用户名: 密码: 验证码:
中国木质林产品碳储量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林采伐和木质林产品使用改变了森林和大气之间的自然碳平衡,木质林产品碳核算包含在国际气候变化谈判土地利用、土地利用变化和林业(LULUCF)议题中,且LULUCF碳流动是国家温室气体清单的一个重要组成部分。为提高我国国家温室气体清单的编制质量并认识我国木质林产品的碳储量变化规律,通过查阅公开发表的文献和外业调查的方法以及对采集的样品进行测定相结合的方法获取木质林产品碳储量估算需要的诸如基本密度、含碳率和使用寿命以及不同行业的木材消耗强度等基本计量参数。论文对谈判中木质林产品的范围进行了明确界定,突出了公平性原则;首次提出碳质量概念并用其评价产品储碳效果。
     碳储量基于不同分类途径进行估算。论文首先基于FAO定义分类途径,以IPCC方法学框架为指导,应用储量数据法和逐步递归方程估算我国木质林产品的碳储量以及进出口木质林产品的碳储量;采用蒙特卡洛模拟分析碳储量结果的不确定性。然后在产品用途分类途径基础上,采用灰色系统模型预测我国建筑业和煤炭业的未来发展趋势,通过木材消耗强度法推算我国不同行业木材消耗情况,采用国家专门方法来分析我国不同部门消耗木材的碳储量变化规律。从数据获取难易的角度,按产品用途分类途径要优于FAO定义分类途径。从目前碳储量估算结果来看,我国木质林产品是一个增长的碳库;也是木质林产品净进口国,因此应用储量变化法对我国较为有利。主要结论如下:
     (1)我国木质林产品是一个碳库,并且这个碳库碳储量增长越来越快。工业和建筑行业年消耗木材的碳储量不断增长。我国是木质林产品净进口国;从木质林产品的碳储量和年平均碳储量变化结果来看,储量变化法估算的碳储量高于另外两种方法估算的碳储量结果,其次是大气流动法估算结果,生产法估算的碳储量结果最小。木质林产品在替代建筑材料产品方面减排潜力巨大。
     (2)我国树种含碳率和基本密度随树种的不同而存在差异;测定的人造板产品含碳率平均值为0.466,基本密度的平均值是0.670t·m-3;含水率平均值5%;纸张含碳率是0.34,明显低于0.5。
     (3)以产品使用寿命小于20年为限,对比木质产品的碳质量,结果依次是建筑模板<纸和纸板<坑木和支柱<装修用材<木桌椅<木门窗<木橱柜<木床<木结构房屋。
     (4)储量变化法、生产法和大气流动法估算我国所有木质林产品(含薪材转化部分)碳储量到2020年将达1436.18MtC、1057.48MtC和1347.80MtC,其中在用产品的碳储量是1199.65MtC、869.20MtC和1095.07MtC。推算到2020年工业和建筑部门消耗木质林产品的碳储量分别为2373.57MtC,1279.22MtC和1437.33MtC。
     (5)储量变化法、生产法和大气流动法估算各类在用木质林产品的碳储量总体呈上升趋势。其中纸和纸板以及人造板碳储量的增长趋势基本一致,锯材和其他工业原木产品的碳储量增长趋势类似。锯材、人造板、纸和纸板以及其他工业原木碳储量对在用木质林产品碳储量的贡献在核算方法之间没有明显差别,并且1990-2008年贡献率的变化趋势也一致。
     (6)我国进出口木质林产品碳储量整体呈不断上升的趋势,并且是木质林产品净进口国。原木是净进口国,1900-2008年间工业原木净进口碳储量累计为141.09MtC。锯材、人造板、纸和纸板以及其他工业原木产品的总体表现为净进口,1900-2008年净进口产品碳储量合计为57.43MtC。
     (7)蒙特卡洛方法模拟结果表明生产法估算的碳储量结果不确定性最高;碳储量结果对木材基本密度和产品使用寿命比较敏感。
     (8)建筑用材碳储量在灰色系统模型和建筑房屋木材消耗强度的基础上预测到2020年建筑竣工面积达38亿m2,消耗木材将为1.56亿m3,则建筑业消耗木材碳储量累积为674.62MtC。
     (9)预测到2020年家具业消耗木材约为35412万m3,则家具业消耗木材的碳储量将达363.96MtC。其中2008年国内消费家具碳储量为50.52MtC,预测到2020年是国内消费家具碳储量是354.38MtC。
     (10)根据生产弹性系数和木材消耗强度预测到2020年我国造纸业用材约为440.90×106m3,相应的纸和纸板消耗木材的碳储量是442.26MtC。预测2020年国内纸和纸板所消耗木材的碳储量变化是57.08MtC·a-1。
     (11)根据经济发展对煤炭的需求,预测到2020年我国煤炭业产量将达45.7亿吨,届时木材消耗量将达到1600万m3,煤炭业消耗木材的碳储量不断增长,到2020年碳储量将达39.51MtC。
Forest harvesting and wood products utilization alter the natural carbon cycle between the forest ecosystem and the atmosphere. Carbon is released during forest harvesting and manufacturing of wood products and in using and discarding of wood products. Land use, land-use change and forestry (LULUCF) is necessary content of National Greenhouse Gas Inventory (NGGI), and harvested wood products (HWP) is an important part of the negotiation of LULUCF. In order to enhance the quality of LULUCF of NGGI and the understanding of the carbon stocks of HWP in China, this paper determines the carbon accounting factors such as basic density, carbon fraction and intensity of consumption and so on from released papers and field investigations, and measured the conversion factors of wood-based panels. This paper gives the definite scope of HWP in order to fair principle. Besides, the concept of carbon quality is firstly put forward and applied for evaluating the effect of carbon storage of HWP.
