火焰法合成碳纳米管及合成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了设计出有望实现大量、连续、低成本、工业化合成的反应器和实验方案,首先设计出了类棱台型反应器,系统地研究了工艺参数对产物的影响,分析了碳纳米管的合成机理,最后对合成的碳纳米管做了初步的纯化处理。
     实验得到的主要产物为多壁碳纳米管,也得到了单壁碳纳米管。类棱台型反应器可以避免反应物与空气充分接触,通过调整热解区和合成区之间的距离可以达到热解和合成互不影响,实现原料的热解和碳纳米管的合成在较佳条件下进行。碳源过多(或过少)与催化剂过少(或过多)结果相似,都表现为催化剂被碳源包裹或催化剂迅速长大失活。氢气和氦气的过多或过少表现为吹扫作用过强或过弱,过强将导致碳原子不能附着在催化剂颗粒表面,过弱则不能有效净化管和催化剂颗粒的表面而导致管较粗糙和催化剂颗粒失活。氢气还具有活化催化剂的作用,氦气还起到局部稀释和降温的作用,起携带催化剂的氦气还影响到催化剂的供应速度。取样时间在前60s时未有碳纳米管合成,在第70s时才在颗粒团周围有了管的萌芽,原因在于取样时间较短时基板温度较低,催化剂颗粒和碳原子簇到达基板后被迅速冷却,随着取样时间增加基板的温度升高,到达基板的催化剂颗粒不再被冷却为熔融度较低的状态,具有了催化活性,实验同时根据取样时间对碳纳米管合成的影响得出碳纳米管在增长的同时也在增粗,最初在碳纳米管开始合成前聚集在基板表面的是碳原子簇包裹催化剂颗粒形成的纳米胶囊与催化剂颗粒和碳原子簇的混合物,同时最初生成的聚集物覆盖了整个基板也证明了基板本身成分不能参与催化碳纳米管合成。热解温度对碳纳米管合成的影响主要是温度对一氧化碳热解的影响,影响了碳源的供应速度,而由于五羰基铁在相对较低的温度下即可迅速热解,因此温度对五羰基铁的影响较小。合成温度较高时催化剂颗粒表面的碳原子簇容易被气化,即使有少量碳纳米管生成也很容易被灼烧,温度过低时催化剂颗粒熔融度较低,碳原子簇不能溶入或溶入后扩散缓慢,也不利于碳纳米管合成。雾化为小液滴的五羰基铁做催化剂原料适于在相对温度较低的情况下催化合成碳纳米管,而铁铝氧化物和铁铝钼氧化物适合在相对温度较高的条件下催化合成碳纳米管。研究了不同种类和厚度的取样载体,产物相差较大,分析认为影响表现在载体本身的性能而不是材料元素直接参与催化碳纳米管合成。取样位置对碳纳米管合成的影响也主要体现在合成温度的影响。研究了采用物理法、化学法和综合法对合成的碳纳米管的纯化,单纯的物理法和化学法都不能达到清除掉催化剂颗粒和无定形碳等杂质的目的,石墨片层包裹催化剂颗粒形成的纳米胶囊即使通过综合法也不容易除去。同时研究了在热解区取样合成碳纳米管,这是一个可以实现连续生产的化学气相沉积法的改进,得到了管径较小的碳纳米管,同时进一步证明了五羰基铁做催化剂原料不适于在相对温度较高的情况下催化合成碳纳米管而铁铝氧化物和铁铝钼氧化物适合。本文对碳纳米管的合成机理做了探讨,认为碳纳米管的合成机理符合传统的“溶解-扩散-析出”理论,不同点是碳源在高温下还未与催化剂颗粒接触前就已经分解生成碳原子,同时碳纳米管在长长时管层也在增厚,并且碳纳米管管层的增厚不仅仅局限在管的最外侧,有些在管的最内侧也有层数的增加;也对实验中得到的几种特殊结构的碳纳米管的合成机理做了分析,认为条件的非最佳是导致碳纳米管畸形的主要原因。实验中同时得到了碳纤维、碳纳米洋葱和纳米胶囊等副产物。
In order to realize industrialization synthesis of carbon nanotubes which is large scale, continuous, and low cost, a pyramid shaped reactor and experiment method were designed first. Then systematically studied the influence of process parameters on product and analyzed the synthesis mechanism of carbon nanotubes, and made the preliminary purification processing in the last.
