微波辅助β-碳苷酮的合成与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳苷作为一类非常重要的合成砌块,常被用于合成一些具有重要生物学意义的天然产物及人工化合物。由于其具有较好的化学与生物学稳定性,即耐酸碱性及对糖苷酶的稳定性,而倍受人们的关注,但是碳苷的立体选择性合成一直是有机化学家所面对的巨大挑战。之前报道的方法对于芳基酮-p-碳苷的合成而言,存在明显的缺陷:反应时间长(12h)、产率普遍较低(6-64%)等。因此,需要开发一种快速高效的方法来合成芳基酮-β-碳苷。
     以D-葡萄糖为底物模型,详细研究了微波辅助立体选择性合成芳基酮-p-碳苷的方法,验证其普适性,拓展应用范围。在NaHCO3的EtOH-H2O (4:1, V/V)体系中,游离的醛糖与二苯甲酰基甲烷经微波辅助发生Knoevenagel缩合,生成芳基酮-β-碳苷,具有较高的产率(D-葡萄糖的产率高达99%,D-甘露糖的产率为98%)和立体选择性(p-构型>95%),反应时间大大缩短(仅90min),该合成方法优于之前报道的文献。
     立体选择性地合成羟基部分保护的芳基酮-p-碳苷及其衍生物3-乙酰氨基-3-脱氧-β-碳苷酮,有效地解决了碳苷2-或3-位羟基区域选择性保护相对困难的问题,避免了差向异构和端基异构。
     详细研究了1-C-(4’,6’-D苄叉基-β-D-吡喃葡萄糖基)-丙酮、2-C-(4',6'-O-苄叉基-p-D-吡喃葡萄糖基)-苯乙酮和2-C-(4',6'-O-苄叉基-β-D-吡喃葡萄糖基)-乙苯的2,3-位羟基区域选择性对甲苯磺酰化。相对于氧苷而言,由于碳苷没有端基效应,区域选择性保护其糖环的2-或3-位羟基就显得非常困难。以3-位对甲苯磺酰化的产物为原料,合成了3-乙酰氨基-3-脱氧-p-碳苷酮
     利用上述方法合成了p-碳苷氨基糖衍生物、糖苷酶抑制剂α-溴代丙酮-β-碳苷以及治疗心血管类疾病的潜在药物β-碳苷硝酸酯。三者在有机化学、生物化学、药物化学及不对称催化领域具有良好的应用前景。
     以2,3-脱水-p-碳苷为原料,利用环氧化合物的选择性亲核开环反应,合成了一系列结构新颖的p-碳苷氨基糖,获得了较高的产率(37-97%);以廉价易得的醛糖为原料,利用高效、环保的1,3-二溴-5,5-二甲基海因(DBDMH)为溴化试剂,经过碳苷化和α-溴代反应,两步法简便合成了β-糖苷酶抑制剂α-溴代丙酮-β-碳苷,总产率是文献值的2倍;以β-碳苷酮为母体化合物,经选择性保护糖环4,6-位羟基及在发烟硝酸-乙酸酐体系中的硝化反应,合成了一系列结构新颖的β-碳苷硝酸酯类化合物,为新药研发及构效关系的研究提供新的候选化合物。
C-Glycosides are being used as building blocks for the synthesis of a variety of biologically important natural products and synthetic compounds. The interest in C-glycosides lies on the stability of the C-glycosidic linkage, which is resistant to both enzymatic and chemical hydrolysis. However, stereoselective synthesis of C-glycosides has been a challenging task for organic chemists.The previous conventional methodologies for the synthesis of aryl ketone β-C-glycosides have some obvious defects, including long reaction time (12h), low yields (6-64%), and so on. As a result, we need faster and more efficient methods for the synthesis of aryl ketone β-C-glycosides.
     This paper described a detailed optimization procedure for the microwave-assisted stereoselective synthesis of aryl ketone β-C-glycoside in D-glucose case and investigated the scope of this methodology for the preparation of several C-glycoside derivatives. This one-step protocol involved Knoevenagel condensation between unprotected aldoses and dibenzoylmethane catalyzed by NaHCO3in the co-solvents EtOH-H2O (4:1, V/V) under400W microwave irradiation, which gave aryl ketone β-C-glycosides with higher yields (99%with C-glucoside,98%with C-mannoside) and better anomeric selectivities (β-configuration>95%) in a shorter reaction time (90min), compared with previous conventional methodologies.
     Using this method, partially protected aryl ketone β-C-glycosides and its derivatives3-acetamido-3-deoxy-β-C-glycosidic ketones were synthesized from the corresponding partially protected aldoses and aminosugars. This methodology provided an attractive alternative to the existing means for the regioselective protection of C-glycoside2-or3-hydroxyl group, and avoided the epimerization and anomerization.
     Regioselective tosylation of2,3-hydroxyl groups for2-C-(4',6'-O-benzylidene-P-D-glucopyranosyl)-acetone,2-C-(4',6'-O-benzylidene-β-D-glucopyranosyl)-acetophenone and2-C-(4',6'-O-benzylidene-β-D-glucopyranosyl)-ethylbenzene were investigated detailedly. Compared with O-glycosides, it was very difficult to protect2-or3-hydroxyl group of C-glycosides selectively, because C-glycosides had no anomeric effect.3-Acetamido-3-deoxy-β-C-glycosidic ketone was synthesized from the nucleophilic substitution of3-tosyl product.
     Based on the above methodologies, β-C-glycosidic aminosugars, β-glucosidase inhibitors a-bromoacetone-β-C-glycosides and the potential drug for the treatment of cardiovascular disease β-C-glycosidic nitrates were synthesized, which have good application prospects in organic chemistry, biochemistry, medicinal chemistry and asymmetric catalysis.
     β-C-Glycosidic aminosugars were synthesized through selective nucleophilic ring-opening reaction of2,3-anhydro-β-C-glycosides with good yields (37-97%). a-Bromoacetone-β-C-glycosides were synthesized concisely from cheap and available aldoses, by the two reactions of C-glycosylation and a-bromination using1,3-Dibromo-5,5-Dimethylhydantoin (DBDMH) as an efficient and environment-friendly brominating agent. The overall yield was twice as many as that of the previous literature reported. β-C-glycosidic nitrates were synthesized from β-C-glycosidic ketones, through selective protection of the4,6-position hydroxyl of pyranose ring and nitration using fuming nitric acid in acetic anhydride, which were new candidate compounds for new drug development and structure-activity relationship study.
引文
[1]蔡孟深,李中军.糖化学-基础、反应、合成、分离及其结构.北京:化学工业出版社,2007.
    [2]Dwek R A. Glycobiology:Toward Understanding the Function of Sugars. Chem Rev, 1996,96(2):683-720.
    [3]Dwek R A, Butters T D. Introduction:Glycobiology Understanding the Language and Meaning of Carbohydrates. Chem Rev,2002,102(2):283-284.