     Based on different classification of HWP and methodology suggested by IPCC, i.e. stock-change approach (SCA), production approach (PA) and atmospheric-flow approach (AFA), the carbon stocks of HWP was estimated firstly by using the stock-data methods and step regression methods. The uncertainty associated with carbon accumulation estimated in this study was evaluated with the Monte Carlo analysis, more specifically with the crystal ball software. Based on the use category, the forecasting methods of intensity of consumption of wood was applied for the prediction of different department consumption. And then carbon stocks of roundwood consumed from different industry was estimated by country-specific methods. In the view of the ultimate results and our national conditions, the stock change approach is more intuitive and would favor our country. Finally the paper analyzes the carbon dynamics and provides conclusions as followings:
     (1) The HWP is a significant carbon pool in China, and it is increasing. The carbon stocks of HWP consumed in industry and construction department is also increasing, and the growing trend was fluctuated during 1980-2000. The results, which estimated by SCA, is the highest among the three alternative approaches while the results of PA is the lowest according to the results of carbon accumulation and annual mean carbon stock-change. This mainly because China is the net import of HWP. The reduction potential of substituting action and prolonging life would be magnitude in China.
     (2) The difference of tree species results to the diversity of basic density and fraction of carbon. The average carbon fraction, basic density and moisture content in wood-based panels are 0.466, 0.67t·m-3 and 5% respectively. The carbon fraction of paper is 0.34.
     (3) If the lifetime is limited to less than 20 years, the carbon quality of HWP evaluation shows: construction formwork     (4) The carbon accumulation estimated by SCA, PA and AFA will be 1436.18MtC, 1057.48MtC and 1347.80MtC in 2020, respectively. And the carbon accumulation of HWP in use will be 1199.65MtC, 869.20MtC and 1095.07MtC。In 2020, the carbon accumulation of consumed wood of industry and construction department will reach to 2373.57MtC, 1279.22MtC and 1437.33MtC. And SCA will yield the highest carbon stocks.
     (5) Separately estimated by three approaches during 1900-2008, the carbon accumulation of each type products in use was growing. The growing trend of carbon stocks of wood-based panels, the wood pulp paper and paperboard were consilient while sawnwood and other industrial round wood products saw the similar trend. The calculation of each kind of products in use to the total accumulation of HWP in use shared little difference among three approaches.
     (6) The carbon stocks of HWP imported and exported were continuously rising in China and the imported greatly exceeded the exported. The roundwood has been a net import good for China during 1900-2008 and the carbon stocks of net imported round wood was 141.09MtC. The whole trend of all kinds of products showed net import, and the results of carbon stocks were 57.43MtC.
     (7) Using Monte Carlo analysis, the uncertainty of results from PA was the highest. The results of carbon stocks of HWP were sensitivity to wood basic density and lifetime.
     (8) Based on the grey model and intensity of consumption method, the consumption of wood in construction industry is forecasted Below: The completed area of buildings and houses will reach to 3.8 billion m2 in 2020, and the roundwood consumed will be 0.156 billion m3. The carbon accumulation of consumed wood in construction will be 674.62MtC.
     (9) The consumption of wood in the furniture industry could be 354.12 million m3 and the carbon accumulation will be 363.96MtC in 2020. Besides, the carbon stocks of domestic furniture in use was 50.52MtC in 2008, and it will be to 354.38MtC.
     (10) The consumption of wood in paper industry could be 440.90 million m3 based on the elasticity of paper production and intensity of consumption. And the carbon accumulation will be 442.26MtC accordingly. The carbon stock-change of domestic paper and paperboard in use will reach 57.08 MtC·a-1 in 2020.
     (11) Due to economy development, the demand of coal will be increasing and it will reach 4.57 billion tons. The consumed wood will be up to 16million m3 while carbon stocks reaches 39.51MtC.
引文
[1] IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, USA
    [2] United Nations. Framework Convention on Climate Change 1992 http://unfccc.int/resource/conv/ratlist.pdf
    [3] UNFCCC,Kyoto Protocol to the United Nations framework convention of climate change 1997, http://unfccc.int/resource/kpstats.pdf
    [4] IPCC. Revised IPCC Guidelines for National Greenhouse Inventory (Volume 3: Reference Manual) Charpet 5: Land-Use Change & Forestry. UK Meteorological Office, Bracknell, 1996
    [5] IPCC. Good Practice Guidance for Land Use, Land-Use Change and Forestry (GPG-LULUCF) Published by the Institute for Global Environmental Strategies (IGES) for the IPCC. Japan.2003 http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.htm
    [6] UNFCCC. Report of the Subsidiary Body for Scientific and Technological Advice on its Twenty-sixth Session, held at Bonn from 7 to 18 May 2007. http://unfccc.int/resource/docs/2007/sbsta/eng/04.pdf
    [7] JH PAN. Carbon Sinks: an Opportunity for a Prosperous and Sustainable Forestry Sector. 21Century Forum-Green& Environment Protection, Beijing,National Committee Chinese People’s Political Consultative Conference, 2001:4-6
    [8]《中华人民共和国气候变化初始国家信息通报》北京中国计划出版社2004
    [9] IPCC. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. http://www.ipcc-nggip.iges.or.jp/public/gp/english/gpgaum_en.html 2001.