     In this experiment, the main product is muiti-walled carbon nanotubes, single-walled carbon nanotubes also was synthesized. Pyramid shaped reactor can preclude the reactant from meeting the air. By adjusting the distance between the pyrolysis area and synthesis area, pyrolysis and synthesis do not affect each other can realized, and the temperature of pyrolysis and synthesis is at the best situation. Carbon sources too much (or too less) and catalyst too little (or excessive) are similar, all show that the catalyst is packaged by carbon source or catalyst deactive rapidly. Too much or too little hydrogen and helium show purging too strong which can bring about that carbon can not adsorb on catalyst or too weak which can not cleanse tubes and catalyst particles. In addition, hydrogen can make catalyst active, helium has local dilution and cooling effect, since the helium also carry catalyst into reactor which affect the supply speed of catalyst. There were not carbon nanotubes synthesized at first 60s of sampling time, only tube shape buds around particle group at 70s. The reason is that when the sampling time is short, the temperature of substrate is so low that catalyst particles and carbon atom clusters will be cooled as soon as they reached. With the increases of sampling time, the temperature of substrate rise, catalyst particles are no longer be cooled to a lower molten degree when they reach the substrate and with the catalytic activity. Experiments also conclude that carbon nanotubes grow thick with the time from the research on sampling time. Before carbon nanotubes can synthesis, the accumulation which coated on the surface of substrate is the mixture of carbon atom clusters, catalyst particles, and nanocapsules which carbon packaged catalyst particles forming. The accumulation covering the entire substrate also proved that the substrate can not participate in catalytic synthesis of carbon nanotubes. Pyrolysis temperature mainly influence the pyrolysis of carbon monoxide, and little to iron pentacarbonyl because iron pentacarbonyl can rapidly decompose at low temperature. Too high synthesis temperature easily gasify the carbon atom clusters from the surface of catalyst, and burn the synthesized tubes if some can. At low temperature, the molten degree of catalyst is too low to allow carbon atom clusters to dissolve into, or diffuse slowly. Small droplets iron pentacarbonyl as catalyst source are suitable to catalyse synthesis of carbon nanotubes at relative low temperature, while Fe-Al-O and Fe-Al-Mo-O compound are opposite. By the different sample carrier, products were difference. It is concluded that the influences is the capability of the carrier itself rather than material elements directly involved in to catalyse synthesis of carbon nanotubes. The influences of sampling location to synthesis of carbon nanotubes are mainly reflected in the synthesis temperature. Physical, chemical and comprehensive methods were used to purify carbon nanotubes. Only physical or chemical method can not remove all of the impurity, even if comprehensive method can not easily remove the nanocapsules. Sampling at pyrolysis area is a improvement of the traditional chemical vapor deposition which can realize continuous production and get small diameter carbon nanotubes. And further proved that iron pentacarbonyl as raw materials is not suitable in a relatively high temperature while Fe-Al-0 and Fe-Al-Mo-O compound can. In this paper, the synthesis mechanism of carbon nanotubes also be discussed. It is concluded that synthesis mechanism of carbon nanotubes accord with the traditional" solution-diffusion-precipitation " theory, but the difference is that the carbon source has decomposed at high temperatures before contact with the catalyst particles. Carbon nanotubes are also being thicker while growing, and their being thicker is not limited to the outermost, some of the most inside tube layers also increase. The synthesis mechanism of some special structure carbon nanotubes also be analyzed, that the main reason is the non-optimal conditions. Carbon nanofibers, carbon nanoonions, and nanocapsules also be produced at experiment.