    [4]Wassarman P M. Mammalian Fertilization:Molecular Aspects of Gamete Adhesion, Exocytosis, and Fusion. Cell,1999,96(2):175-183.
    [5]Hakomori S. Tumor Malignancy Defined by Aberrant Glycosylation and Sphingo-(glyco)lipid Metabolism. Cancer Res,1996,56(23):5309-5318.
    [6]Kim Y J, Varki Ajit. Perspectives on the Significance of Altered Glycosylation of Glycoproteins in Cancer. Glycoconjugate J,1997,14(5):569-576.
    [7]Scanlan C N, Offer J, Zitzmann N, et al. Exploiting the Defensive Sugars of HⅣ-1 for Drug and Vaccine Design. Nature,2007,446(7139):1038-1045.
    [8]Conrad H E. Dissection of Heparin-Past and Future. Pure Appl Chem,1993,65(4): 787-791.
    [9]Wong C H. Carbohydrate-Based Drug Discovery. Weinheim:WILEY-VCH,2003.
    [10]Damus P S, Hicks M, Rosenberg R D. Anticoagulant Action of Heparin. Nature, 1973,246(5432):355-357.
    [11]Longas M O, Finlay T H. The Covalent Nature of the Human Antithrombin Ⅲ-Thrombin Bond. Biochem J,1980,189:481-489.
    [12]Sinay P, Jacquinet J C, Petitou M, et al. Total Synthesis of a Heparin Pentasaccharide Fragment Having High Affinity for Antithrombin Ⅲ. Carbohydr Res,1984,132(2): C5-C9.
    [13]Choay J, Petitou M, Lormeau J C, et al. Structure-Activity Relationship in Heparin: A Synthetic Pentasaccharide with High Affinity for Antithrombin Ⅲ and Eliciting High Anti-Factor Xa Activity. Biochem Biophys Res Commun,1983,116(2):492-499.
    [14]Petitou M, Boeckel C A A. Heparin:from the Original "Soup" to Well-Designed Heparin Mimetics. Pure Appl Chem,1997,69(9):1839-1846.
    [15]Petitou M, Duchaussoy P, Driguez P A, et al. First Synthetic Carbohydrates with the Full Anticoagulant Properties of Heparin. Angew Chem Int Ed,1998,37(21):3009-3014.
    [16]Herbert J M, Herault J P, Bernat A, et al. Biochemical and Pharmacological Properties of SANORG 34006, a Potent and Long-Acting Synthetic Pentasaccharide. Blood,1998,91(11):4197-4205.
    [17]Varghese J N, Laver W G, Colman P M. Structure of the Influenza Virus Glycoprotein Antigen Neuraminidase at 2.9 A Resolution. Nature,1983,303(5912): 35-40.
    [18]Wiley D C, Skehel J J. The Structure and Function of the Hemagglutinin Membrane Glycoprotein of Influenza Virus. Ann Rev Biochem,1987,56:365-394.
    [19]Itzstein M, Wu W Y, Kok G B, et al. Rational Design of Potent Sialidase-Based Inhibitors of Influenza Virus Replication. Nature,1993,363(6428):418-423.
    [20]Hayden F G, Treanor J J, Betts R F, et al. Safety and Efficacy of the Neuraminidase Inhibitor GG167 in Experimental Human Influenza. J Am Med Assoc,1996,275(4): 295-299.
    [21]Kim C U, Lew W, Williams M A, et al. Influenza Neuraminidase Inhibitors Possessing a Novel Hydrophobic Interaction in the Enzyme Active Site:Design, Synthesis, and Structural Analysis of Carbocyclic Sialic Acid Analogues with Potent Anti-Influenza Activity. JAm Chem Soc,1997,119(4):681-690.
    [22]方志杰,胡丹丹,郑保辉,等.一种托吡酯的制备方法.CN 101979395,2011-02-23.
    [23]胡丹丹,方志杰,郑保辉,等.托吡酯及其类似物的合成.中国医药工业杂志2011,42(9):645-647.
    [24]Suhadolnik R J. Nucleoside Antibiotics. New York:Wiley-Interscience,1970.
    [25]Natori T, Koezuka Y, Higa T. Agelasphins, Novel a-Galactosylceramides from the Marine Sponge Agelas mauritianus. Tetrahedron Lett,1993,34(35):5591-5592.
    [26]Akimoto K, Natori T, Morita M. Synthesis and Stereochemistry of Agelasphin-9b. Tetrahedron Lett,1993,34(35):5593-5596.
    [27]Natori T, Morita M, Akimoto K, et al. Agelasphins, Novel Antitumor and Immunostimulatory Cerebrosides from the Marine Sponge Agelas mauritianus. Tetrahedron,1994,50(9):2771-2784.
    [28]Morita M, Motoki K, Akimoto K, et al. Structure-Activity Relationship of a-Galactosylceramides Against B16-Bearing Mice. J Med Chem,1995,38(12): 2176-2187.
    [29]Hayakawa Y, Rovero S, Forni G, et al. a-Galactosylceramide (KRN7000) Suppression of Chemical-and Oncogene-Dependent Carcinogenesis. Proc NatlAcad Sci,2003,100(16):9464-9469.
    [30]Costantino V, Fattorusso E, Imperatore C, et al. Glycolipids from Sponges.13. Clarhamnoside, the First Rhamnosylated a-Galactosylceramide from Agelas clathrodes. Improving Spectral Strategies for Glycoconjugate Structure Determination. J Org Chem,2004,69(4):1174-1179.
    [31]Pu J, Franck R W. C-Galactosylceramide Diastereomers via Sharpless Asymmetric Epoxidation Chemistry. Tetrahedron,2008,64(37):8618-8629.
    [32]Kawano T, Cui J, Koezuka Y, et al. CD1d-Restricted and TCR-Mediated Activation of Va14 NKT Cells by Glycosylceramides. Science,1997,278(5343):1626-1629.
    [33]Kawano T, Cui J, Koezuka Y, et al. Natural Killer-Like Nonspecific Tumor Cell Lysis Mediated by Specific Ligand-Activated Va14 NKT Cells. Proc Natl Acad Sci,1998, 95(10):5690-5693.
    [34]Nakagawa R, Motoki K, Ueno H, et al. Treatment of Hepatic Metastasis of the Colon26 Adenocarcinoma with an a-Galactosylceramide, KRN7000. Cancer Res, 1998,58(6):1202-1207.
    [35]Fuji N, Ueda Y, Fujiwara H, et al. Antitumor Effect of a-Galactosylceramide (KRN7000) on Spontaneous Hepatic Metastases Requires Endogenous Interleukin 12 in the Liver. Clin Cancer Res,2000,6(8):3380-3387.
