J. Phys. Chem. B,2006, 110,14249-14252.
    30. A. R. Roosen, W. C. Carter, "Simulations of microstructural evolution: anisotropic growth and coarsening [J]", Physica A,1998,261232-247.
    31. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E. Gnade, "Mechanisms behind green photoluminescence in ZnO phosphor powders [J]", J. Appl. Phys.,1996,79,7983-7990.
    32.乔海军,王丹军,郭莉,杨继涛,张理平,梁慧光,“化学气相沉积法合成梳状纳米ZnO及其发光性能[J]”,研究西北师范大学学报,2009,45,74-78.
    33. Z. Q. Yu, C. X. Wang, X. T. Gu, C. Li, "Photoluminescent properties of boehmite whisker prepared by sol-gel process [J]", J. Lumin.2004,106,153-157.
    34. L. Oster, D. Weise, N. Kristiapoller, "A study of photostimulated thermoluninescence in C-doped α-Al2O3 crystals [J]", J. Phys. D:Appl. Phys. 1994,27,1732-1736.
    35. M. A. Anderson, M. J. Gieselmann, Q. Xu, "Titania and alumina ceramic membranes [J]", J. Membr. Sci.,1988,39,243-58.
    36. H. Z. Wang, L. Gao, L. H. Gui, J. K. Guo, "Preparation and properties of intragranular Al2O3-SiC nanocomposites [J]", Nanostructured Mater,1998,10, 947-953.
    37.石涛,周箭,申乾宏,杨辉,“水热辅助溶胶-凝胶法制备纳米晶y-Al203及表征[J]”,无机化学学报,2009,25,915-919.
    38. E. A. Richard, I. Y. Boris, "The future of the fullerenes [J]", Solid State Communication,1998,107,597-606.
    39.宁桂玲,常玉芬,刘廷来,“含羧/酯基有机分子对氧化铝微粒形态调控作用研究[J]”,高等学校化学学报,2003,23,345-348.
    40. S. Zhou, M. Antonietti, M. Niederberger, "Low-temperature synthesis of y-alumina nanocrystals from aluminum acetylacetonate in nonaqueous media [J]", Small,2007,3,763-767.
    41. C. Jing, X. Zhao, H. Tao, "The synthesis of stable, high solid content alumina sol [J]", J. Sol-Gel Sci. Technol.,2006,38,19-23.
    42. M. M. Amini, S. J. Sabounchei, F. Mimajafi, M. Mirzaee, M. Sharbatdaran, "Preparation of y-alumina from aluminum aminoalkoxides [J]", Ceramics-Silikaty, 2005,49,138-141.
    43. E. Ponthieu, E. Payen, J. Grimblot, "Ultrafine alumina powders via a sol-emulsion-gel method [J]", Journal of Non-Crystalline Solids,1992,147-148, 598-605.
    44. M. G. Ma, Y. J. Zhu, Z. L. Xu, "A new route to synthesis of γ-alumina nanorods [J]", Mater. Lett.,2007,61,1812-1815.
    45. L. Gan, T. Yue, G. Li, L. Chen, "Preparation and characterization of ultrafine γ-Al2O3 particles prepared by microemulsion [J]", Tongji Daxue Xuebao,1996, 24,194-197.
    46. S. Wang, X. Li, S. Wang, Y. Li, Y. Zhai, "Synthesis of γ-alumina via precipitation in ethanol [J]", Mater. Lett.,2008,62,3552-3554.
    47. Q. Tang, S. Yin, R. Li, T. Sato, "Prepatation of Ag/γ-AlO3 nanocomposite by solvothermal process [J]", Transactions of the Materials Research Society of Japan,2004,29,2345-2348.
    48. X. Kuang, G. Carotenuto, L. Nicolais, M. Mao, H. Liang, S. Hu, K. Yu, D. Yu, "Preparation of γ-alumina precursors for metal reinforcement [J]", Appl. Composite Mater.,1995,2,245-255.
    49. P. Alphonse, M. Courty, "Structure and thermal behavior of nanocrystalline boehmite [J]", Thermochim. Acta,2005,425,75-89.
    50. X. Y. Chen, S. W. Lee, "pH-dependent formation of boehmite (γ-AlOOH) nanorods and nanoflakes [J]", Chem. Phys. Lett.,2007,438,279-284.
    [1]J. Goldberger, R. R. He, Y. F. Zhang, H. Q. Yan, H. J. Chol, and P. D. Yang, Nature 422,599 (2003).
    [2]Y. N. Xia, P. D. Yang, Y. G.Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and H. Q. Yan, Adv. Mater.15,353 (2003).