引文
[1]Norio Taniguchi. On the Basic Concept of Nanotechnology [C]. Proc. Intl. Conf. Prod. Eng., Tokyo:JSPE, Part Ⅱ,1974:18-23
    [2]R. Birringer, H. Gleiter, H.P. Klein, et al. Nanocrystalline Materials an Approach to a Novel Solid Structure with Gas-Like Disorder [J]. Physics Letters A,1984, V102(8):365-369
    [3]G. Binning, H. Rohrer, Ch. Gerber, et al. Surface Studies by Scanning Tunneling Microscopy [J]. Physical Review Letters,1982, V49 [J]:57-61
    [4]Rugar Daniel, Hansma Paul. Atomic Force Microscopy [J]. Physics Today,1990, V43 (10):23-30
    [5]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001,466-472
    [6]IiJima Sumio. Helical Microtubes of Graphic Carbon [J]. Nature,1991, V354: 56-58
    [7]严东生,冯瑞,等.材料新星:纳米材料科学[M].湖南:湖南科学技术出版社,1997:128
    [8]李斌,沈路涛.决胜纳米时代[N].半月谈,2000-10-10(19)
    [9]Li Yadong, Qian Yitai, Liao Hongwei, et al. A Reduction-Pyrolysis-Catalysis Synthesis of Diamond [J]. Science, V281 (5374):246-247
    [10]Philippe Poncharal, Z.L. Wang, Daniel Ugarte, et al. Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes [J]. Science,1999, V283 (5407):1513-1516
    [11]陈勇.单个原子可称量[N].人民日报,1999-03-19(7)
    [12]Iijima Sumio, Ichihashi Toshinari. Single-Shell Carbon Nanotubes of 1-nm Diameter [J]. Nature,1993, V363 (6430):603-605
    [13]D.S. Bethune, C.H. Klang, M.S. de Vries, et al. Cobalt-Catalysed Growth of Carbon Nanotubes with Single-Atomic-Layer Walls [J]. Nature,1993, V363 (6430):605-607
    [14]M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund. Science of Fullences and Carbon Nanoutbes [M]. San Diego, EUA:Academic Press,1996
    [15]E. Osawa, M.Yoshida, M. Fujita. Shape and Fantasy of Fullerenes [J]. MRS Bulletin,1994, V19 (11):33-36
    [16]J.W. Mintmire, B.I. Dunlap, C.T. White. Are Fullerene Tubules Metallic [J]. Physical Review Letters,1992, V68 (5):631-634
    [17]R.A. Jiahi, J. Bragin, L. Lou. Electronic Structure of Short and Long Carbon Nanotubes from First Principles [J]. Physical Review B,1999, V59 (15):9862-9865
    [18]A.Y. Kasumov, R. Deblock, M. Kociak, et al. Supercurrents through Single-Walled Carbon Nanotubes [J]. Science,1999, V284 (5419):1508-1511
    [19]Yuanhe Huang, Mayumi Okada, Kazuyoshi Tanaka, et al. Estimation of Peierls-Transition Temperature in Metallic Carbon Nanotube [J]. Physical Review B, 1996, V97 (4):303-307
    [20]Young Rae Cho, Jin Ho Lee, Yoon Ho Song, et al. Photolithography-Based Carbon Nanotubes Patterning for Field Emission Displays [J]. Materials Science and Engineering B,2001, V79 (2):128-132
    [21]Calvert Paul. Nanotube Composites-a Recipe for Strength [J]. Nature,1999, V399 (6733):210-211
    [22]M.M.J. Treacy, T.W. Ebbesen, and J.M. Gibson. Exceptionally High Young's Modulus Observed for Individual Carbon Nanotubes [J]. Nature,1996, V381 (6584):678-680
    [23]Jean Paul Salvetat, G. Andrew D. Briggs, Jean Marc Bonard, et al. Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes [J]. Physical Review Letters,1999, V82 (5):944-947