    [36]Nakagawa R, Serizawa I, Motoki K, et al. Antitumor Activity of a-Galactosylceramide, KRN7000, in Mice with the Melanoma B16 Hepatic Metastasis and Immunohistological Study of Tumor Infiltrating Cells. Oncol Res, 2000,12(2):51-58.
    [37]Cretney E, Takeda K, Yagita H, et al. Increased Susceptibility to Tumor Initiation and Metastasis in TNF-Related Apoptosis-Inducing Ligand-Deficient Mice. J Immunol, 2002,168(3):1356-1361.
    [38]Yang G. L, Schmieg J, Tsuji M, et al. The C-Glycoside Analogue of the Immunostimulant a-Galactosylceramide (KRN7000):Synthesis and Striking Enhancement of Activity. Angew Chem Int Ed,2004,43(29):3818-3822.
    [39]Toba T, Murata K, Yamamura T, et al. A Concise Synthesis of (3S,4S,5R)-1-(α-D-Galactopyranosyl)-3-Tetracosanoylamino-4,5-Decanediol, a C-Glycoside Analogue of Immunomodulating a-Galactosylceramide OCH. Tetrahedron Lett,2005,46(30): 5043-5047.
    [40]Franck R W, Tsuji M. a-C-Galactosylceramides:Synthesis and Immunology. Acc Chem Res,2006,39(10):692-701.
    [41]Chaulagain M R, Postema M H D, Valeriote F, et al. Synthesis and Anti-Tumor Activity of β-C-Glycoside Analogs of the Immunostimulant KRN7000. Tetrahedron Lett,2004,45(41):7791-7794.
    [42]Wipf P, Pierce J G Expedient Synthesis of the a-C-Glycoside Analogue of the Immunostimulant Galactosylceramide (KRN7000). Org Lett,2006,8(15):3375-3378.
    [43]Cipolla L, Rescigno M, Leone A, et al. Novel Tn Antigen-Containing Neoglycopeptides:Synthesis and Evaluation as Anti Tumor Vaccines. Bioorg Med Chem,2002,10(5):1639-1646.
    [44]Cavezza A, Boulle C, Gueguiniat A, et al. Synthesis of Pro-XylanetTM:A New Biologically Active C-Glycoside in Aqueous Media. Bioorg Med Chem Lett,2009, 19(3):845-849.
    [45]Dalko M, Breton L. New C-Glycoside Derivatives and Uses Thereof. WO 2002051828,2002-07-04.
    [46]Cavezza A, Trouille S, Pichaud P. New C-Glycoside Derivatives and Uses Thereof. EP 1589010,2005-10-26.
    [47]Howard S, Withers S G Bromoketone C-Glycosides, a New Class of β-Glucanase Inactivators. J Am Chem Soc,1998,120(40):10326-10331.
    [48]Howard S, Withers S G Labeling and Identification of the Postulated Acid/Base Catalyst in the a-Glucosidase from Saccharomyces cerevisiae Using a Novel Bromoketone C-Glycoside. Biochemistry,1998,37(11):3858-3864.
    [49]Ko K-S, Kruse J, Pohl N L. Synthesis of Isobutyl-C-Galactoside (IBCG) as an Isopropylthiogalactoside (IPTG) Substitute for Increased Induction of Protein Expression. Org Lett,2003,5(10):1781-1783.
    [50]Liu L, Motaal B A, Schmidt-Supprian M, et al. Multigram Synthesis of Isobutyl-β-C-Galactoside as a Substitute of Isopropylthiogalactoside for Exogenous Gene Induction in Mammalian Cells. JOrg Chem,2012,77(3):1539-1546.
    [51]Morita S, Hiradate S, Fujii Y, et al. cis-Cinnamoyl Glucoside as a Major Plant Growth Inhibitor Contained in Spiraea prunifolia. Plant Growth Regul,2005,46(2): 125-131.
    [52]Bisht S S, Pandey J, Sharma A, et al. Aldol Reaction of β-C-Glycosylic Ketones: Synthesis of C-(E)-Cinnamoyl Glycosylic Compounds as Precursors for New Biologically Active C-Glycosides. Carbohydr Res,2008,343(9):1399-1406.
    [53]Wang J F, Lei M, Li Q, et al. A Novel and Efficient Direct Aldol Condensation from Ketones and Aromatic Aldehydes Catalyzed by Proline-TEA through a New Pathway. Tetrahedron,2009,65(25):4826-4833.
    [54]Carreno M C, Urbano A. Recent Advances in the Synthesis of Angucyclines. Synlett, 2005, (1):1-25.
    [55]Kazunobu T. Novel Glycosylation Methods and Their Application to Natural Products Synthesis. Carbohydr Res,2006,341(10):1282-1297.
    [56]Yamaguchi M, Okuma T, Horiguchi A, et al. Total Synthesis of (-)-Urdamycinone B through Polyketide Condensation. JOrg Chem,1992,57(6):1647-1649.
    [57]Boyd V A, Sulikowski G A. Total Synthesis of the Angucycline Antibiotics Urdamycinone B and 104-2 via a Common Synthetic Intermediate. J Am Chem Soc, 1995,117(32):8472-8473.
    [58]Hurd C D, Bonner W A. The Glycosylation of Hydrocarbons by Means of the Grignard Reagent. JAm Chem Soc,1945,67(11):1972-1977.
    [59]Levy D E, Tang C. The Chemistry of C-Glycosides. Oxford:Elsevier Science Ltd, 1995.
    [60]Bililign T, Griffith B R, Thorson J S. Structure, Activity, Synthesis and Biosynthesis of Aryl-C-Glycosides. Nat Prod Rep,2005,22(6):742-760.
    [61]Du Y G, Linhardt R J, Vlahov I R. Recent Advances in Stereoselective C-Glycoside Synthesis. Tetrahedron,1998,54(34):9913-9959.
    [62]Hanessian S. Stereocontrolled Glycosyl Transfer Reactions with Unprotected Glycosyl Donors. Chem Rev,2000,100(12):4443-4463.
    [63]Toshima K, Matsuo G, Ishizuka T, et al. C-Arylglycosylation of Unprotected Free Sugar. J Chem Soc Chem Commun,1992,1992:1641-1642.
    [64]Toshima K, Matsuo G, Nakata M. An Imrpoved Practical Method for Synthesis of Aryl C-Glycosides from Unprotected Methyl Glycosides and 1-Hydroxy Sugars.J Chem Soc Chem Commun,1994,1994:997-998.
    [65]Toshima K, Ouchi H, Okazaki Y, et al. Artificial Anthraquinone-Carbohydrate Hybrids:Design, Synthesis, DNA Binding, and Cytotoxicity. Angew Chem Int Ed, 1997,36(24):2748-2750.
    [66]Toshima K, Matsuo G, Ishizuka T, et al. Aryl and Allyl C-Glycosidation Methods Using Unprotected Sugars. J Org Chem,1998,63(7):2307-2313.