    [3]Z. L. Wang, Adv. Mater.12,1295 (2000).
    [4]J. Hu, T. W. Odom, and C. M. Liever, Acc. Chem. Res.32,435 (1999).
    [5]Y. W Wang, G.W. Meng, L. D. Zhang, C. H. Liang, and J. Zhang, Chem. Mater.14,1773 (2002).
    [6]X. G.Wen, and S. H. Yang, Nano Lett.2,451 (2002).
    [7]Y. D. Yin, Y. Lua, and Y. N. Xia, J. Mater. Chem.11,987 (2001).
    [8]J. Chen, D. H. Bradhurst, S. X. Dou, and H. K. Liu, J. Electrochem. Soc.146,3606 (1999).
    [9]K. M. Dooley, S. Y. Chem, and J. R. H. Ross, J. Catal.145,402 (1994).
    [10]D. Levin, and J. Y. Ying, Stud. Surf. Sci. Catal.110,367 (1997).
    [11]H. Kumagai, M. Matsumoto, K. Toyoda, and M. Obara, J. Mater. Sci. Lett.15,1081 (1996).
    [12]A. C. Felic, F. Lama, and M. Piacentini, J. Appl. Phys.80,3678 (1997).
    [13]J. H. Liang, and Y. D. Li, Chem. Lett.32,1126 (2003).
    [14]L. H. Dong, Y. Chu, and W. D. Sun, Chem. Eur. J.14,5064 (2008).
    [15]L. H. Zhuo, J. C. Ge, L. H. Cao, and B. Tang, Cryst. Growth Des.9,1 (2009).
    [16]Z. H. Liang, Y. J. Zhu, and X. L. Hu, J. Phys. Chem. B 108,3488 (2004).
    [17]Y. Wang, Q. S. Zhu, and H. G.Zhang, Chem. Comm.5231 (2005).
    [18]L.X. Yang, Y.J. Zhu, H. Tong, Z.H. Liang, and W.W Wang, Cryst. Growth Des.7,2716 (2007).
    [19]D. N. Yang, R. M. Wang, J. Zhang, and Z. F. Liu, J. Phys. Chem. B 108,7531 (2004).
    [20]Y. W. Tang, Z. Y. Jia, Y. Jiang, L.Y. Li, and J. B. Wang, Nanotechnology 17,5686 (2006).
    [21]J. Polleux, A. Curio, N. Barsan, U. Weimar, M. Antonietti, and M. Niederberge, Angew. Chem. Int. Ed.45,261 (2006).
    [22]K. Zhang, J. B. Wang, X. L. Lu, L. Y. Li, Y. W. Tang, and Z. Y. Jia, J. Phys. Chem. C 113,142 (2009).
    [23]A. R. Roosen, and W. C. Carter, Physica A.261,232 (1998).
    [24]J. Lu, Y. Xie, F. Xu, and L. Y. Zhu, J. Mater. Chem.12,2755 (2002).
    [25]B. Gates, Y. D. Yin, and Y. N. Xia, J. Am. Chem. Soc.122,12582 (2000).
    [26]D. G.Evans, and X. Duan, Chem. Commun.485 (2006).
    [27]S. Z. Li, H. Zhang, J. B. Wu, X. Y. Ma, and D. R. Yang, Cryst. Growth Des.6,351 (2006).
    [28]J. X. Zhu, Z. Gui, Y. Y. Ding, Z. Z. Wang, Y. Hu, and M. Q. Zou, J. Phys. Chem. C 111,562
    [1]Z.L. Wang, J.H. Song, Science 312 (2006) 242-246.
    [2]J.X. Huang, A.R. Tao, S. Connor, R.R. He, P.D. Yang, Nano Lett.6 (2006) 524-529.
    [3]C. Burda, X.B. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev.105 (2005) 1025-1102.
    [4]H.T. Shi, L.M. Qi, J.M. Ma, N.Z. Wu, Adv. Funct. Mater.15 (2005) 442-450.
    [5]S.H. Yu, M. Antonietti, H. Colfen, J. Hartmann, Nano Lett.3 (2003) 379-382.
    [6]X.C. Song, Y. Zhao, Y.F. Zheng, Cryst. Growth Des.7 (2007) 159-162.
    [7]M. Yang, H.P. You, Y.H. Song, Y.J. Huang, G. Jia, K. Liu, Y.H. Zheng, L.H. Zhang, H.J. Zhang, J. Phys. Chem. C 113 (2009) 20173-20177.
    [8]A. Taniguchi, N. Fujioka, M.Ikoma, J. Power Souces 100 (2001) 117-124.