    [10] K. Pingoud, A.L.Per?l?, A.Pussinen. Carbon Dynamics in Wood Products Mitigation and Adaptation Strategies for Global Change 2001, 6(2): 91-111
    [11] GJ.Nabuurs, R. Sikkema. International Trade in Wood Products: its Role in the Land Use Change and Forestry Carbon Cycle. Climatic Change 2001,49(4) :377-395
    [12] IPCC Report of the Twelfth Session of the Intergovernmental Panel on Climate Change(IPCC) 1996.http://www.ipcc.ch/meeting_documentation/meeting_documentation_ipcc_Sessions_and_ipcc_wgs_Sessions.htm
    [13] UNFCCC Cooperation with Intergovernmental Panel on Climate Change-Progress Report. Item 3 of the Provisional Agenda http://unfccc.int/resource/docs/1996/sbsta/18.pdf
    [14] UNFCCC. Report on inter-Sessional Activities Issues Related to Emissions from Forest Harvested and Wood Products. Item 3(a) of the provisional Agenda http://unfccc.int/resource/docs/2001/sbsta/misc01.pdf
    [15] UNFCCC Report of the Subsidiary Body for Scientific and Technological Advice on its Fifteenth Session, held at Marrakesh, from 29 October to 6 November 2001. http://unfccc.int/resource/docs/2001/sbsta/08.pdf
    [16] UNFCCC Report of the Subsidiary Body for Scientific and Technological Advice on its nineteenth Session, held at Milan from 1 to 9 December 2003. http://unfccc.int/resource/docs/2003/sbsta/15.pdf
    [17] UNFCCC Report of the Subsidiary Body for Scientific and Technological Advice on its Twenty-fourth Session, held at Bonn from 18 to 26 May 2006 http://unfccc.int/resource/docs/2006/sbsta/eng/05.pdf
    [18] UNFCCC. Report of the Subsidiary Body for Scientific and Technological Advice on its Twenty-sixth Session, held at Bonn from 7 to 18 May 2007 http://unfccc.int/resource/docs/2007/sbsta/eng/04.pdf
    [19] UNFCCC. Reports on inter-Sessional Activities Issues Related to Emissions from Forest Harvesting and Wood Products. Item 3 (a) of the provisional agenda. http://unfccc.int/resource/docs/2001/sbsta/misc01.pdf
    [20] UNFCCC. Methodological Issues Good Practice Guidance and Other Information on Land Use, Land-Use Change and Forestry. Implications of Harvested Wood Products Accounting. Item 4 (e) of the provisional agenda. http://unfccc.int/resource/docs/2003/sbsta/misc01.pdf http://unfccc.int/resource/docs/2003/sbsta/misc01a01.pdf http://unfccc.int/resource/docs/2003/sbsta/misc01a02.pdf
    [21] UNFCCC. Issues Relating to Harvested Wood Products. Item 3 (a) of the Provisional Agenda. http://unfccc.int/resource/docs/2004/sbsta/misc09.pdf
    [22] UNFCCC. Data and Information on Changes in Carbon Stocks and Emissions of Greenhouse Gases from Harvested Wood Products and Experiences with the Use of Relevant Guidelines and Guidance of the Intergovernmental Panel on Climate Change. Item 5 (a) of the provisional agenda. http://unfccc.int/resource/docs/2005/sbsta/eng/misc09.pdf
    [23] UNFCCC. Ad Hoc Working Group on Further Commitments for Annex I Parties under the Kyoto Protocol. Item 3 (b) of the provisional agenda. Views on Options and Proposals for Addressing Definitions, Modalities, Rules and Guidelines for the Treatment of Land Use, Land-Use Change and Forestry http://unfccc.int/resource/docs/2009/awg8/eng/misc11.pdf
    [24] FAO. FAO Publishes Key Findings of Global Forest resources Assessment 2010. Rome. http://www.fao.org/Forestry/static/data/fra2010/KeyFindings-en.pdf
    [25] RK. Dixon, S Brown, RA Houghton. et al. Carbon Pools and Flux of Global Forest Ecosystems. Science. 1994,263(5144):185-190
    [26] M. Cannell, Forests as Carbon Sinks Mitigating the Greenhouse Effect. Commonwealth Forestry Review. 1996. 75(1): 92–99,109,112.
    [27] M. Lindner, Implementing Carbon Mitigation Measures in the Forestry Sector–a Review. In: G.H. Kohlmaier, M. Weber, , R.A. Houghton, (Eds.), Carbon Dioxide Mitigation in Forestry and Wood Industry: Papers Based on an International Workshop Supported by the Andreas Stihl Foundation of Stuttgart-Waiblingen. Springer-Verlag, Berlin, Germany, 1998:167-184.
    [28] GL, Liu and SJ. Han. Long-term Forest Management and Timely Transfer of Carbon into Wood Products Help Reduce Atmospheric Carbon. Ecological Modelling. 2009. 220(13-14):1719-1723
    [29] P. Schroeder. Can Intensive Management Increase Carbon Storage in Forests? Environmental. Management. 1991,15(4):475–481.
    [30] CS.Papadopol. Impacts of Climate Warming on Forests in Ontario: Options for Adaptation and Mitigation. For. Chron. 2000, 76(1):139–149.
    [31] RC Dewar. A Model of Carbon Storage in Forests and Forest Products. Tree Physiology . 1990,6(4) : 417-428
    [32] RC. Dewar, and M.G.R. Cannell. Carbon Sequestration in the Trees, Products and Soils of ForestPlantations: an Analysis Using UK Examples. Tree Physiology 1992.11(1): 49-71.
    [33] RA. Houghton. Converting Terrestrial Ecosystems from Sources to Sinks of Carbon. Ambio.1996, 25(4):267-272
    [34] S. Gaboury, J-F Boucher., C Villeneuve. et al.. Estimating the Net Carbon Balance of Boreal Open WoodLand Afforestation:A case-Study in Que′bec’s closed-crown boreal Forest. Forest Ecology and Management.2009 257(2):483–494
    [35] P Vallet, C. Meredieu, I. Seynave et al. Species substitution for Carbon Storage: Sessile oak versus Corsican Pine in France as a case Study. Forest Ecology and Management. 2009,257(4):1314-1323.
    [36] D. Thompson, and R. Matthews. CO2 in Trees and Timber Lowers the Greenhouse Effect. Forestry and British Timber 1989,18(10):19-24.
    [37] T Hudiburg, B Law, D P. Turner, et al. Carbon Dynamics of Oregon and Northern California Forests and Potential Land-based Carbon Storage. Ecological Applications. 2009,19(1):163-180
    [38] T. Karjalainen , A Asikainen, Greenhouse Gas Emissions from the Use of Primary Energy in Forest Operations and Long-distance Transportation of Timber in Finland. Forestry 1996 69(3):215-228.
    [39] J Brainard, IJ Bateman and AA Lovett. The Social Value of Carbon Sequestered in Great Britain's WoodLands. Ecological Economics. 2009, 68(4): 1257-1267.
    [40] CR. Hennigar, DA. MacLean, LJ. Amos-Binks A novel Approach to Optimize Management Strategies for Carbon Stored in Both Forests and Wood Products. Forest Ecology and Management, 2008,256(4):786-797
    [41] S. Berg, Some Aspects of LCA in the Analysis of Forestry Operations. Journal of Cleaner Production. 1997,5(3):211-217
    [42] S. Berg, T. Karjalainen. Comparison of Greenhouse Gas Emissions from Forest Operations in Finland and Sweden. Forestry. 2003,76(3):271-284
    [43] T. Karjalainen., S. Kellomaki, & A. Pussinen, Role of Wood-Based Products in Absorbing Atmospheric Carbon. Silva Fennica 1994, 28(2):67-80
    [44] CL. Brack, GP. Richards. Carbon Accounting Model for Forests in Australia. Environmental Pollution. 2002, 116(Supple.):S187-194
    [45] P.E. Kauppi, K. Mielik?inen and K. KuUsela, Biomass and Carbon Budget of European Forests, 1971to1990. Science. 1992,256 (5053):70–74.