    [67]Toshima K, Ishizuka T, Matsuo G, et al. Allyl C-glycosidations of Totally Unprotected Glycals and Allyltrimethylsilane with Trimethylsilyl Trifluoromethane-sulfonate (TMSOTf). Tetrahedron Lett,1994,35(31):5673-5676.
    [68]Petrus L, Bystricky S, Sticzay T, et al. Preparation of some Glycosyl Derivatives of Nitromethane. Chem zvesti,1982,36(1):103-110.
    [69]Roedern E G, Kessler H. A Sugar Amino Acid as a Novel Peptidomimetic. Angew Chem Int Ed Engl,1994,33(6):687-689.
    [70]Drew K N, Gross P H. C-Glycoside Synthesis Ⅱ:Henry Condensations of 4,6-O-Alkylidene Pyranoses with a 1,3-Proton Transfer Catalyst - A Roote to Blocked Aminomethyl-C-Gycosides. Tetrahedron,1991,47(32):6113-6126.
    [71]彭涛,王林.1-脱氧-1-氨甲基-4,6-O-亚苄基-β-D-吡喃葡萄糖的合成.化学通报,2008,71(1):68-70.
    [72]王文忠,张佩瑛,吕以仙.一步法立体专一性合成游离p-吡喃糖碳苷.高等学校化学学报,2001,22(12):2037-2039.
    [73]王文忠,吕以仙,张佩瑛.利用核磁技术确定游离羟基碳苷的结构和构型.北京医科大学学报,2000,32(3):277-279.
    [74]王文忠,张佩瑛,吕以仙,等.苯乙酮碳苷化合物快原子轰击质谱的特征及碎裂机理的研究.化学通报,2000,63(11):42-43.
    [75]Ranoux A, Lemiegre L, Benoit M, et al. Homer-Wadsworth-Emmons Reaction of Unprotected Sugars in Water or in the Absence of Any Solvent:One-Step Access to C-Glycoside Amphiphiles. Eur J Org Chem,2010, (7):1314-1323.
    [76]Gonzalez M A, Requejo J L J, Albarran J C P, et al. Facile Preparation of C-Glycosylbarbiturates and C-Glycosylbarbituric Acids. Carbohydr Res,1986,158: 53-66.
    [77]Martinez M B, Mata F Z, Ruiz A M, et al. Synthesis and Conformational Analysis of C-Glycosylbarbiturates. Carbohydr Res,1990,199(2):235-238.
    [78]Wulff Q Clarkson G On the Synthesis of C-Glycosyl Compounds Containing Double Bonds without the Use of Protecting Groups. Carbohydr Res,1994,257(1): 81-95.
    [79]Rodrigues F, Canac Y, Lubineau A. A Convenient, One-Step, Synthesis of β-C-Glycosidic Ketones in Aqueous Media. Chem Commun,2000, (20):2049-2050.
    [80]Riemann I, Papadopoulos M A, Knorst M, et al. C-Glycosides by Aqueous Condensation of β-Dicarbonyl Compounds with Unprotected Sugars. Aust J Chem, 2002,55(1-2):147-154.
    [81]Wang J F, Li Q, Ge Z M, et al. A Versatile and Convenient Route to Ketone C-Pyranosides and Ketone C-Furanosides from Unprotected Sugars. Tetrahedron, 2012,68(4):1315-1320.
    [82]Hersant Y, Abou-Jneid R, Canac Y, et al. One-Step Synthesis of β-C-Glycolipid Derivatives from Unprotected Sugars. Carbohydr Res,2004,339(3):741-745.
    [83]Foley P M, Phimphachanh A, Beach E S, et al. Linear and Cyclic C-Glycosides as Surfactants. Green Chem,2011,13(2):321-325.
    [84]Bragnier N, Scherrmann M C. One-Step Synthesis of β-C-Glycosidic Ketones in Aqueous Media:The Case of 2-Acetamido Sugars. Synthesis,2005, (5):814-818.
    [85]Caraballo R, Sakulsombat M, Ramstrom O. Towards Dynamic Drug Design: Identification and Optimization of β-Galactosidase Inhibitors from a Dynamic Hemithioacetal System. ChemBioChem,2010,11(11):1600-1606.
    [86]Tierney J P, Lidstrom P. Microwave Assisted Organic Synthesis. Oxford:Blackwell Publishing,2005.
    [87]Kappe C O, Stadler A. Microwaves in Organic and Medicinal Chemistry. Weinheim: WILEY-VCH,2005.
    [88]Larhed M,Olofsson K. Microwave Methods in Organic Synthesis. Berlin:Springer, 2006.
    [89]Loupy A. Microwaves in Organic Synthesis, Second edition. Weinheim:WILEY-VCH,2006.
    [90]Gedye R, Smith F, Westaway K, et al. The Use of Microwave Ovens for Rapid Organic Synthesis. Tetrahedron Lett,1986,27(3):279-282.
    [91]Giguere R J, Bray T L, Duncan S M, et al. Application of Commercial Microwave Ovens to Organic Synthesis. Tetrahedron Lett,1986,27(41):4945-4948.
    [92]Adam D. Microwave Chemistry:Out of the Kitchen. Nature,2003,421(6923):571-572.
    [93]Kappe C O. Controlled Microwave Heating in Modern Organic Synthesis. Angew Chem Int Ed,2004,43(46):6250-6284.
    [94]Caddick S, Fitzmaurice R. Microwave Enhanced Synthesis. Tetrahedron,2009, 65(17):3325-3355.
    [95]Richel A, Laurent P, Wathelet B, et al. Microwave-Assisted Conversion of Carbohydrates. State of the Art and Outlook. C R Chimie,2011,14(2-3):224-234.
    [96]Cioffi E A. High-Energy Glycoconjugates:Synthetic Transformations of Carbohydrates Using Microwave and Ultrasonic Energy. Curr Top Med Chem,2008, 8(2):152-158.
    [97]Corsaro A, Chiacchio U, Pistara V, et al. Microwave-Assisted Chemistry of Carbohydrates. Curr Org Chem,2004,8(6):511-538.
    [98]Das S K. Application of Microwave Irradiation in the Synthesis of Carbohydrates. Synlett,2004, (6):915-932.
    [99]Limousin C, Cleophax J, Petit A, et al. Solvent-Free Synthesis of Decyl D-Glycopyranosides Under Focused Microwave Irradiation. J Carbohydr Chem, 1997,16(3):327-342.
    [100]Das S K, Reddy K A, Krowidi V L N R, et al. InCl3 as a Powerful Catalyst for the Acetylation of Carbohydrate Alcohols under Microwave Irradiation. Carbohydr Res, 2005,340(7):1387-1392.