    [24]Walt A. de Heer, A. Chatelain, D. Ugarte. A Carbon Nanotube Field-Emission Electron Source [J]. Science,1996, V270 (5239):1179-1180
    [25]A.G. Rinzler, J.H. Hafner, P. Nikolaev, et al. Unraveling Nanotubes:Field Emission from an Atomic Wire [J]. Science,1995, V269 (5230):1550-1553
    [26]L. Langer, L. Stockman, J.P. Heremans, et al. Electrical Resistance of a Carbon Nanotube Bundle [J]. Materials Research Society,1994, V9 (4):927-93
    [27]A. Bezryadin, A.R.M. Verschueren, S.J. Tans, et al. Multiprobe Transport Experiments on Individual Single-Wall Carbon Nanotubes [J]. Physical Review Letters,1998, V80 (18):4036-4039
    [28]潘雄.美国科学家发现利用碳纳米管产生大电流的新发电方式[J].功能材料科技信息,2010,7(2):42
    [29]Amal M.K. Esawi, Mahmoud M. Farag. Carbon Nanotube Reinforced Composites:Potential and Current Challenges [J]. Materials and Design,2007, V28 (9):2394-2401
    [30]Philip Kim, Charles M. Lieber. Nanotube Nanotweezers [J]. Science,1999, V286 (5447):2148-2150
    [31]C. Liu, Y.Y. Fan, M. Liu, et al. Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature [J]. Science,1999, V286 (5442):1127-1129
    [32]A.C. Dillon, K.M. Jones, T.A. Bekkedahl, et al. Storage of Hydrogen in Single-Walled Carbon Nanotubes[J]. Nature,1997, V386 (6623):377-379
    [33]Ralph T. Yang. Hydrogen Storage by Alkali-Doped Carbon Nanotubes-Revisited [J]. Carbon,2000, V38 (4):623-626
    [34]Y. Ye, C.C. Ahn, C. Witham, et al. Hydrogen Adsorption and Cohesive Energy of Single-Walled Carbon Nanotubes [J]. Applied Physics Letters,1999, V74 (16):2307-2309
    [35]成会明,刘畅,丛洪涛.具有优异储氢性能的高质量单壁纳米碳管的合成[J].物理,2000,29(8):449-450
    [36]顾冲,高光华,于养信,等.单壁纳米碳管吸附氢气的计算机模拟[J].高等学校化学学报,2001,22(6):958-961
    [37]沈阳金属所发现可在室温下贮藏H2的碳纳米管[J].现代化工,2000,20(3):56
    [38]马仁志,魏秉庆,徐才录,等.基于碳纳米管的超级电容器[J].中国科学,2000,30(2):112-116
    [39]王敏炜,李凤仪,彭年才.碳纳米管-新型的催化剂载体[J].新型碳材料,2002,17(03):75-79
    [40]房永彬,严新焕,孙军庆.碳纳米管在催化载体中的应用[J].化工进展,2004,23(12):1296-1301
    [41]Gerhard Mestl, Nadezhda I. Maksimova, Nicolas Keller, et al. Carbon Nanofilaments in Heterogeneous Catalysis:an Industrial Application for New Carbon Materials [J]. Angewandte Chemie International Edition,2001, V40 (11): 2066-2068
    [42]J.Z. Luo, L.Z. Gao, Y.L. leung, et al. The Decomposition of NO on CNTs and 1 wt% Rh/CNTs [J]. Catalysis Letters,2000, V66 (1-2):91-97
    [43]Guo Liqiu, Wang Rui, Xu Huaming, et al. Why can the Carbon Nanotube Tips Increase Resolution and Quality of Image in Biological Systems [J]. Physica E, 2005, V27(1-2):240-244
    [44]O.K. Varghese, P.D. Kichambre, D. Gong, et al. Gas Sensing Characteristics of Multi-Wall Carbon Nanotubes [J]. Sensors and Actuators B:Chemical,2001, V81 (1):32-41
    [45]Salimi Abdollah, G.Compton Richard, Hallaj Rahman. Glucose Biosensor Prepared By Glucose Oxidase Encapsulated Sol-Gel and Carbon-Nanotube-Modified Basal Plane Pyrolytic Graphite Electrode [J]. Analytical Biochemistry, 2004, V333(1):49-56
    [46]Musameh Mustafa, Wang Joseph, Merkoci Arben, et al. Low-Potential Stable NADH Detection at Carbon-Nanotube-Modified Glassy Carbon Electrodes [J]. Electrochemistry Communications,2002, V4 (10):743-746