    [9]A.K. Shukla, S. Venugopalan, B. Hariprakash, J. Power Sources 100 (2001) 125-148.
    [10]Y. Morioka, S. Narukawa, T. Itou, J. Power Sources 100 (2001) 107-116.
    [11]Z.S. Wronski, Int. Mater. Rev.46 (2001) 41-49.
    [12]W. Hu, X. Gao, D. Noreus, T. Burchardt, N.K. Nakstad, J. Power Sources 160 (2006) 704-710.
    [13]P.V. Kamath, GH.A. Therese, J. Gopalakrishnan, J. Solid State Chem.128 (1997) 38-41.
    [14]M. Rajamathi, P.V. Kamath, J. Power Sources 70 (1998) 118-121.
    [15]T.N. Ramesh, R.S. Jayashree, P.V. Kamath, Clays Clay Miner.51 (2003) 570-576.
    [16]C. Coudun, J.F. Hochepied, J. Phys. Chem. B 109 (2005) 6069-6074.
    [17]L. Indria, M. Dixit, P.V. Kamath, J. Power Sources 52 (1994) 93-97.
    [18]R. Barnard, C.F. Randell, F.L. Tye, J. Appl. Electrochem.10 (1980) 109-112.
    [19]C. Faure, C. Delmas, P. Willmann, J. Power Sources 36 (1991) 497-506.
    [20]M. Rajamathi, GN. Subbanna, P.V. Kamath, J. Mater. Chem.7 (1997) 2293-2296.
    [21]P. Oliva, J. Leonardi, J.F. Laurent, C. Delmas, J.J. Braconnier, M. Figlarz, F. Fievet, J. Power Sources 8 (1982) 229-255.
    [22]J.T. Hu, T.W. Odom, C.M. Lieber, Acc. Chem. Res.32 (1999) 435-445.
    [23]Y.N. Xia, P.D. Yang, Y.G.Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim, H.Q. Yan, Adv. Mater.15 (2003) 353-389.
    [24]Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291 (2001) 1947-1949.
    [25]W.S. Shi, H.Y. Peng, N. Wang, C.P. Li, L. Xu, C.S. Lee, R. Kalish, S.T. Lee, J. Am. Chem. Soc.123(2001)11095-11096.
    [26]L.X. Yang, Y.J. Zhu, H. Tong, Z.H. Liang, W.W. Wang, Cryst. Growth Des.7 (2007) 2716-2719.
    [27]M.H. Cao, X.Y. He, J. Chen, C.W. Hu, Cryst. Growth Des.7 (2007) 170-174.
    [28]L.P. Xu, Y.S. Ding, C.H. Chen, L.L. Zhao, C. Rimkus, R. Joesten, S.L. Suib, Chem. Mater.20 (2008)308-316.
    [29]Y.Y. Luo, G.G.Li, G.T. Duan, L.D. Zhang, Nanotechnology 17 (2006) 4278-4283.
    [30]D.H. Chen, D.R. Chen, X.L. Jiao, Y.T. Zhao, J. Mater. Chem.13 (2003) 2266-2270.
    [31]Z.F. Pu, M.H. Cao, J. Yang, K.L. Huang, C.W. Hu, Nanotechnology 17 (2006) 799-804.
    [32]T. Sugimoto, A. Muramatsu, J. Colloid Interface Sci.184 (1996) 626-638.
    [33]G.C. Xi, Y.Y. Peng, W.C. Yu, Y.T. Qian, Cryst. Growth Des.5 (2005) 325-328.
    [34]S.L. Xiong, C.Z. Yuan, X.G.Zhang, B.J. Xi, Y.T. Qian, Chem. Eur. J.15 (2009) 5320-5326.
    [35]S. Z. Li, H. Zhang, J. B. Wu, X. Y. Ma, and D. R. Yang, Cryst. Growth Des.6 (2006) 351-353.
    [36]J. X. Zhu, Z. Gui, Y. Y. Ding, Z. Z. Wang, Y. Hu, and M. Q. Zou, J. Phys. Chem. C 111 (2007) 5622-5627.
    [1]A. P. Alivisatos, Science 271,933 (1996).
    [2]Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, Adv. Mater. 15,353 (2003).
    [3]J. Zhang, L. D. Sun, J. L. Yin, H. L. Su, C. S. Liao, and C. H. Yan, Chem. Mater.14,4172 (2002).
    [4]J. Geng, D. J. Lu, J. J. Zhu, and H. Y. Chen, J. Phys. Chem. B 11013777, (2006).
    [5]J. T. Sampanthar, and H. C. Zeng, J. Am. Chem. Soc.124,6668 (2002).