    [101]Morcuende A, Valverde S, Herradon B. Rapid Formation of Dibutylstannylene Acetals from Polyhydroxylated Compounds under Microwave Heating. Application to the Regioselective Protection of Polyols and to a Catalytic Tin-Mediated Benzoylation. Synlett,1994, (1):89-91.
    [102]Soderberg E, Westman J, Oscarson S. Rapid Carbohydrate Protecting Group Manipulations Assisted by Microwave Dielectric Heating. J Carbohydr Chem,2001, 20(5):397-410.
    [103]Ferlin N, Duchet L, Kovensky J, et al. Micro wave-Assisted Synthesis of Long-Chain Alkyl Glucopyranosides. Carbohydr Res,2008,343(16):2819-2821.
    [104]Das S K, Reddy K A, Abbineni C, et al. Microwave-Induced, InCl3-Catalyzed Ferrier Rearrangement of Acetylglycals:Synthesis of 2,3-Unsaturated C-Glycosides. Tetrahedron Lett,2003,44(24):4507-4509.
    [105]Lei M, Gao L, Yang J S. Microwave-Assisted Palladium-Catalyzed Cross-Coupling Reactions between Pyranoid Glycals and Aryl Bromides. Synthesis of 2'-Deoxy C-Aryl-β-Glycopyranosides. Tetrahedron Lett,2009,50(36):5135-5138.
    [106]Limousin C, Olesker A, Cleophax J, et al. Halogenation of Carbohydrates by Triphenylphosphine Complex Reagents in Highly Concentrated Solution under Microwave Activation or Conventional Heating. Carbohydr Res,1998,312(1-2): 23-31.
    [107]Cleophax J, Liagre M, Loupy A. Application of Focused Microwaves to the Scale-Up of Solvent-Free Organic Reactions. Org Proc Res Dev,2000,4(6):498-504.
    [108]Hladezuk I, Olesker A, Cleophax J, et al. Synthesis of 2-C-and 3-C-Aryl Pyranosides. J Carbohydr Chem,1998,17(6):869-878.
    [109]Hansen T S, Woodley J M, Riisager A. Efficient Micro wave-Assisted Synthesis of 5-Hydroxymethylfurfural from Concentrated Aqueous Fructose. Carbohydr Res, 2009,344(18):2568-2572.
    [110]Qi X H, Watanabe M, Aida T M, et al. Catalytic Dehydration of Fructose into 5-Hydroxymethylfurfural by Ion-Exchange Resin in Mixed-Aqueous System by Microwave Heating. Green Chem,2008,10(7):799-805.
    [111]Li C, Zhang Z, Zhao Z K. Direct Conversion of Glucose and Cellulose to 5-Hydroxymethylfurfural in Ionic Liquid under Microwave Irradiation. Tetrahedron Lett,2009,50(38):5403-5405.
    [112]Zheng B H, Fang Z J, Cheng J, et al. Micro wave-Assisted Conversion of Carbohydratesinto 5-Hydroxymethylfurfural Catalyzed by ZnCl2. Z Naturforsch, 2010,65b(1):168-172.
    [113]Feng W W, Fang Z J, Yang J M, et al. Microwave-Assisted Efficient Synthesis of Aryl Ketone β-C-Glycosides from Unprotected Aldoses. Carbohydr Res,2011, 346(2):352-356.
    [114]刘宏民,张福义,徐汶,等.以氧化糖为原料的氨基糖衍生物的合成.化学学报,2003,61(7):1149-1152.
    [115]张磊,丁宁,张伟,等.2-氨基-2-脱氧-D-葡萄糖氧苷的化学合成新进展.有机化学,2011,31(10):1553-1562.
    [116]Magnet S, Blanchard J S. Molecular Insights into Aminoglycoside Action and Resistance. Chem Rev,2005,105(2):477-497.
    [117]Rai R, McAlexander I, Chang C-W T. Synthetic Glycodiversification. From Aminosugars to Aminoglycoside Antibiotics. A Review. Org Prep Proced Int,2005, 37(4):337-375.
    [118]Herzner H, Reipen T, Schultz M, et al. Synthesis of Glycopeptides Containing Carbohydrate and Peptide Recognition Motifs. Chem Rev,2000,100(12):4495-4537.
    [119]Seeberger P H, Werz D B. Synthesis and Medical Applications of Oligosaccharides. Nature,2007,446(7139):1046-1051.
    [120]Wu A T.Wu P J, Zou W, et al. Synthesis of Iminoalditol and N-alkyl Iminoalditol Derivatives of Ribopyranosides. Carbohydr Res,2008,343(17):2887-2893.
    [121]Yi T, Wu A T, Wu S H, et, al. 1-C-(2'-Oxoalkyl) Glycosides as Latent α,β-Unsaturated Conjugates. Synthesis of Aza-C-Glycosides by an Intramolecular Hetero-Michael Addition. Tetrahedron,2005,61 (49):11716-11722.
    [122]Baker B R, Schaub R E, Joseph J P, et al. Puromycin. Synthetic Studies. Ⅸ. Total Synthesis. JAm Chem Soc,1955,77(1):12-15.
    [123]Woodward S, Dieguez M, Pamies O. Use of Sugar-Based Ligands in Selective Catalysis:Recent Developments. Coordin Chem Rev,2010,254(17-18):2007-2030.
    [124]Benessere V, Litto R D, Roma A D, et al. Carbohydrates as Building Blocks of Privileged Ligands. Coordin Chem Rev,2010,254(5-6):390-401.
    [125]Dieguez M, Pamies O. Biaryl Phosphites:New Efficient Adaptative Ligands for Pd-Catalyzed Asymmetric Allylic Substitution Reactions. Acc Chem Res,2010,43(2): 312-322.
    [126]傅玉琴,安雅洁,陶京朝.糖及其衍生物作为手性助剂在立体选择性合成中的应用研究进展.有机化学,2008,28(1):44-51.
    [127]Boy sen M M K. Carbohydrates as Synthetic Tools in Organic Chemistry. Chem Eur J, 2007,13(31):8648-8659.
    [128]Dieguez M, Claver C, Pamies O. Recent Progress in Asymmetric Catalysis Using Chiral Carbohydrate-Based Ligands. Eur J Org Chem,2007, (28):4621-4634.
    [129]Dieguez M, Pamies O, Claver C. Ligands Derived from Carbohydrates for Asymmetric Catalysis. Chem Rev,2004,104(6):3189-3215.
    [130]Dieguez M, Pamies O, Ruiz A, et al. Carbohydrate Derivative Ligands in Asymmetric Catalysis. Coordin Chem Rev,2004,248(21-24):2165-2192.
    [131]Agarwal J, Peddinti R K. Glucosamine-Based Primary Amines as Organocatalysts for the Asymmetric Aldol Reaction. J Org Chem,2011,76(9):3502-3505.