    [46] HL. Gholz and RF. Fisher. Organic Matter Production and Distribution in Slash Pine (Pinus elliottii) Plantation Ecology. 1982,63(6):1827-1839
    [47] CF. Cooper. Carbon Storage in Managed Forests. Canadian Journal of Forest Research. 1983,13(1):155-166
    [48] B. Lim, S Brown, B. Schlamadinger, Carbon Accounting for Forest harvesting and Wood Products: a Review and Evaluation of Possible Approaches. Environmental Science &Policy 1999,2(2): 207–216.
    [49] S Hashimoto M. Nose, T Obara, et al. Wood Products: Potential Carbon Sequestration and Impact on Net Carbon Emissions of industrialized countries. Environmental Science & Policy 2002;5(2):183–193
    [50] IPCC. Climate Change 1995-Impacts, Adaptations and Mitigation of Climate Change: Scientific-technical Analyses. Contribution of Working group II to the second Assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 1996.
    [51] JK Winjum,S Brown, B Schlamadinger. Forest Harvests and Wood Products: Sources and Sinks of Atmospheric Carbon Dioxide. Forest Science. 1998, 44(2):272–284.
    [52] K Pingoud, A. Per?l?, S. Soimakallio, et al. Greenhouse Gas Impacts of Harvested Wood Products: Evaluation and Development of Methods. Technical Research Cenctre of Finland, Vuorimiehentie, Finland. VTT Res. Notes 2189 Espoo: VTT Technical Research Centre of Finland; 2003.
    [53] S Kellom?ki, and T,Karjalainen. Sequestration of Carbon in the Finnish Boreal Forest Ecosystem Managed for Timber Production. In: Forest ecosystem Managed for and the Global Carbon Cycle. Springer-Verlag, Published in Cooperation with NATO Scientific Affairs Division Berlin, Germany. 1994:59-68
    [54] GJ. Nabuurs. Significance of Wood Products in Forest Sector Carbon Balances. In: Forest ecosystem Managed for and the Global Carbon Cycle. Springer-Verlag, Published in Cooperation with NATO Scientific Affairs DivisionBerlin, Germany. 1994:245-256
    [55] JI House , IC Prentice, N Ramankutty et al. Reconciling Apparent Inconsistencies in Estimates of Terrestrial CO2 Sources and Sinks. Tellus 2003;55B:345–63.
    [56] MJ, Apps, WA Kurz, SJ Beukema, et al. Carbon Budget of the Canadian Forest Product Sector. Environmental Science & Policy 1999,2(1):25–41.
    [57] KE. Skog, and GA. Nicholson Carbon Sequestration in Wood and Paper Products. In: The Impact of Climate Change on America’s Forest: a Technical Document Supporting the 2000 USDA Forest Service RPA Assessment. USDA For. Serv. Gen. Tech. Rep. RMRS-GTR-59. 2000:79-88
    [58] KE, Skog. GA. Nicholson. Carbon Cycling through Wood Products: the Role of Wood and Paper Products in Carbon Sequestration. Forest Products Journal. 1998,48(7-8):75-83
    [59] T Karjalainen. Model Computations on Sequestration of Carbon in Managed Forests and Wood Products under Changing Climatic Conditions in Finland. Journal of Environmental Management 1996, 47(4), 311–328
    [60] C Goodale . MJ Apps, RA Birdsey, et al. Forest Carbon Sinks in the Northern Hemisphere. Ecological Applications, 2002,12(3):891-899
    [61] JX Chen, SJ. Colombo, MT. Ter-Mikaelian, et al. Future Carbon Storage in Harvested Wood Products from Ontario’s Crown Forests. Canadian Journal of Forest Research. 2008,38(7):1947-1958
    [62] T. Karjalainen, and S. Kellom?ki. Simulation of Forest and Wood product Carbon Budget under a Changing Climate in Finland. Water, Air, & Soil Pollution. 1995,82(1-2): 309-320.
    [63] GJ. Nabuurs, and G.M.J. Mohren. Modelling Analysis of Potential Carbon Sequestration in Selected Forest Types. Canadian Journal of Forest Research. 1995,25(7): 1157–1172
    [64] ON. Krankina, M.E. Harmon, JK Winjum . Carbon Storage and Sequestration in the Russian Forest Sector. Ambio. 1996,25(4): 284-288.
    [65] G.Marlanda, and B. Schlamadinger. Forests for Carbon Sequestration or Fossil Fuel Substitution? A Sensitivity Analysis Biomass and Bioenergy. 1997,13(6): 389-397
    [66] G. Haripriya. A Framework for Assessing Carbon Flow in Indian Wood Products. Environment, Development and Sustainability 2001,3(3): 229-251
    [67]李顺龙蒋敏元关于森林碳沉降问题初步探讨林业工作研究2003(12):27-42
    [68] LS. Heath, RA. Birdsey, C. Row, et al. Carbon Pools and flux in U.S. Forest Products. In: Forest Ecosystems, Forest Management, and the Global Carbon Cycle.(MJ. Apps and DT. Price,eds). NATO ASI series I: Global Environmental Changes. Springer-Verlag, 1996,40:271-278
    [69] IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Intergovernmental Panel on Climate Change 2006 Chapter 12: Harvested Wood Products.
    [70] E. Marland, and G. Marland. The Treatment of Long-lived, Carbon-containing Products in Inventories of Carbon Dioxide Emissions to the Atmosphere. Environmental Science &Policy 2003,6(2):139–152.
    [71] G. Marland, K. Fruit, R. Sedjo. Accounting for Sequestered Carbon: the Question of Permanence. Environmental Science &Policy 2001, 4(6):259–268.
