碳纳米管/石墨片与其它纳米结构的相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米结构包括碳纳米管,单层石墨片以及含缺陷的单层石墨片等众多的奇特结构,这使得它具有优良的性能并成为近年来材料界以及凝聚态物理研究的前沿和热点。本文利用基于密度泛函的第一性原理软件CASTEP,研究了正六边形的纳米管在碳纳米管中的稳定性,几何结构,能带特征以及含缺陷的单层石墨片对金原子的吸附作用。具体安排如下:
     第一章,介绍了碳纳米管以及单层石墨片的研究背景,并对它们的结构特征,制备方法和物理性能做了一个综述性的介绍。
     第二章,详细地介绍了基于密度泛涵理论(DFT)的第一性原理计算软件CASTEP,包括它的结构,使用和功能。
     第三章,探讨了纳米管在碳纳米管中的稳定性,几何结构以及能带图。的正六边形的管状结构吸入C(7,7),C(8,8)中时需要吸收热量,而将其置入C(9,9)中是释放能量。并且当纳米管与碳纳米管的相对位置发生变化时,相互作用表现出震荡或者周期性的变化规律。分析了能带随相互作用的变化。
     第四章,研究了含缺陷的石墨片对金原子的吸附作用。首先讨论了单层石墨片中单原子缺陷,双原子缺陷,以及SW缺陷的形成能;其次分析了这三种缺陷对金原子吸附作用的强弱。得到了缺陷结构含有的悬挂键越多对金原子的吸附作用越强的结论。发现电子从电荷转移量以及电荷密度分布图分析了吸附机制。电子从金原子转移到了石墨片。
     第五章,对工作做了一个总结,以及对于未来工作的展望。
Carbon material has been a hotspot and frontier of material research and condensed matter physics in recent years because of its mesoscopic dimension and novel physical and chemical properties. In this thesis, we investigate the stability, geometrical structures and electronic energy band of hexagonal silicon nanotube (SiNT) confined inside carbon nanotubes based on first-principle calculations. In the meanwhile, we also study the gold atoms on a single layer graphite surface with different defects. The thesis is organized as follows:
     In Chapter 1, the background of carbon nanotubes and graphite are introduced, which includes their geometrical structures, making method and physical properties.
     In Chapter 2, the first-principle computation software CASTEP, which is based on the Density Function Theory (DFT), is introduced. The program structure, application process and computation function are concluded.
     In Chapter 3, the stability, geometrical structures and electronic energy band of hexagonal silicon nanotube (SiNT) confined inside carbon nanotubes are studied. The results show that the encapsulating process of SiNT is exothermic in (9, 9) carbon nanotube while endothermic in (8, 8) and (7, 7) carbon nanotubes. We discuss the variation of total energy as the SiNT rotates around its axis inside carbon nanotubes. Band structures are also analyzed.
     In Chapter 4, gold atoms on a single layer graphite surface with defects are studied. First of all, the formation energy for single vacancy, multi-vacancies, SW are calculated, then, the interaction between Au atoms and graphite with defects is discussed. We found the more dangling bonds graphite has, the stronger the interaction is with Au. Charger transfer and electronic density can illuminate this situation. Charges transfer to graphite.
     In Chapter 5, a final conclusion is drawn for all the results obtained as well as some prospects are given.
引文
[1] S. Iijima, Helical microtubules of graphitic carbon, Nature, (London), 1991, 354, 56
    [2] P. M. Ajayan, S. Iijima, Capillarity induced filling in carbon nanotubes, Nature, 1993, 361, 333~334
    [3] C. H. Kiang, J.S. Choi , T. T. Tran et al, Molecular Nanowires of 1 nm Diameter from Capillary Filling of Single-Walled Carbon Nanotubes, J. Phys. Chem. B, 1999, 103 , 7449~7451
    [4] A. Govindaraj, B. C. Satushkumar, M. Nath, et al, Metal Nanowires and Intercalated Metal Layers in Single-Walled Carbon Nanotube Bundles, Chem. Mater, 2000, 12, 202~205.