    [132]Roma A D, Ruffo F, Woodward S. Amino-Sugar Modular Ligands-Useful Cores for the Formation of Asymmetric Copper 1,4-Addition Catalysts. Chem Commun,2008, (42):5384-5386.
    [133]Wouters A D, Trossini G H G, Stefani H A, et al. Enantioselective Arylations Catalyzed by Carbohydrate-Based Chiral Amino Alcohols. Eur J Org Chem,2010, (12):2351-2356.
    [134]Emmerson D P G, Hems W P, Davis B G. Carbohydrate-Derived Amino-Aalcohol Ligands for Asymmetric Alkynylation of Aldehydes. Org Lett,2006,8(2):207-210.
    [135]Pu L, Yu H B. Catalytic Asymmetric Organozinc Additions to Carbonyl Compounds. Chem Rev,2001,101(3):757-824.
    [136]Kitamura M, Suga S, Kawai K, et al. Catalytic Asymmetric Induction. Highly Enantioselective Addition of Dialkylzincs to Aldehydes.J Am Chem Soc,1986, 108(19):6071-6072.
    [137]Kitamura M, Okada S, Noyori R. Enantioselective Addition of Dialkylzincs to Aldehydes Pormoted by Chiral Amino Alcohols. Mechanism and Nonlinear Effect. J Am Chem Soc,1989,111(11):4028-4036.
    [138]Yamakawa M, Noyori R. An Ab Initio Molecular Orbital Study on the Amino Alcohol-Promoted Reaction of Dialkylzincs and Aldehydes. J Am Chem Soc,1995, 117(23):6327-6335.
    [139]Bauer T, Smolinski S. Enantioselective Addition of Diethylzinc to Aldehydes Catalyzed by D-Glucosamine Derivatives:Highly Pronounced Effect of Trifluoromethylsulfonamide. Appl Catal A:Gen,2010,375(2):247-251.
    [140]Emmerson D P G, Villard R, Mugnaini C, et al. Precise Structure Activity Relationships in Asymmetric Catalysis Using Carbohydrate Scaffolds to Allow Ready Fine Tuning:Dialkylzinc-Aldehyde Additions. Org Biomol Chem,2003,1(21): 3826-3838.
    [141]Bauer T, Tarasiuk J, Pasniczek K. Highly Enantioselective Diethylzinc Addition to Aldehydes Catalyzed by D-Glucosamine Derivatives. Tetrahedron:Asymmetry,2002, 13(1):77-82.
    [142]Yang W K, Cho B T. Facile Synthesis of Chiral Isopropyl Carbinols with High Enantiomeric Excess via Catalytic Enantioselective Addition of Diisopropylzinc to Aldehydes. Tetrahedron:Asymmetry,2000,11(14):2947-2953.
    [143]Cho B T, Kim N. Catalytic Enantioselective Reactions. Part 9.1,2-O-Isopropylidene-5-Deoxy-5-N,N-Dialkyl (or-N-Monoalkyl) Amino-a-D-Xylofuranose Derivatives as Highly Effective Chiral Catalysts for Enantioselective Addition of Diethylzinc to Aliphatic and Aromatic Aldehydes. J Chem Soc Perkin Trans 1,1996, (24):2901-2907.
    [144]Chen X, Fan Y, Zheng Y, et al. Properties and Production of Valienamine and Its Related Analogues. Chem Rev,2003,103(5):1955-1977.
    [145]Asano N, Nash R J, Molyneux R J, et al. Sugar-Mimic Glycosidase Inhibitors: Natural Occurrence, Biological Activity and Prospects for Therapeutic Application. Tetrahedron:Asymmetry,2000,11(8):1645-1680.
    [146]Horii S, Fukase H, Matsuo T, et al. Synthesis and a-D-Glucosidase Inhibitory Activity of N-Substituted Valiolamine Derivatives as Potential Oral Antidiabetic Agents. JMed Chem,1986,29(6):1038-1046.
    [147]Inouye S, Tsuruoka T, Nida T. The Structure of Nojirimycin, a Piperidinose Sugar Antibiotic. JAntibiot,1966,19(6):288-292.
    [148]Schmidt D D, Frommer W, Junge B, et al. α-Glucosidase Inhibitors. Naturwissenschaften,1977,64(10):535-536.
    [149]周和平,陈小勇.伏格列波糖合成路线图解.中国医药工业杂志,2006,37(8):574-576.
    [150]Kingma J, Menheere P P C A, Sels J P, et al. a-Glucosidase Inhibition by Miglitol in NIDDM Patients. Diabetes Care,1992,15:478-483.
    [151]Murao S, Miyata S. Isolation and Characterization of a New Trehalase Inhibitor, S-GI. Agric Boil Chem,1980,44(1):219-221.
    [152]Jespersen T M, Bols M, Sierks M R, et al. Synthesis of Isofagomine, a Novel Glycosidase Inhibitor. Tetrahedron,1994,50(47):13449-13460.
    [153]Miyake Y, Ebata M. Inhibition of β-Galactosidase by Galactostatin, Galactostatin-Lactam, and 1-Deoxygalactostatin. Agric Boil Chem,1988,52(7):1649-1654.
    [154]Ichikawa Y, Igarashi Y. An Extremely Potent Inhibitor for β-Galactosidase. Tetrahedron Lett,1995,36(26):4585-4586.
    [155]王庆法,石飞,米镇涛,等.硝酸酯的绿色合成.含能材料,2007,15(4):416-420.
    [156]谢飞,张青枝,张深松.硝酸酯、亚硝酸酯合成进展.河南师范大学学报(自然科学版),1998,26(2):42-50.
    [157]杨博,符少波,孙宾宾,等.硝酸酯的合成研究进展.合成材料老化与应用,2011,40(1):32-36.
    [158]Ahlner J, Andersson R G G, Torfgard K, et al. Organic Nitrate Esters:Clinical Use and Mechanisms of Actions. Pharmacol Rev,1991,43(3):351-423.
    [159]Kawano H, Motoyama T, Yasue H, et al. Endothelial Function Fluctuates with Diurnal Variation in the Frequency of Ischemic Episodes in Patients with Variant Angina. J Am Coll Cardiol,2002,40(2):266-270.
    [160]Inoue T, Takayanagi K, Hayashi T, et al. Fluvastatin Attenuates Nitrate Tolerance in Patients with Ischemic Heart Disease Complicating Hypercholesterolemia. Int J Cardiol,2003,90(2-3):181-188.
    [161]Okamura A, Rakugi H, Ohishi M, et al. Additive Effects of Nicorandil on Coronary Blood Flow During Continuous Administration of Nitroglycerin. J Am Coll Cardiol, 2001,37(3):719-725.
    [162]Jurt U, Gori T, Ravandi A, et al. Differential Effects of Pentaerythritol Tetranitrate and Nitroglycerin on the Development of Tolerance and Evidence of Lipid Peroxidation:a Human in Vivo Study. JAm Coll Cardiol,2001,38(3):854-859.