    [72] SI. Choi and HM. Kang. The Change in Carbon Stocks and Emissions Assessment of Harvested Wood Products in Korea. Jour. Korean. For. Soc. 2007,96(6):644-651
    [73] KE Skog Sequestration of Carbon in Harvested Wood Products for the United States. Forest Products Journal 2008,58(6):56-72
    [74] C. Green, V. Avitabile, E.P. Farrell. Reporting Harvested Wood Products in National Greenhouse Gas Inventories: Implications for Ireland. Biomass and Bioenergy 2006,30 (2):105–114
    [75] C Borough and H Crawford. The Development of a National Wood Products Model. IEA Bioenergy Task 38: Workshop in Canberra/Australia, Carbon Accounting and Emissions Trading Related to Bioenergy, Wood Products and Carbon Sequestration. March 2001: 57-128
    [76] B Tonn, G Marland. Carbon Sequestration in Wood Products: a Method for Attribution to Multiple Parties. Environmental Science &Policy. 2007.10(2):162-168
    [77] JE. Smith, LS. Heath. Identifying Influences on Model Uncertainty: an Application Using a Forest Carbon Budget Model. Environmental Management, 2001. 27(2):253-267
    [78] DP. Turner, GJ. Koerper, ME. Harmon, et al. A Carbon Budget for Forests of the Conterminous United States. Ecological Applications. 1995, 5(2):421-436
    [79] CN. Haas, Importance of Distributional Form in Characterizing Inputs to Monte Carlo Risk Assessments. Risk Analysis. 1997.17(1):107-113
    [80] AC. Cullen, and HC. Frey. Probabilistic Techniques in Exposure and Risk Assessment: A Handbook for Dealing with Variability and Uncertainty in Models and Inputs. Plenum Press, New York.1999
    [81] GS Fishman. Monte Carlo: Concepts, Algorithms, and Applications. Springer-Verlag, New York. 1996
    [82] AC Dias, M Louro, L Arroja et al. Uncertainties in the Estimates of Carbon in Harvested Wood Products for Portugal. P41-47. In: 2nd International Workshop on Uncertainty in Greenhouse Gas Inventories. International Institute for Applied Systems Analysis A-2361 Laxenburg, Austria. 27–28 September 2007 http://www.ibspan.waw.pl/ghg2007/GHG-total.pdf#page=47
    [83] AC Dias, M Louro, L Arroja, et al. Comparison of Methods for Estimating Carbon in Harvested Wood Products. Biomass and Bioenergy 2009,33(2):213-222
    [84] H.Jenny, SP Gessel and FT Bingham. Comparative Study of Decomposition Rates of Organic Matter in Temperate and Tropical Regions. Soil Science. 1949,68(6):419-432
    [85] J.S Olson. Energy Storage and the Balance of Producers and Decomposers in Ecological Systems. Ecology. 1963,44(2):322-331
    [86] G. Minderman, Addition, Decomposition and Accumulation of Organic Matter in Forests. Journal of Ecology. 1968.56(2):355-362
    [87] JE. Means, K JR. Cromack, and PC. Macmillan. Comparison of Decomposition Models Using Wood Density of Douglas-fir logs. Canadian Journal of Forest Research. 1985,15(6):1092-1098
    [88] ME. Harmon, JF. Franklin, et al. Ecology of coarse Woody debris in Temperate Ecosystems. Advances in Ecological Research 1986,15: 133-302
    [89] P. Sollins , SP Cline, T. Verhoeven, et al. Patters of log Decay in Old-growth Douglas-fir Forests. Canadian Journal of Forest Research. 1987.17(2): 1585–1595
    [90] M Peter. WD Brown. S A Shepperd. et al. Longevity of Windthrown logs in a SubalPine Forest of Central Colorado. Canadian Journal of Forest Research. 1998,28(6): 932–936
    [91] HD Alban and J Pastor . Decomposition of Aspen, Spruce, and Pine Boles on two Sites in Minnesota. Canadian Journal of Forest Research. 1993,23(9):1744-1749
    [92] MP. Brown, WD. Shepperd, SA. Mata. Longevity of Wind Thrown Logs in a SubalPine Forest of Central Colorado. Canadian Journal of Forest Research. 1998, 28(6): 932–936
    [93] M Yatskov, M. E. Harmon, et al.. A Chronosequence of Wood Decomposition in the Boreal Forests of Russia. Canadian Journal of Forest Research; 2003,33(7): 1211-1226
    [94] J. Mackensen, J. Bauhus. and E. Webber. Decomposition Rates of coarse Woody Debris-a Review with Particular Emphasis on Australian Tree species. Australian Journal of Botany. 2003,51(1):27-37
    [95] R. Laiho, and CE.Prescott. Decay and Nutrient Dynamics of Coarse Woody Debris in Northern Coniferous Forests: a Synthesis. Canadian Journal of Forest Research 2004,34(4):763-777
    [96] S Herrmann and CE Prescott. Mass Loss and Nutrient Dynamics of Coarse Woody Debris in Three Rocky Mountain Coniferous Forests: 21 Year Results. Canadian Journal of Forest Research. 2008,38(1):125-132.
    [97] UNFCCC. Estimation, Reporting and Accounting of Harvested Wood Products. Geneva (SwitzerLand),2003: 1-44
    [98] A.Chaudron La foret,le bois et l’effet de serre .Mnistere de l’agriculture et de peche.2002,(3)
    [99] C. Borough, H. Crawford The Development of a National Wood Products Model In:, B. Schlamadinger, S. Woess-Gallasch, A. Cowie Carbon Accounting and Emissions Trading Related to Bioenergy, Wood Products and Carbon Sequestration IEA Bioenergy Task 38: Workshop in Canberra/Australia 2001: 57-76
    [100]P. Mcfarlane, J. Ford-Robertson. Chairman’s Summary: Harvested Wood Products Workshop. Rotorura, New ZeaLand In: B. Schlamadinger, S. Woess-Gallasch, A. Cowie Carbon Accounting and Emissions Trading Related to Bioenergy, Wood Products and Carbon Sequestration IEA Bioenergy Task 38: Workshop in Canberra/Australia 2001: 77-83
    [101] S. Thompson. Harvested Wood Products Workshop. http://www.Forest research.co.nz/research/frcc/ppt/Shayleenthompson(Australia).ppt. 2001
    [102] UNFCCC. Data and Information on Changes in Carbon Stocks and Emissions of Greenhouse Gases from Harvested Wood Products and Experiences with the Use of Relevant Guidelines and Guidance of the Intergovernmental Panel on Climate Change. FCCC/SBSTA/2005/ Misc.9/Add.2
    [103] GP. Richards, C. Borough, D. Evans. Developing a Carbon Stocks and Flows Model for Australian Wood Products. Australian Forestry. 2007, 70(2):108-119
    [104] K Pingound. Harvested Wood Products. Viewpoints on C Accounting Approaches. 2001 http://www.Forestresearch.co.nz/research/frcc/KimPingud.ppt.