    [6]T. He, D. R. Chen, X. L. Jiao, and Y. L. Wang, Adv. Mater.18,1078 (2006).
    [7]J. B. Liang, J. W. Liu, Q. Xie, S. Bai, W. C. Yu, and Y. T. Qian, J. Phys. Chem. B 109,9463 (2005).
    [8]D. B. Wang, M. S. Mo, D. B. Yu, L. Q. Xu, and Y. T. Qian, Cryst. Growth Des.3,717 (2003).
    [9]S. Z. Liu, S. L. Xiong, K. Y. Bao, J. Cao, and Y. T. Qian, J. Phys. Chem. C 113,13002 (2009).
    [10]P. Raybaud, M. Digne, R. Iftimie, W. Wellens, P. Euzen, and H. Toulhoat, J. Catal.201,236 (2001).
    [11]D. B. Kuang, Y. P. Fang, H. Q. Liu, C. Frommen, and D. Fenske, J. Mater. Chem.13,660 (2003).
    [12]H. W. Hou, Y. Xie, Q. Yang, Q. X. Guo, and C. R. Tan, Nanotechnology 16,741 (2005).
    [13]P. Gao, Y. Xie, Y. Chen, L. N. Ye, Q. and X. Guo, J. Cryst. Growth.285,555 (2005).
    [14]P. A. Buining, C. Pathmamanoharan, J. B. H. Jansen, and H. N. W. Lekkerkerker, J. Am. Ceram. Soc.74,1303(1991).
    [15]S. C. Kuiry, E. Megen, S. D. Patil, S. A. Deshpande, and S. Seal, J. Phys. Chem. B 109,3868 (2005).
    [16]J. Zhang, S. J. Liu, J. Lin, H. S. Song, J. J. Luo, E. M. Elssfah, E. Ammar, Y. Huang, X. X. Ding, J. M. Gao, S. R. Qi, and C. C. Tang, J. Phys. Chem. B 110,14249 (2006).
    [17]Y. L. Feng, W. C. Lu, L. M. Zhang, X. H. Bao, B. H. Yue, Y. Lv, and X. F. Shang, Cryst. Growth Des.8,1426 (2008).
    [18]A. R. Roosen, and W. C. Carter, Physica. A 261232 (1998).
    [19]Z. Q. Yu, C. X. Wang, X. T. Gu, and C. Li, J. Lumin.106,153 (2004).
    [20]L. Oster, D. Weiss, and N. Kristianpoller, J. Phys. D. Appl. Phys.27,1732 (1994).