    [47]S.G. Wang, Qing Zhang, Ruili Wang, et al. Multi-Walled Carbon Nanotubes for the Immobilization of Enzyme in Glucose Biosensors [J]. Electrochemistry Communications,2003, V5 (9):800-803
    [48]赵峥逸,周天舒,杨勤燕,等.碳纳米管修饰传感器对农药敌草隆的快速测定方法研究等多个方面[J].上海化工,2008,33(6):12-17
    [49]刘丰祎(译).新型生物传感器:DNA包覆的碳纳米管[EB/OL](2008-12-23).http://www.neworiental.org/publish/portal0/tab451/info 294194.htm
    [50]韦进全,张先锋,王昆林.碳纳米管宏观体[M].北京:清华大学出版社,2006:19-22
    [51]T. Guo, P. Nikolaev, A.G. Andrew, et al. Self-Assembly of Tubular Fullerenes [J]. Journal of Physical Chemistry,1995, V99(27):10694-10697
    [52]R.T.K. Baker, P.S. Harris, R. BetalThomas, et al. Formation of Filamentous Carbon from Iron, Cobalt and Chromium Catalyzed Decomposition of Acetylene [J]. Journal of Catalysis,1973, V30 (1):86-95
    [53]M. Jose-Yacaman, M. Miki-Yoshida, L. Rendon, et al. Catalytic Growth of Carbon Microtubules with Fullerene Structure [J]. Applied Physics Letters,1993, V62 (2):202-204
    [54]刘宝春,唐水花,高利珍,等.利用沸腾床反应器制备碳纳米管[J].催化学报,2001,V22(2):151-153
    [55]林天津,朱燕娟,张伟,等.多壁碳纳米管的CVD法制备[J].广东工业大学学报,2007,24(4):1-5
    [56]Hiroki Ago, Satoshi Ohshima, Kazuhito Tsukuagoshi, et al. Formation Mechanism of Carbon Nanotubes in the Gas-Phase Synthesis from Colloidal Solutions of Nanoparticles [J]. Current Applied Physics,2005, V5 (2):128-132
    [57]朱宏伟,慈立杰,梁吉,等.浮游催化法半连续制取碳纳米管的研究[J].新型碳材料,2000,15(1):48-51
    [58]夏玉学,王维彪,陈明,等.无氢化学气相沉积法制备碳纳米管[J].功能材料与器件学报,2005,11(4):411-414
    [59]Randall L. Vander wal, Thomas M. Ticich, and Valerie E. Curtis. Diffusion Flame Synthesis of Single-Walled Carbon Nanotubes [J]. Chemical Physics Letters,2000, V323 (3-4):217-223
    [60]Randall L. Vander Wal. Fe-Catalyzed Single-Walled Carbon Nanotubes Synthesis within a Flame Environment [J]. Combustion and Flame,2002, V130 (1-2):37-47
    [61]Michael D. Diener, Noah Nichelson, John M. Alford. Synthesis of Single-Walled Carbon Nanotubes in Flames [J]. Journal of Physical Chemistry B,2000, V140 (41):9615-9620
    [62]Liming Yuan, Kozo Saito, Chunxu Pan, et al. Nanotubes from Methane Flames [J]. Chemical Physics Letters,2001, V340 (3-4):237-241
    [63]Murray J. Height, Jack B. Howard, Jefferson W. Tester, et al. Flame Synthesis of Single-Walled Carbon Nanotubes [J]. Carbon,2004, V42 (11):2295-2307
    [64]Randall L. Vander Wal, Lee J. Hall, Gordon M. Berger. Optimization of Flame Synthesis for Carbon Nanotubes Using Supported Catalyst [J]. Journal of Physical Chemistry B,2002, V106 (51):13122-13132
    [65]朱光,邹小平,程进,等.乙醇催化燃烧法制备竹节形碳纳米管[J].功能材料,2007,38(A06):2303-2305
    [66]张艾飞,刘吉平,刘华.乙醇-催化裂解法大量制备离散碳纳米管[J].精细化工,2005,22(3):658-660
    [67]Alexei V. Saveliev, Wilson Merchan-Merchan, Lawrence A. Kennedy. Metal Catalyzed Synthesis of Carbon Nanostructures in an Opposed Flow Methane Oxygen Flame [J]. Combustion and Flame,2003, V135 (1-2):27-33
    [68]Randall L. Vander Wal, Lee J. Hall. Flame Synthesis of Fe Catalyzed Single-Walled Carbon Nanotubes and Ni Catalyzed Nanofibers:Growth Mechanisms and Consequences [J]. Chemical Physics Letters,2001, V349 (3-4): 178-184
