用户名: 密码: 验证码:
珠光体钢与奥氏体钢异质接头碳迁移机制及影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着珠光体钢与奥氏体钢异质材料焊接在工程中的广泛应用,大量的事故案例表明,珠光体和奥氏体熔合线两侧的碳迁移现象,是导致焊接接头失效的主要原因。本文针对电厂动力锅炉系统中典型的珠光体和奥氏体接头,通过模拟接头的实际工况制备试件,测定碳迁移情况。通过观察熔合线两侧的碳分布,发现了碳元素由珠光体钢一侧向奥氏体钢一侧的扩散现象,根据测定的碳和合金元素的成分,计算出熔合线的化学势梯度,再利用菲克定律推导出珠光体与奥氏体异质接头处的碳迁移公式。
     为了研制出可以抑制碳迁移的焊材,本文选取了A102、A402、R307、Ni317四种常用于珠光体钢与奥氏体钢焊接的焊材,并制备了各种焊材在焊态、时效处理、蠕变状态的试样。借助光学显微镜和扫描电镜分析并对比了各试样的组织和碳迁移情况,找到了影响碳迁移的主要因素,并以此为基础研制出了一种超低碳新型焊条。将新型焊条重复以上步骤进行试验,所得到的试样与之前四种焊材试样进行了组织、断口和碳迁移的比较。
     实验结果表明,碳迁移是影响蠕变断裂的主要因素,A102、A402、R307焊条所焊试件蠕变断裂的位置均发生在珠光体与奥氏体熔合线附近,通过断口形式分析和观察断裂部位的组织及碳分布,发现以上三种试样均发生了明显的碳迁移现象,蠕变断裂的断口均存在脆性断裂特征。在碳迁移层中发现了由渗碳体和碳铬化合物组成的有害的硬脆相。新型的超低碳焊条和Ni317试样则几乎没有碳迁移发生,蠕变断裂的断口呈现塑性断裂特征,熔合区部位只是由于两侧的碳元素浓度梯度的差异发生了少量的碳扩散。比较新型超低碳焊条和其它四种焊条的蠕变试样,发现新型的超低碳焊条的蠕变断裂时间超过了A102、A402、R307,只略逊于Ni317。由此可以得出结论,本文研制的超低碳焊条可以有效的抑制碳迁移,在高温力学性能上超过了工程上广泛应用的常规奥氏体和珠光体焊材,虽然略逊于镍基材料,但已经可以满足绝大部分工程需要。由于在价格上不仅远低于昂贵的镍基材料,就是和常规的奥氏体焊材相比,也有很大的价格优势,性价比高,具有很强的实用性。
With widely applying of dissimilar material welding for pearlite and austenitic steel inproject engineer, more and more cases indicate that the main reason cause weld seam failure iscarbon migration on fusion line between pearlite steel and austenitic steel. This paper tookpower plant boiler system as background,weld classic joint by simulating actual workingstatus. Carbon migration was tested and recorded by using scanning electron microscopy(SEM). After analyzed the carbon distribution around fusion line, diffusion was from pearlitesteel to austenitic steel. Chemical potential gradient was calculated according to the measuredcomposition of carbon and other alloy elements. Carbon migration formula for pearlite andaustenitic dissimilar joint was derived by using Fick’s law and calculated chemical potentialgradients.
     Four commonly used welding consumables,A102,A402,R307,Ni317, were selected tocreate an effective welding consumable that could restrain carbon migration. Test specimenswere welded for all the above welding consumable in the stage of welding/agingtreatment/creep. Microstructure and carbon migration for different specimens were compared.The main effect factors were discovered for carbon migration,a new ultra-low carbon weldingconsumable was created base on the discovery. The same test specimens were welded andmachined. Comparison for specimens’ microstructure/facture/carbon migration between newultra-low carbon and four common welding consumables are performed.