    1 Z. L. Wang and J. H. Song, Science,2006,312,242.
    2 C. H. Lu, L. M. Qi, J. H. Yang, X. Y. Wang, D. Y. Zhang, J. L. Xie and J. M. Ma, Adv. Mater., 2005,17,2562.
    3 J. X. Huang, A. R. Tao, S. Connor, R. R. He and P. D. Yang, Nano Lett,2006,6,524.
    4 S. H. Jiao, L. F. Xu, K. Jiang and D. S. Xu, Adv. Mater.,2006,18,1174.
    5 Z. C. Wu, C. Pan, T. W. Li, G. J. Yang and Y. Xie, Cryst. Growth Des.,2007,7,2454.
    6 Z. Fang, X. Y. Wang, J. M. Shen, X. Lin, Y. H. Ni and X. W. Wei, Cryst. Growth Des.,2010, 10,469.
    7 X. C. Song, Y. Zhao and Y. F. Zheng, Cryst. Growth Des.,2007,7,159.
    8 X. P. Gao, Z. F. Zheng, H. Y. Zhu, G. L. Pan, J. L. Bao, F. Wu and D. Y. Song, Chem. Commun.,2004,1428.
    9 L. P. Zhu, H. M. Xiao and S. Y. Fu, Cryst. Growth Des.,2007,7,177.
    10 H. Deng, C. M. Liu, S. H. Yang, S. Xiao, Z. K. Zhou and Q. Q. Wang, Cryst. Growth Des., 2008,8,4432.
    11 H. G. Yang and H. C. Zeng, Angew. Chem. Int. Ed.,2004,43,5930.
    12 B. Liu and H. C. Zeng, J. Am. Chem. Soc.,2004,126,8124.
    13 A. Narayanaswamy, H. F. Xu, N. Pradhan, M. Kim and X. G. Peng, J. Am. Chem. Soc.,2006, 128,10310.
    14 P. Raybaud, M. Digne, R. Iftimie, W. Wellens, P. Euzen and H. Toulhoat, J. Catal,2001,201, 236.
    15 Y. Zhu, H. W. Hou, G. L. Tang and Q. Y. Hu, Eur. J. Inorg. Chem.,2010,872.
    16 X. X. Yu, J. G. Yu, B. Cheng and M. Jaroniec, J. Phys. Chem. C,2010,113,17527.
    17 S. Li, R. Ahuja and B. Johansson, Solid State Commun.,2006,137,101.
    18 M. P. B. van Bruggen, Langmuir,1998,14,2245.
    19 Y. Wang, J. Y. Lee and H. C. Zeng, Chem. Mater.,2005,17,3899.
    20 F. F. Tao, M. Y. Guan, Y. Jiang, J. M. Zhu, Z. Xu and Z. L. Xue, Adv. Mater.,2006,18,2161.
    21 B. Tang, J. C. Ge, L. H. Zhuo, G. L. Wang, J. Y. Niu, Z. Q. Shi and Y. B. Dong, Eur. J. Inorg. Chem.,2005,4366.
    22 X. S. Peng, L. D. Zhang, G. W. Meng, X. F. Wang, Y. W. Wang, C. Z. Wang and G. S. Wu, J. Phys. Chem. B,2002,106,11163.
    23 P. Gao, Y. Xie, Y. Chen, L. N. Ye and Q. X. Guo, J. Cryst. Growth.,2005,285,555.
    24 D. B. Kuang, Y. P. Fang, H. Q. Liu, C. Frommen and D. Fenske, J. Mater. Chem.,2003,13, 660.
    25 J. Zhang, S. J. Liu, J. Lin, H. S. Song and J. J. Luo, J. Phys. Chem. B,2006,110,14249.
    26 Y. L. Feng, W. C. Lu, L. M. Zhang, X. H. Bao, B. H. Yue, Y. Lv and X. F. Shang, Cryst. Growth Des.,2008,8,1426.
    27 L. Feng, C. Cheng, M. Lei, N. Wang and M. M. T. Loy, Nanotechnology,2008,19, 405702(5pp).
    28 Y. Xiong and Y. Xia, Adv. Mater.,2003,19,3385.
    29 G. K. Priya, P. Padmaja, K. G. K. Warrier, A. D. Damodaran and G. Aruldhas, J. Mater. Sci. Lett.,1997,16,1584.
    30 W. Z. Ostwald, Phys. Chem.,1900,34,495.
    31 I. Pastoriza-Santos and L. M. Liz-Marzan, Adv. Funct. Mater.,2009,19,679.
    32 F. Kim, S. Connor, H. Song, T. Kuykendall and P. Yang, Angew. Chem. Int. Ed.,2004,43, 3673.
    33 Y. Sun, B. Mayers, T. Herricks and Y. Xia, Nano Lett.,2003,3,955.
    34 Y. Zeng, T. Zhang, H. T. Fan, W. Y. Fu, G. Y. Lu, Y. M. Sui and H. B. Yang, J. Phys. Chem. C,2009,113,19000.
    35 T. Kim, J. B. Lian, J. M. Ma, X. C. Duan and W. J. Zheng, Cryst. Grow Des.,2010,10,2928.
    36 J. T. Zhang, J. F. Liu, Q. Peng, X. Wang and Y. D. Li, Chem. Mater.,2006,18,867.
    37 I. Pastoriza-Santos and L. M. Liz-Marzan, Nano Lett,2002,2,903.
    38 Y. Chang, J. J. Teo and H. C. Zeng, Langmuir,2005,21,1074.
    39 Z. Q. Yu, C. X. Wang, X. T. Gu and C. Li, J. Lumin.,2004,106,153.
    40 L. Oster, D. Weise and N. Kristiapoller, J. Phys. D:Appl. Phys.,1994,27,1732.
    41 K. H. Lee and J. H. Crawford Jr, Phys. Rev. B,1979,19,3217.
    42 F. Lei, B. Yan, H. H. Chen, Q. Zhang and J. T. Zhao, Cryst. Growth Des.,2009,9,3730.
    43 H. W. Hou, Y. Xie, Q. Yang, Q. X. Guo and C. R. Tan, Nanotechnology,2005,16,741.
    44 X. Y. Chen, H. S. Huh and S. W. Lee, Nanotechnology,2007,18,285608(5pp).
    45 Z. Q. Yu, C. Li and N. Zhang,J. Lumin,2002,99,29.
    46 X. S. Peng, L. D. Zhang, G. W. Meng, X. F. Wang, C. Z. Wang and G. S. Wu, J. Phys. Chem. B,2002,106,11163.
    47 R. Si, Y. W. Zhang, L. P. You and C. H. Yan, J. Phys. Chem. B,2006,110,5994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700