    [5] B. C. Satishkumar,A. Taubert, D. E. Luzzi, et al, Filling single-wall carbon nanotubes with d-and f-metal chloride and metal nanowires, J. Nanosci, 2003, 3,159~163.
    [6] W. Q. Han, S. S Fan, Q. Q. Li, et al, Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction, Science, 1997, 277, 1287.
    [7] W. Q. Han, P. Redlich, F. Emst et al, Synthesizing boron nitride nanotubes filed with SiC nanowires by using carbon nanotubes as templates, Appl. Phys. Lett, 1999, 75, 1875~1877
    [8] B. W. Smith , R. M. Russo, D. E. Luzzi, et al, High- yield synthesis and one-dimensional structure of C60 encapsulated in single-wall carbon nanotubes, J. Appl. Phy, 2002, 91 , 9333~9340
    [9] B. W. Smith, M. Monthioux, D. E. Luzzi, et al, RussoEncapsulated C60 in carbon nanotubes, Nature, 1998, 396, 323~324
    [10] J. Chancolon, F. Archaimbault, A. Pineau et al, Structure and electructure properties of molecular nanostructures, American institute of physics, edited by H Kuzmany et al, 2002,P131~134
    [11] R. Q. Zhang, S. T. Lee, C. K. Law, et al, Silicon nanotubes: Why not? J. Chem. Phys. Lett, 2002, 364, 251
    [12]B. X. Li, P. L. Cao, Silicon nanorings and nanotubes: a full-potential linear-muffin-tin-orbital molecular-dynamics method study, Theo. Chem, 2004, 679, 127~130
    [13] J. W. Kang, J. J. Seo, K. R. Byun, Defects in ultrathin copper nanowires: Atomistic similations, Phys. Rew. B, 2002, 66, 125405
    [14] M. Zhang, Y. H. Kan, Q. J. Zhang, et al, Why Silicon Nanotubes Stably Exist in Armchair Strcture? Chem. Phys. Lett., 2003, 379, 81~86
    [15] J. Bai, X. C. Zeng, H. Tanaka et al, Metallic Single-walled Silicon nanotubes PNAS, 2004, 101, 2664~2668
    [16] J. Sha, J. J. Niu, X. Y. Ma, et al, silicon nanotubes, Adv Mater, 2002, 14, 1219
    [17] S. Y. Jeong, J.Y. Kim, H. D. Yang, et al, Synthesis of silicon nanotubes on porous alumina using molecular beam epiaxy, J. Adv. Mater, 2003, 15, 1172
    [18] A. A. Saranin, A. V. Zotov, V. G. Kotiyar, et al, Ordered arrays of Be-encapsulated Si nanotubes on Si(111) surface, J. Nano. Lett, 2004, 4, 1469
    [19] Y. H.Tang, L. Z. Pei, Y. W. Chen, et al, Self-assembled Silicon Nanotubes under Super Critically Hydrothermal Condition, Phys. Rev. Lett, 2005, 95, 116102
    [20] M. Khantha, N. A. Cordero, L. M. Molina,et al, Interaction of lithium with graphene: An ab initio study, Phys. Rew. B, 2004, 70, 125422
    [21] K. Rytk?nen, J. Akola, M. Manninen, Sodium atoms and clusters on graphite by densityfunctional theory, Phys. Rew. B, 2004, 69, 205404
    [22] J. Akola , H. H?kkinen,Density functional study of gold atoms and clusters on a graphite (0001) surface with defects,Phys. Rew. B, 2006, 74, 165404
    [23] R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical properties of carbon nanotubes, (Imperial College Press, Londom, 1998
    [24] R. Saito, Electronic structure of graphene tubules based on C60, Phys. Rev. B, 1992, 46, 1804
    [25] C. T. White, D. H. Rorbertson, J. W. Mintmire, Helical and rotational symmetries of nanoscale graphitic tubules, Phys. Rev. B , 1993, 47, 5485
    [26] M. S. Dresselhaus, G. Dresselhaus, R. Saito, C60-related tubules, Solid State Commun, 1992,84, 201