    [69]吕德义,徐铸德,徐丽萍,等.催化剂载体对CVD法制备碳纳米管的影响[J].无机化学学报,2002,18(5):475-480
    [70]Randal L. Vander Wal, Mun Young Choi, Kyeong-ook Lee. The Effects of Rapid Heating of Soot:Implications when Using Laser-Induced Incandescence for Soot Diagnostics [J]. Combustion and Flame,1995, V102 (1-2):200-204
    [71]Randall L. Vander Wal, Lee J. Hall, Gordon M. Berger. The Chemistry of Premixed Flame Synthesis of Carbon Nanotubes Using Supported Catalysts [J]. Proceedings of the Combustion Institute,2002, V29 (1):1079-1085
    [72]Shunpei Nakazawa, Takeshi Yokomori, Masahiko Mizomoto. Flame Synthesis of Carbon Nanotubes in a Wall Stagnation Flow [J]. Chemical Physics Letters,2005, V403 (1-3):158-162
    [73]Ting-Chi Liu, Yuan-Yao Li. Synthesis of Carbon Nanocapsules and Carbon Nanotubes by an Acetylene Flame Method [J]. Carbon,2006, V44 (10):2045-2050
    [74]Sang Kil Woo, Young Taek Hong, Oh Chae Kwon. Flame Synthesis of Carbon Nanotubes Using a Double-Faced Wall Stagnation Flow Burner [J]. Carbon,2009, V47 (3):912-916
    [75]于晓丽,杨小勇,叶萍,等.乙炔空气预混火焰法合成多壁碳纳米管的实验研究[J].工程热物理学报,2009,30(1):165-168
    [76]S. Iijima, P.M. Ajayan, T. Ichihashi. Growth Model for Carbon Nanotubes [J]. Physical Review Letters.1992, V69 (21):3100-3106
    [77]P.M. Ajayan, T. Ichihashi, S. Iijima. Distribution of Pentagons and Shapes in Carbon Nano-Tubes and Nano-Particles [J]. Chemical Physics Letters,1993, V202 (5):384-388
    [78]Jing Kong, Alan M. Cassell, Hong jie Dai. Chemical Vapor Deposition of Methane for Single-Walled Carbon Nanotubes [J]. Chemical Physics Letters, 1998, V292 (4-6):567-574
    [79]Hongjie Dai, Andrew G. Rinzler, Pasha Nikolaev, et al. Single-Wall Nanotubes Produced by Metal Catalyzed Disproportionation of Carbon Monoxide [J]. Chemical Physics Letters,1996, V260 (3-4):471-475
    [80]E.F. Kukovitsky, S.G. L'vov, N.A. Sainov. VLS-Growth of Carbon Nanotubes from the Vapor [J]. Chemical Physics Letters,2000, V317 (1-2):65-70
    [81]Wang Xianbao, Hu Wenping, Liu Yunqi, et al. Bamboo-Like Carbon Nanotubes Produced by Pyrolysis of Iron (Ⅱ) Phthalocyanine [J]. Carbon,2001, V39(10): 1533-1536
    [82]Liming Yuan, Tianxiang Li, Kozo Saito. Growth Mechanism of Carbon Nanotubes in Methane Diffusion Flames [J]. Carbon,2003, V41 (10): 1889-1896
    [83]Christian P. Deck, Kenneth Vecchio. Growth Mechanism of Vapor Phase CVD-Grown Multi-Walled Carbon Nanotubes [J]. Carbon,2005, V43 (1-2): 2608-2617
    [84]张保庭.磷对单/多壁碳纳米管制备影响的研究[D].大连:大连理工大学材料加工工程,2006
    [85]A.M. Rao, E. Richter, Shunji Bandow, et al. Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes [J]. Science,1997, V275 (5297):187-191
    [86]R. Saito, T. Takeya, et al. Kimura. Raman Intensity of Single-Wall Carbon Nanotubes [J]. Physical Review B,1998, V57 (7):4145-4153
    [87]Christopher T. Kingston, Zygmunt J. Jakubek, Stephane Denommee, et al. Efficient Laser Synthesis of Single-Walled Carbon Nanotubes Through Laser Heating of the Condensing Vaporization Plume [J]. Carbon,2004, V42 (8-9): 1657-1664