    [105] C. Row, and RB. Phelps. Tracing the Flow of Carbon through US. Forest Product Sector. Presentation at the 19th world congress, IUFRO, Montreal, Canada, Aug. 5-11, 1990
    [106] T. Karjalainen, A. Pussinen, J. Liski. et al. An Approach towards an Estimate of the Impact of Forest Management and Climate Change on the European Forest sector Carbon Budget: Germany as a Case Study Forest Ecology and Management 2002,162(1):87-103
    [107] GEF中国林业温室气体清单课题组土地利用变化和林业温室气体计量方法.魏殿生主编造林绿化与气候变化-碳汇问题研究.北京中国林业出版社2003:123-164
    [108] W.A. Kurz, , M.J. Apps, T.M Webb et al. The Carbon Budget of the Canadian Forest Sector: Phase I. Information Report,NOR-X-326 Forestry Canada, Edmonton, Alberta, 1992:1-93
    [109] G.J Nabuurs, G.M.J Mohren.Carbon Fixation Through Forestation Activities. IBN Research Report 93/4, Institution for Forest and Nature Research(IBN-DLO). Wangeningen, The NetherLands. 1993:205
    [110] M.Obersteiner, Carbon Budget of the Forest Industry of the Russian Federation:1928-2012. International Institute for Applied Systems Analysis. http://www.iiasa.ac.at/Publicatons/Douments/IR-99-033.pdf.
    [111]阮宇张小全杜凡中国木质林产品碳贮量生态学报2006,26(12):4212-4218
    [112]林俊成,李国忠.台湾地区木质材料消费之碳流动与贮存量研究.台湾林业科学. 2003,18(4): 293-305
    [113] JM. Suflita, CP. Gerba, RK. Ham. et al. The Word’s Largest Landfill. Environmental Science and Technology. 1992,26(8):1486-1495
    [114] JA. Micales & K.E. Skog. The Decomposition of Forest Products in Landfills International Biodeterioration & Biodegradation. 1997,39(2-3): 145-158
    [115] MA. Barlaz, RK. Ham and DM. Schaefer. Mass Balance Analysis of Anaerobically Decomposed Refuese. Journal of Environmental Engineering. 1989,115(6):1088-1102
    [116] MJ. Laquidara, AP. Leuschner, and DL. Wise. Procedure for Determining Potentail Gas Quantities in an Existing Sanitary Landfill. Water. Science and Technology. 1986,18(12):151-162
    [117] D. Augenstein. The Greenhouse Effect and US Landfill Methane. Global Environmental Change. 1992, 2(4):311-328
    [118] RL. Peer, SA. Thorneloe, DL. Epperson. A comparison of Methods for Estimating Global Methane Emissions from Landfills. Proceedings of the NATO Advanced Research Workshop . Chemosphere, 1993,26(1-4):387-400
    [119] H. Oonk. and T.Boom et al. Validation of Landfill gas Formation Models. Studies in Environmental Science. 1995, 65(part1):597-602
    [120] F.A. Ximenes, W.D. Gardner, A.L. Cowie. The Decomposition of Wood Products in Landfills in Sydney, Australia. Waste Management. 2008,28(11):2344-2354
    [121]张会儒王学利王柱明落叶松单木生物量生长变化规律的研究林业科技通讯2000,(2):17-20
    [122]刘兴良,宿以明,刘世荣,马钦彦四川西部川西云杉人工林非同化器官营养元素含量与分布生态学报2003,23(12):2573-2578
    [123]党承林吴兆录云南松林的生物量研究云南植物研究1991,13(1): 59-61
    [124]唐万鹏王月容郑兰英南方型杨树人工林生物量与生产力研究湖北林业科技2004增刊:43-47
    [125]宿以明慕长龙,潘攀等岷江上游辽东栎天然次生林生物量测定南京林业大学学报(自然科学版) 2003, 27(6):107-109
    [126] CAS Hall, J Uhlig. Refining Estimates of Carbon Released from Tropical Land-Use Change. Canadian Journal of Forest Research. 1991,21(1):118-131
    [127] CA. Valente, A.P.M. Sousa, FP Furtado, Improvement program for Eucalyptus Globulus at Portucel: Technological Component. Appita J. 1992,45(6):403–407.
    [128]中国林业科学研究院木材工业研究所主编中国主要树种的木材物理力学性质北京中国林业出版社1982:1-154
    [129] R.M.Gifford, Carbon Contents of Above-ground Tissues of Forest and WoodLand Trees. National Carbon Accounting System Technical Report. No.22.Australian Greenhouse Office 2000:1-17
    [130] T. Karjalainen, R.M?kip??, Contribution of Forests and Forestry in Finland to Mitigate Greenhouse Effect. Biotechnol. Agron. Soc. Environ. 2000,4(4):275-280
    [131]罗怀良川中丘陵区土地利用/覆被变化及其碳汇效应研究——以四川省盐亭县为例中科院成都山地灾害与环境研究所博士学位论文2003
    [132]马钦彦谢征明中国油松林储碳量基本估计北京林业大学学报1996,18(3): 31-34
    [133]马钦彦陈遐林等华北主要森林类型建群种的含碳率分析北京林业大学学报2002,24(5-6): 96-100
    [134]方昕,田大伦,项文化.速生阶段杉木人工林碳素密度、贮量和分布林业科学2002,38(3):14-19
    [135]贺庆棠森林对地气系统碳素循环的影响北京林业大学学报1993,15(3):132-136
    [136]尹丝慈木材学北京中国林业出版社1996:111-113
    [137]张宏芝陆贵巧原占国等太行山区天然次生林碳储量的研究河北林果研究2005,20(1):11-13
    [138] D.Thompson, and R. Matthews. CO2 in Trees and Timber Lowers the Greenhouse Effect. Forestry and British Timber 1989,18(10):19-24.