    [27] J. W. Ding, X. H. Yan,J. X. Cao, Analytical relation of band gaps to both chirality and diameter of single-wall carbon nanotubes, Phys. Rev. B, 2002, 66, 073401
    [28] S. Iijima and T. Icihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, 1993, 363, 603
    [29] J. X. Cao, X. H. Yan, J. W. Ding,et al , Band structures of carbon nanotubes: the sp3s* tight-binding model, J. Phys: Condens. Matter, 2001, 13, L271
    [30] J. X. Cao, X. H. Yan, J. W. Ding, et al , Electronic properties of single-walled carbon nanotubes, J. Phys. Soc. Jpn, 2002, 71, 1339
    [31] D. S. Bethune, C. H. Kiang, M. S. de Vries, et al, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, 1993, 363, 605
    [32] A. Thess, R. Lee, P. Nikolaev, et al, Crystalline ropes of metallic carbon nanotubes, Science,1996, 273, 483
    [33] L. F. Sun, S. S. Xie, W. Liu, et al, Creating the narrowest carbon nanotubes, Nature, 2000, 403, 384
    [34] L. M. Peng, Z. L. Zhang, Z. Q. Xue, et al,“Stability of Carbon Nanotubes: How Small Can they be? Phys. Rev. Lett, 2000, 85, 3249~3252
    [35] A. Bachtold, C. Strunk, J. P. Salvetat, et al, Aharonov-Bohm Oscillations in Carbon Nanotubes, Nature, 1999, 397, 673
    [36] S. J. Tans, A. R. M. Verschueren, et al, Room-temperature transistor based on a single carbon nanotube, Nature, 1998, 393, 49
    [37] J. J. Zhao, A. Buldum, J. Han, et al, Gas molecule adsorption in carbon nanotubes and nanotube bundles, Nanotechnology, 2002, 13, 195
    [38] S. Dag, O. Gulseren, T. Yildirim, Oxygenation of carbon nanotubes: Atomic structure, energetics, and electronic structure, Phys. Rev. B, 2003, 67, 165424
    [39] J. Kong, N. R. Franklin, C. W. Zhou, et al, Nanotube Molecular Wires as Chemical Sensors, Science , 2000, 287, 622
    [40] J. J. Zhao, A. Buldum, J. Han, et al, First-Principles Study of Li-Intercalated Carbon Nanotube Ropes, Phys. Rev. Lett, 2000, 85, 1706
    [41] J. Cao, Q. Wang, H. Dai, Electromechanical Properties of Metallic, Quasimetallic, and Semiconducting Carbon Nanotubes under Stretching, Phys. Rev. Lett, 2003, 90, 157601
    [42] M. R. Falvo, G. J. Clary, R. M. Taylor, et al, Bending and buckling of carbon nanotubes under large strain, Nature,1997, 389, 582
    [43] K. S. Novoselove, A.K.Geim, S. V. Morozov, et al, Electronic field effect in atomically thin carbon films, Science, 2004, 306, 666
    [44] C. Berger, electronic confinement and coherence in patterned epitaxial grapheme, Science, 2006, 312, 1191
    [45] Y. Zhang , Y. W. Tan, H. L. Stormer, Experiment observation of the quantum Hall effect and Berry’phase in grapheme, Nature, 2005, 438 , 201
    [46] Y. W. Son, M. L. Cohen, Steven G Louie, half-metallic grapheme nanoribbons, Nature, 2006, 444, 347
    [47] P. C. Hohenberg, W. Kohn, Inhomogneneous Electron Gas, Phys. Rev. B, 1964, 136, 864~871
    [48] B. Delley, D. E. Ellis, Efficient and Accurate Expansion Methods for Molecules in Local Density Models, J. Chem. Phys, 1982, 76, 1949~1960
    [49] A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, 1988, 38, 3098~3100
    [50] J. P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Phys. Rev. B, 1986, 33, 8822~8824
    [51] J. P. Perdew, Y. Wang, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation, Phys. Rev. B, 1986, 33, 8800~8802