    [88]N.M. Rodriguez, M.S. Kim, R.T.K. Baker. Promotional Effect of Carbon Monoxide on the Decomposition of Ethylene over an Iron Catalyst [J]. Journal of Catalysis,1993, V144 (1):93-108
    [89]K.L. Yang, R.T. Yang. The Accelerating and Retarding Effects of Hydrogen on Carbon Deposition on Metal Surfaces [J]. Carbon,1987, V24 (6):687-693
    [90]G.A. Somorjai, C.M. Kim, C. Knight. In Surface Science of Catalysis:In Situ Probes and Reaction Kinetics (D.J. Dwyer and F.M. Hoffman, Eds.) American Chemical Society [C]. Washington, DC,1992:203-218
    [91]P.E. Nolan, D.C. Lynch, A.H. Cutler. Catalytic Disproportionation of CO in the Absence of Hydrogen:Encapsulating Shell Carbon Formation [J]. Carbon,1994, V32 (3):477-483
    [92]Randall L. Vander Wal, Lee J. Hall. Ferrocene as a Precursor Reagent for Metal-Catalyzed Carbon Nanotubes:Competing Effects [J]. Combustion and Flame,2002, V130 (1-2):27-36
    [93]C. Park, N.M. Rodriguez, R.T.K. Baker. Carbon Deposition on Iron-Nickel during Interaction with Carbon Monoxide-Hydrogen Mixtures [J]. Journal of Catalysis,1997, V169 (1):212-227
    [94]G.A. Jablonski, F.W.A.H. Geurts, A. Sacco Jr. Carbon Deposition over Fe, Ni, and Co Foils from CO-H2-CH4-CO2-H2O, CO-CO2, CH4-H2, and CO-H2-H2O Gas Mixtures:Ⅱ. Kinetics [J]. Carbon,1992, V30 (1):99-106
    [95]Peter E. Nolan, David C. Lynch, Andrew Hall Cutler. Carbon Deposition and Hydrocarbon Formation on Group VIII Metal Catalysts [J]. Journal of Physical Chemistry B,1998, V102 (21):4165-4175
    [96]X.B. Zhang, X.F. Zhang, D. Bernaerts, et al. The Study of Carbon Nanotubules Produced by Catalytic Method [J]. Chemical Physics Letters,1994, V223 (4): 329-335
    [97]M. Terrones, N. Grobert, J. Olivares, et al. Controlled Production of Aligned-Nanotube Bundles [J]. Nature,1997, V388:52-55
    [98]A.S. Edelstein, R.C. Cammarata. Nanomaterials, Synthesis, Properties and Applications, Chap.6 [M]. Institute of Physics Publishing (IOP) Ltd.,1996: 305-318
    [99]N. Ichinose, Y. Ozaki, S. Kashu. Superfine Particle Technology [M]. London: Springer Verlag,1991:201-215
    [100]J.F. Colomer, G. Bister, I. Willems, et al. Synthesis of Single-Wall Carbon Nanotubes by Catalytic Decomposition of Hydrocarbons [J]. Chemical Communications,1999, V15:1343-1344
    [101]钟家湘,郑秀华,刘颖.金属学教程[M].北京:北京理工大学出版社,1995:175
    [102]Munehiro Ishioka, Toshihiko Okada, Kenji Matsubara, et al. Formation of Vapor-Grown Carbon Fibers in Co-Co2-H2 mixtures, I. Influence of Carrier Gas Composition [J]. Carbon,1992, V30 (6):859-963
    [103]李飞,李社强,江南,等.用DBD/PECVD方法合成碳纳米管[J].真空科学与技术学报,2005,25(3):200-203
    [104]R.T.K. Baker, J.R. Alonzo, J.A. Dumesic, et al. Effect of the Surface State of Iron on Filamentous Carbon Formation [J]. Journal of Catalysis,1982, V77 (1): 74-84
    [105]W. L.Holstein. The Roles of Ordinary and Soret Diffusion in the Metal-Catalyzed Formation of Filamentous Carbon [J]. Journal of Catalysis,1995, V152 (1):42-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700