    [163]宋小平.基于1,473,6-二缩水-D-果糖的新型硝酸酯类化合物的设计、合成研究河南:郑州大学,2007.
    [164]尤启东.药物化学.第2版.北京:化学工业出版社,2008.
    [165]姜晓梅,王一尘.硝酸酯药物临床应用新进展.中国综合临床,2005,21(9):859-860.
    [166]Leicach S R, Sproviero J F. Synthesis of some Sugar Nitrates. Carbohydr Res,1990, 201(2):334-336.
    [167]Gavrila A, Andersen L, Skrydstrup T. A Convenient and Simple Procedure for the Preparation of Nitrate Esters from Alcohols Employing LiNO3/(CF3CO)2O. Tetrahedron Lett,2005,46(37):6205-6207.
    [168]O'Meara D, Shepherd D M. The Preparation of some Glucose Nitrates. J Chem Soc, 1955,1955:4232-4235.
    [169]Honeyman J, Morgan J W W. Sugar Nitrates. Adv Carbohydr Chem,1957,12:117-135.
    [170]Honeyman J, Stening T C. Sugar Nitrates. Part Ⅲ. Mannose Derivatives. J Chem Soc, 1957,1957:2278-2280.
    [171]Honeyman J, Morgan J W W. Sugar Nitrates. Part Ⅱ. The Preparation and Reactions of some Nitrates, Sulphonates, Sulphinates, and Other Esters of Methyl 4:6-O-Benzylidene-a-D-Glucoside. J Chem Soc,1955,1955:3660-3674.
    [172]Koyama Y, Yamaguchi R, Suzuki K. Total Synthesis and Structure Assignment of the Anthrone C-Glycoside Cassialoin. Angew Chem Int Ed,2008,47(6):1084-1087.
    [173]Akoto C O, Rainier J D. Harnessing Glycal-Epoxide Rearrangements:The Generation of the AB, EF, and IJ Rings of Adriatoxin. Angew Chem Int Ed,2008, 47(42):8055-8058.
    [174]Zhong W, Moya C, Jacobs R S, et al. Synthesis and an Evaluation of the Bioactivity of the C-Glycoside of Pseudopterosin A Methyl Ether. J Org Chem,2008,73(18): 7011-7016.
    [175]Kvaern(?) L, Werder M, Hauser H, et al. Carbohydrate Sulfonyl Chlorides for Simple, Convenient Access to Glycoconjugates. Org Lett,2005,7(6):1145-1148.
    [176]Dondoni A, Marra A. C-Glycoside Clustering on Calix[4]arene, Adamantane, and Benzene Scaffolds through 1,2,3-Triazole Linkers. J Org Chem,2006,71(20):7546-7557.
    [177]Fei Z B, McDonald F E. Stereo-and Regioselective Glycosylations to the Bis-C-Arylglycoside of Kidamycin. Org Lett,2007,9(18):3547-3550.
    [178]Furuta T, Kimura T, Kondo S, et al. Concise Total Synthesis of Flavone C-Glycoside Having Potent Anti-Inflammatory Activity. Tetrahedron,2004,60(42):9375-9379.
    [179]Goujon J-Y, Gueyrard D, Compain P, et al. General Synthesis and Biological Evaluation of a-1-C-Substituted Derivatives of Fagomine (2-Deoxynojirimycin-a-C-Glycosides). Bioorg Med Chem,2005,13(6):2313-2324.
    [180]Mascitti V, Robinson R P, Preville C, et al. Syntheses of C-5-Spirocyclic C-glycoside SGLT2 Inhibitors. Tetrahedron Lett,2010,51(14):1880-1883.
    [181]Awad L, Madani R, Gillig A, et al. A C-Linked Disaccharide Analogue of Thomsen-Friedenreich Epitope Induces a Strong Immune Response in Mice. Chem Eur J,2012, 18(28):8578-8582.
    [182]Andrews R S, Becker J J, Gagne M R. A Photoflow Reactor for the Continuous Photoredox-Mediated Synthesis of C-Glycoamino Acids and C-Glycolipids. Angew Chem Int Ed,2012,51(17):4140-4143.
    [183]Nuzzi A, Massi A, Dondoni A. General Synthesis of C-Glycosyl Amino Acids via Proline-Catalyzed Direct Electrophilic α-Amination of C-Glycosylalkyl Aldehydes. Org Lett,2008,10(20):4485-4488.
    [184]Shao H, Wang Z, Lacroix E, et al. Novel Zinc(II)-Mediated Epimerization of 2'-Carbonylalkyl-a-C-Glycopyranosides to Their β-Anomers. J Am Chem Soc,2002, 124(10):2130-2131.
    [185]Wang Z, Shao H, Lacroix E, et al. Epimerization of 2'-Carbonylalkyl-C-Glycosides via Enolation, P-Elimination and Intramolecular Cycloaddition. J Org Chem,2003, 68(21):8097-8105.
    [186]Massi A, Nuzzi A, Dondoni A. Microwave-Assisted Organocatalytic Anomerization of α-C-Glycosylmethyl Aldehydes and Ketones. J Org Chem,2007,72(26):10279-10282.
    [187]乔岩,王爱勤.N-乙酰氨基葡萄糖合成方法的改进.化学试剂,2002,24(3):162,190.
    [188]何新益,殷七荣,杨国荣.N-乙酰-D-氨基葡萄糖的研制.常德师范学院学报(自然科学版),2001,13(4):63-65.
    [189]丁邦东.N-乙酰氨基-D-葡萄糖合成方法的改进.宝鸡文理学院学报(自然科学版),2004,24(11):36-37.
    [190]Wen X, Hultin P G. Concise and Stereocontrolled Syntheses of Phosphonate C-Glycoside Analogues of β-D-ManNAc and β-D-GlcNAc 1-O-Phosphates. Tetrahedron Lett,2004,45(8):1773-1775.
    [191]Shinde V S, Pawar V U. Synthesis of Thermosensitive Glycopolymers Containing D-Glucose Residue:Copolymers with N-Isopropylacrylamide. J Appl Polym Sci, 2009,111(5):2607-2615.
    [192]孔繁祚.糖化学.北京:科学出版社,2005.
    [193]Zelinski R, Meyer R E. Glucosylation of Acetylenes. J Org Chem,1958,23(6):810-813.
    [194]Dong L, Roosenberg Ⅱ J M, Miller M J. Total Synthesis of Desferrisalmycin B. JAm Chem Soc,2002,124(50):15001-15005.
    [195]Munavu R M, Szmant H H. Selective Formation of 2 Esters of some Methyl a-D-Hexopyranosides via Dibutylstannylene Derivatives. J Org Chem,1976,41(10): 1832-1836.