    [139] F Scholz and U Hasse. Permanent Wood Sequestration: The Solution to the Global Carbon Dioxide Problem. ChemSusChem 2008,1(5): 381-384
    [140] J. Bowyer, S. Bratkovich, A. Lindburg. et al. Wood Products and Carbon protocols: Carbon Storage and Low Energy Intensity should be Considered 2008. http://www.dovetailinc.org/reports/pdf/DovetailCarbon0408hz.pdf
    [141] DW. MacFarlane. Potential Availability of Urban Wood Biomass in Michigan: Implications for Energy Production, Carbon Sequestration and Sustainable Forest Management in the U.S.A. Biomass and Bioenergy. 2009,33 (4): 628-634
    [142] L Gustavsson, A Joelssona and R Sathrea. Life Cycle Primary Energy Use and Carbon Emission of an Eight-storey Wood-framed Apartment Building. Energy and Buildings. 2010,42(2):230-242
    [143] B Lippke, J Wilson, J Perez-Garcia. CORRIM: Life-Cycle Environmental Performance of Renewable Building Materials. Forest Products Journal. 2004,54(6):8–19.
    [144] L Gustavsson, K Pingoud, R Sathre. Carbon Dioxide Balance of Wood Substitution: Comparing Concrete- and Wood-framed Buildings. Mitigation and Adaptation Strategies for Global Change. 2006, 11(3):667–691.
    [145] AH Buchanan, SB Levine. Wood-based Building Materials and Atmospheric Carbon Emissions. Environmental Science & Policy. 1999,2(6):427-437
    [146] R Sathre, L Gustavsson. Using Wood Products to Mitigate Climate Change: External Costs and Structural Change. Applied Energy 2009,86(2):251-257
    [147] F. Werner, R. Taverna, P. Hofer, et al. Carbon Pool and Substitution Effects of an Increased Use of Wood in Buildings in SwitzerLand: First Estimates. Ann. For.Sci. 2005,62(8):889-902
    [148]木材密度测定方法GB1933-2009中华人民共和国国家标准北京
    [149]木材含水率测定方法GB1937-2009中华人民共和国国家标准北京
    [150]董鸣陆地生物群落调查观测与分析北京中国标准出版社1997 152-153
    [151]于占源,杨玉盛,陈光水紫色土人工林生态系统碳库与碳吸存变化应用生态学报2004,15(10):1837-1841
    [152]尉海东,马祥庆中亚热带不同发育阶段杉木人工林生态系统碳贮量研究江西农业大学学报2006,28(2):239-243,267
    [153]方晰,田大伦,项文化等第二代杉木中幼林生态系统碳动态与平衡中南林学院学报2002,22(1):1-6
    [154]尉海东,刘爱琴,马祥庆等连栽对杉木人工林碳贮量的影响研究中国生态农业学报2006 14(3):36-39
    [155]方晰,田大伦,项文化等杉木人工林凋落物量及其分解过程中碳的释放率中南林学院学报2005 25(6):12-16
    [156]杨玉盛,谢锦升,王义祥等杉木观光木混交林C库与C吸存北京林业大学学报2003 25(5):10-14
    [157]钟羡芳,陈光水,高人等杉木多代连栽地营造杉阔混交林碳库与碳吸存福建师范大学(自然科学版)2006 22(2):99-103
    [158]杨玉盛,陈光水,王义祥等格氏栲人工林和杉木人工林碳吸存与碳平衡林业科学2007 43(3):113-117
    [159]杨玉盛陈光水王义祥等格氏栲人工林和杉木人工林碳库及分配林业科学2006 42(10):43-47
    [160]田大伦,方晰,项文化湖南会同杉木人工林生态系统碳素密度生态学报2004 24(11):2382-2386
    [161]雷丕锋,项文化,田大伦等樟树人工林生态系统碳素贮量与分布研究生态学杂志2004 23(4):25-30
    [162]唐宵,黄从德,张健等四川主要针叶树种含碳率测定分析四川林业科技2007 28(4):20-23
    [163]阮宏华,姜志林,高苏铭苏南丘陵主要森林类型碳循环研究——含量与分布规律生态学杂志1997 16(6):17-21
    [164]马明东,江洪,罗承德等四川西北部亚高山云杉天然林生态系统碳密度、净生产量和碳贮量的初步研究植物生态学报2007, 31 (2):305-312
    [165]王述洋,谭文英,赵殊等生物质的能量预测及建模东北林业大学学报2003 31(2):72-74
    [166]魏文俊,王兵,白秀兰杉木人工林碳密度特征与分配规律研究江西农业大学学报2008 30(1):73-80
    [167]方运霆,莫江明,彭少麟等森林演替在南亚热带森林生态系统碳吸存中的作用生态学报2003 23(9):1685-1694
    [168]李铭红,于明坚,陈启瑺等青冈常绿阔叶林的碳素动态生态学报1996 16(6):645-651
    [169]马明,王得祥,刘玉民秦岭天然华山松林碳素空间分布规律及其动态变化林业资源管理2008(5):75-78
    [170]沈文清,刘允芬,马钦彦等千烟洲人工针叶林碳素分布、碳贮量及碳汇功能研究林业实用技术2006(8):5-8
    [171]马明东,江洪,刘跃建楠木人工林生态系统生物量、碳含量、碳贮量及其分布林业科学2008 44(8):34-38
    [172]郭瑞红,叶功富,卢昌义等木麻黄与湿地松混交林乔木层的碳贮量及其分配海峡科学2008总第22期(10):24-26
    [173]叶功富,郭瑞红,卢昌义等木麻黄与厚荚相思混交林乔木层的碳贮量及其分配海峡两岸2008总第22期(10):16-18
    [174]郑金兴,曾宏达,钟羡芳等留杉栽阔经营模式C库及其分配福建师范大学学报(自然科学版) 2005 21(3):65-69