    [52] J. P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B, 1992, 45, 13244~13249
    [53] D. M. Ceperley, B. J. Alder, Ground State of the Electron Gas by a Stochastic Method, Phys.Rev. Lett, 1980, 45, 566~569
    [54] J. P. Perdew, A. Zunger,S elf-interaction correction to density-functional approximations for many-electron systems, Phys. Rev, B, 1981, 23, 5048
    [55] D. Vanderbilt,Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 1990, 41, 7892~7895
    [56] B. Hammer, L. B.Hansen, J. K.Norskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals, Phys. Rev. B, 1999, 59, 7413~7421
    [57] S. Okada, S. Saito, A. Oshiyama, Energetic and Electronic Structure of Encapusulated C60 in Carbon Nanotube. Phys. Rew. Lett, 2001, 86, 3835~3838
    [58] Y. L .Mao, X. H .Yan, Y .Xiao, et al, First-principle study of the (2, 2) carbon nanotube, Phys. Rew. B, 2005, 71, 033404
    [59] W. Mickelson, S. Aloni, W. Q. Han, et al, Packing C60 in Boron Nitride Nanotubes, science, 2003, 300, 467~469
    [60] M. Khantha, N. A. Cordero, L. M. Molina, et al, Interaction of lithium with graphene: An ab initio study, Phys. Rew. B, 2004, 70, 125422
    [61] K. Rytk?nen, J. Akola, M. Manninen, Sodium atoms and clusters on graphite by density functional theory , Phys. Rew. B, 2004, 69, 205404
    [62] S. Y. Jeong, J. Y. Kim , H. D. Yang, et al, Synthesis of Silicon Nanotubes on Porous Alumina Using Molecular Beam Epitaxy, Adv. Mater, 2003, 15, 1172~1176
    [63] G. M. Wang, J. J. Belbruno, S. D. Kenny,Gold adatoms and dimers on relaxed graphitesurfaces, Phys. Rew. B, 2004, 69, 195412
    [64] G. M.Wang, J. J. Belbruno, S. D. Kenny, Density functional study of Aun (n = 3– 5) clusters on relaxed graphite surfaces, Surface Science, 2005, 576, 107~115
    [65] G. M.Wang, J. J. Belbruno S. D. Kenny,Interaction of silver adatoms and dimers with graphite surfaces , Surface Science, 2003, 541, 91~100
    [66] Ayako Hashimoto, Kazu Suenaga, Alexandre Gloter, Direct evidence for atomic defects in grapheme layers, Nature, 2004, 430, 870
    [67] Vincenzo Fiorentini, M Methfessel, extracting convergent surface energies from slab caculations, J. Phys: Condens. Matter, 1996, 8, 6525~6529
    [68] L. Li, S. Reich, J. Robertso,Defect energies of graphite: density functional caculations, Phys. Rew. B, 2005, 72, 184109
    [69] R. Anton, P. Kreutzer,In situ TEM evaluation of the growth kinetics of Au particles on highly oriented pyrolithic graphite at elevated temperatures, Phys. Rew. B, 2000, 61, 16077
    [70] B. X. Li, P. L. Cao, Electronic and geometric structure of thin stable short silicon nanowires, Phys. Rew. B, 2002, 65, 125305
    [71]B. X. Li, P. L Cao, Silicon nanorings and nanotubes: a full-potential linear-muffin-tin-orbital molecular-dynamics method study, Theo.Chem, 2004, 679, 127~130
    [72] B. X. Li, P. L. Cao, D. L. Que,Distorted icosahedral cage structure of Si60 clusters ,Phys. Rew. B, 2000, 61, 1685
    [73] P. Sen, O. Gulseren, T, Yildirim, I.P.Batra,Pentagonal nanowires: A first-principles study of the atomic and electronic structure, Phys. Rew. B, 2002, 65, 235433

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700