    [196]Bauder C. A Convenient Synthesis of Orthogonally Protected 2-Deoxystreptamine (2-DOS) as an Aminocyclitol Scaffold for the Development of Novel Aminoglycoside Antibiotic Derivatives Against Bacterial Resistance. Org Biomol Chem,2008,6(16):2952-2960.
    [197]Hicks D R, Reid B F. Selective Sulphonylation with N-Tosylimidazole. A One-Step Preparation of Methyl 2,3-Anhydro-4,6-O-Benzylidene-α-D-Mannopyranoside. Synthesis,1974, (6):203.
    [198]Brown M A, Cox P J, Howie R A, et al.2-Diphenylarsino-,2-Diphenylphosphinyl-, and 2-Triphenylstannyl-Derivatives of Methyl 4,6-O-Benzylidene-2-Deoxy-α-D-Altropyranoside. Crystal Structure of the Phosphinyl Derivative. J Organomet Chem, 1995,498(2):275-282.
    [199]Wang Y, Li Q, Cheng S, et al. Base-Promoted Rearrangement of Sugar Epoxides to Unsaturated Sugars. Org Lett,2005,7(25):5577-5579.
    [200]Indurugalla D, Bennet A J. Chemoenzymatic Synthesis of Ring 18O-Labeled Sialic Acid. Can J Chem,2008,86(11):1005-1009.
    [201]Keck G E, Boden E P, Wiley M R. Total Synthesis of (+)-Colletodiol:New Methodology for the Synthesis of Macrolactones. J Org Chem,1989,54 (4):896-906.
    [202]Kondo Y. Selective Esterification of 1,5-Anhydro-4,6-O-Benzylidene-D-Galactitol. Carbohydr Res,1989,193:279-282.
    [203]Sakuda S, Matsumori N, Furihata K, et al. Assignment of the Absolute Configuration of Blasticidin A and Revision of that of Aflastatin A. Tetrahedron Lett,2007,48(14): 2527-2531.
    [204]Urakawa Y, Sugimoto T, Sato H, et al. Enantioselective Synthesis of Phyllanthurinolactone, a Leaf-Closing Substance of Phyllanthus Urinaria L., and Its Analogs toward the Development of Molecular Probes. Tetrahedron Lett,2004, 45(30):5885-5888.
    [205]Williams N R. Oxirane Derivatives of Aldoses. Adv Carbohydr Chem Biochem,1971, 25:109-179.
    [206]Watson H B. The Reactions of Halogens with Compounds Containing the Carbonyl Group. Chem Rev,1930,7(2):173-201.
    [207]苏冰,鲍亚杰,李洪军,等.对甲氧基-a-溴代苯乙酮的合成.中国医药工业杂志,2001,32(8):374-374.
    [208]Pravst I, Zupan M, Stavber S. Directed Regioselectivity of Bromination of Ketones with NBS:Solvent-Free Conditions Versus Water. Tetrahedron Lett,2006,47(27): 4707-4710.
    [209]Pravst I, Zupan M, Stavber S. Halogenation of Ketones with N-Halosuccinimides under Solvent-Free Reaction Conditions. Tetrahedron,2008,64(22):5191-5199.
    [210]Podgorsek A, Stavber S, Zupan M, et al. Bromination of Ketones with H2O2-HBr "on Water". Green Chem,2007,9(11):1212-1218.
    [211]Barhate N B, Gajare A S, Wakharkar R D, et al. Simple and Practical Halogenation of Arenes, Alkenes and Alkynes with Hydrohalic Acid/H2O2 (or TBHP). Tetrahedron, 1999,55(36):11127-11142.
    [212]张胜建,乐长高.[Bmim]Br3对酮的选择性单溴化反应.有机化学,2006,26(2):236-238.
    [213]Conrow R E, Dean W D, Zinke P W, et al. Enantioselective Synthesis of Brinzolamide (AL-4862), a New Topical Carbonic Anhydrase Inhibitor. The "DCAT Route" to Thiophenesulfonamides. Org Proc Res Dev,1999,3(2):114-120.
    [214]Habermann J, Ley S V, Smits R. Three-Step Synthesis of an Array of Substituted Benzofurans Using Polymer-Supported Reagents. J Chem Society Perkin Trans 1, 1999, (17):2421-2423.
    [215]Madsen P, Knudsen L B, Wiberg F C, et al. Discovery and Structure-Activity Relationship of the First Non-Peptide Competitive Human Glucagon Receptor Antagonists. J Med Chem,1998,41(26):5150-5157.
    [216]Jirkovsky I, Santroch G, Baudy R, et al. Octahydropyrazino[2',3':3,4]pyrido[1,2-a] indoles. A New Class of Potent Antihypertensive Agents. J Med Chem,1987,30(2): 388-394.
    [217]Yakhimovich R I, Kotlyar E S, Kurchenko L K, et al. Allyl Bromination of Cholesterol Benzoate Ⅱ. Analysis of the Reaction Products. Pharm Chem J,1973, 7(6):367-370.
    [218]Anselmi E, Blazejewski J C, Wakselman C. Building up the Trifluoromethyl Group: A New Synthesis of a-Trifluoromethylketones. Tetrahedron Lett,1998,39(52):9651-9654.
    [219]Singh H, Gupta N, Kumar P, et al. A New Industrial Process for 10-Methoxyiminostilbene:Key Intermediate for the Synthesis of Oxcarbazepine. Org Proc Res Dev,2009,13(5):870-874.
    [220]Khazaei A, Zolfigol M A, Rostami A. 1,3-Dibromo-5,5-Dimethylhydantoin [DBDMH] as an Efficient and Selective Agent for the Oxidation of Thiols to Disulfides in Solution or under Solvent-Free Conditions. Synthesis,2004, (18):2959-2961.
    [221]赵培亮,吴琼友,周中振,等.微波辐射下以1,3-二溴-5,5-二甲基乙内酰脲为溴代试剂合成3-溴黄酮.有机化学2006,26(5):694-697.
    [222]Liu R H, Dong C Y, Liang X M, et al. Highly Efficient Catalytic Aerobic Oxidations of Benzylic Alcohols in Water. J Org Chem,2005,70(2):729-731.
    [223]Soderman P, Widmalm G Oxidation of Stannylene Derivatives of Carbohydrates Using 1,3-Dibromo-5,5-Dimethylhydantoin. Carbohydr Res,1999,316(1-4):184-186.
    [224]Munzel T, Kurz S, Heitzer T, et al. New Insights into Mechanisms Underlying Nitrate Tolerance. Am J Cardiol,1996,77(13):C24-C30.
    [225]Yu G L, Zhuang H P, Wang Z H, et al. Evaluation of Nitrate Tolerance in Patients with Coronary Heart Disease by Vascular Ultrasonography and Treadmill Exercise. Int J Cardiol,1999,69(2):133-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700