    [175]钟羡芳,杨玉盛,高人等老龄杉木人工林生态系统碳库及分配亚热带资源与环境学报2008 3(2):11-18
    [176]张琼,洪伟,吴承祯等巨桉碳含量的空间结构特征研究广西植物2007 27(4):585-589
    [177]魏文俊,王兵,李少宁等江西省森林植被乔木层碳储量与碳密度研究江西农业大学学报2007 29(5):766-772
    [178]康冰,刘世荣,张广军等广西大青山南亚热带马尾松、杉木混交林生态系统碳素积累和分配特征生态学报2006 26(5):1320-1329
    [179]马泽清,刘琪璟,徐雯佳等江西千烟洲人工林生态系统的碳蓄积特征林业科学2007 43(11):1-7
    [180]程根伟,罗辑贡嘎山亚高山林地碳的积累与耗散特征地理学报2003 58(2):179-185
    [181] [1]程堂仁,冯菁,马钦彦等甘肃小陇山森林植被碳库及其分配特征生态学报2008 28(1):33-44
    [182]胡海清,孙龙,国庆喜等大兴安岭1980-1999年乔木燃烧释放碳量研究林业科学2007 43(11):82-88
    [183]李江,黄从德,张国庆川西退耕还林地苦竹林碳密度、碳贮量及其空间分布浙江林业科技2006 26(4):1-5
    [184]叶功富,郭瑞红,卢昌义等不同生长发育阶段木麻黄林生态系统的碳贮量海峡科学2008总第22期(10):3-8
    [185]方晰,田大伦,项文化等不同密度湿地松人工林中碳的积累与分配浙江林学院学报2003, 20(4) : 374-379
    [186]尉海东,马祥庆不同发育阶段楠木人工林生态系统碳贮量研究烟台师范学院学报(自然科学版) 2006,22(2):130-133
    [187]尉海东马祥庆不同发育阶段马尾松人工林生态系统碳贮量研究西北农林科技大学学报(自然科学版) 2007 35(1):171-174
    [188]刘文耀,谢寿昌,谢克金等哀牢山北部木果石栎林的元素积累及循环云南植物研究1995 17(2):175-181
    [189] S Brown, B Lim, B Schiamadinger. Evaluating Approaches for Estimating Net Emissions of Carbon Dioxide from Forest Harvesting and Wood Products. IPCC/OECD/IEA . Programme on National Greenhouse Gas Inventories. Meeting Report 1998. http://www.ipccnggip.iges.or.jp/public/mtdocs/dakar.pdf
    [190]国家林业局历年中国林业发展报告北京中国林业出版社
    [191] IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. http://www.ipcc-nggip.iges.or.jp/public/gp/chinese/gpgaum_cn.htm
    [192]冯文滔基于Excel的随机决策模型:蒙特卡洛模拟中国管理信息化2007,10(1):56-58
    [193]文伟叶春明刘晓乐基于Excel的蒙特卡洛模拟在银行排队业务中的应用中国管理信息化2008,11(6):81-84
    [194] UNFCCC. Estimating, Reporting and Accounting of Harvested Wood Products. Technical paper. FCCC/TP/2003/7 http://unfccc.int/resource/docs/tp/tp0307.pdf 2003.
    [195] Food and Agriculture Organization of the United Nations (FAO). Classification and Definitions of Forest Products. Rome. 1982:27-36
    [196]江泽慧世界竹藤辽宁科学技术出版社.辽宁. 2002:3-6
    [197]中国造纸学会编中国造纸年鉴北京中国轻工业出版社2009
    [198]国家林业局编历年中国林业发展报告北京中国林业出版社
    [199]邓聚龙灰色系统理论教程武汉华中理工大学出版社1992
    [200]邓聚龙灰色理论基础武汉华中科技大学出版社2002
    [201]胡明形陈太山楼南云2000年我国木材需求结构预测北京林业大学学报1993,15(3):123-131
    [202]《中国建筑年鉴》编委会1984-1985中国建筑年鉴,北京中国建筑工业出版社1985
    [203]许美琪中国家具业:市场和资源见:曹赢超主编2004中国家具年鉴:123-130
    [204]贾清文经济全球化进程中的中国家具业见:2008中国家具年鉴:7-16
    [205]《中国造纸年鉴》编辑部中国造纸年鉴1996年卷北京中国轻工业出版社
    [206]中国造纸学会编中国造纸年鉴北京中国轻工业出版社2009
    [207]宋维明等著中国木材产业与贸易研究北京中国林业出版社2007:132-142
    [208]中国造纸学会编中国造纸年鉴北京中国石化出版社出版2007 :1-60
    [209]《新中国煤炭工业》编委会新中国煤炭工业北京海洋出版社2007
    [210]国家发展与改革委员会《“十一五”资源综合利用指导意见》发改环资[2006]2913号2006
    [211]周惠明木材防腐.北京中国林业出版社1991:1-10
    [212]日本林业厅木材课白玉萍摘译有利于人与环境的木材利用.见:魏殿生主编造林绿化与气候变化.北京中国林业出版社2003:181-186
    [213] AC Dias, M Louro, L Arroja, et al. The contribution of Wood Products to Carbon Sequestration in Portugal. Ann.For.Sci.2005,62(8):902-909
    [214] K Pingoud, Harvested Wood Products: Considerations on Issues Related to Estimation, Reporting and Accounting of Greenhouse Gases. Final Report Delivered to the UNFCCC Secretariat, 2003,
    [215]中国森林生态服务评估研究成果新闻发布会http://www.china.com.cn/zhibo/2010-05/20/content_20066432.htm
    [216]《气候变化国家评估报告》编写委员会编著气候变化国家评估报告北京科学出版社2007:334-345
    [217]白彦锋,姜春前,鲁德,等.中国木质林产品碳储量变化研究.浙江林学院学报2007, 24 (5): 587-592
    [218]白彦锋,姜春前,张守攻.中国木质林产品碳储量及其减排潜力.生态学报, 2009, 29 (1): 399-405
    [219]宋维明.中国木材贸易现状及有关问题的分析//曲桂林,刘洪存,张守攻,等.中国森林对话机制(论文集).北京:中国林业出版社, 2006: 76-79
    [220]安迪·怀特,孙秀芳,克斯汀·坎比,等.中国和国际林产品贸易对森林保护和人民生计的影响.林业经济, 2007 (1): 31-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700