     Examination results showed that carbon migration was main factor lead to creep rupture.Rupture location for A102/A402/R307test specimens occurred around fusion line of pearliteand austenitic. Obvious carbon migration was founded for above test specimens after analyzecreep rupture fracture and observe microstructure and carbon migration on rupture position.Brittle rupture features were discovered on facture. Harmful hard and brittlemicrostructure,compose of cementite and carbon chromium compounds,were founded incarbon migration layer.Carbon migration was almost not occurred for test specimens ofultra-low carbon and Ni317. Plastic rupture features were founded on facture. Only a smallamount of carbon diffusion occurred around fusion line because of difference carbonconcentration gradient on both sides. Creep rupture time for ultra-low carbon electrode was longer than A102/A402/R307,only slightly shorter than Ni317by comparing the five testspecimens.It could be concluded that the new type ultra-low carbon electrode wouldeffectively restrain carbon migration. High temperature mechanical properties of ultra-lowcarbon electrode were better than the commonly used austenitic and pearlite weldingconsumables. Although slightly worse than the nickel-based materials, but could meet most ofthe majority engineering request. This new type welding consumable had a great priceadvantage than the austenitic material,not to mention nickel-based material. So this kind ofwelding consumable wasa very practical,with a high cost-effective.
引文
[1]Faber G, Goosh T G. Welding joints between stainless and low alloy steels current position[J]. Welding in World,1982,19(5):87-98.
    [2]Viswanathan R. Damage mechanism and life assessment of high temperature components [J]. ASM International,1989,12(10):289-308.
    [3]刘中青,刘凯.异质金属焊接技术指南[M].北京:机械工业出版社,2000.
    [4]周振丰.焊接冶金与金属焊接性[M].北京:机械工业出版社,1988.
    [5]Ellis D. Failure analysis and life assessment studies for boiler tubes. American Society of Mechanical Engineers[J]. Pressure Vessels and piping Division,1999,7(8):3-13.
    [6]宋吉生.耐热异质钢焊接技术分析及在火电厂中的应用[J].科技资讯,2007,13(2):28-31.
    [7]任爱,赵灿,范长信,等.电站高温锅炉管奥氏体异质钢焊接接头失效方式研究[J].热力发电,2003,13(2):20-31.
    [8]章亚林.奥氏体与贝氏体异质钢接头运行早中期组织性能分析[J].热力发电,2002,10(2)20-31.
    [9]Bauhaus A, Mahanoy O N. Structure Study of Colorized Coating on Mild Steel[J]. Material Transactions,1990,31(11):948-953.
    [10]Nelson D. Nature of the fusion boundary in ferrite-austenitic dissimilar metal welds nucleation and growth[J]. Welding Journal,1999,78(10):329-337.
    [11]潘春旭.异质钢及异质金属焊接[M].北京:人民交通出版社,2000.
    [12]曾乐.现代焊接技术手册[M].上海:上海科学技术出版社,1993.
    [13]Delong W T. Ferrite in austenitic stainless steel weld metal[J]. Welding Journal,1974,53(7):273-286.
    [14]Lundin C D. Dissimilar metal welds-transition joints literature review[J]. Welding Journal,1982,61(2):58-63.
    [15]Smith William F. Structrue and properties of engineering alloys[J]. New York:McGraw-Hill Book Company,1981,244-252
    [16]潘春旭,孙国正.异质钢焊接性的研究现状和进展[J].水利电力机械,1998,8(6):42-46.
    [17]Schimmoeler H A, Ruge J L. Estimation of residual stresses in reactor pressure vessel steel specimens clad by stainless strip electrodes [C]. Residual Stress in Welded Construction and Their Effects, London,1977.
    [18]Roberts D I, Viswanathan R. Dissimilar Weldment in Fossil Fired Power Plant Technical Overiew[C]. Proceedings Seminar on Dissimilar Weld in Fossil-Fired,1985.
    [19]Roberts D I. Performance of Dissimilar Welds in Service [J]. Journal of Pressure Vessel Technology,1985,43(8):12-16.
    [20]丛欣滋.铁素体-奥氏体异质钢接头高温失效原因分析[J].焊接学报,1989,10(1):19-29.
    [21]Bhaduri A K, Gowrisankar I, Seethararnan V, et al. Development of transition metal joint for steam generator circuit of Prototype reactor[J]. Materials Science and Technolog,1988,46(3):1020-1029.
    [22]Lundin C D, Khan K K, Yang D. Effect of carbon migration in Cr-Mo weldments on metallurgical structure and mechanical Properties[J]. WRC Bulletin,1995,210(4):59-63.
    [23]Pavlovsky J, Million B, Ciha K.Carbon Redistribution between an Austenitic Cladding and a Ferritic Steel for Pressure Vessels of a Nuclear Reactor[J]. Materials Science and Engineering,1991,100(4):105-110.
    [24]周振丰.金属熔焊原理及工艺(下册)[M].北京:机械工业出版社,1981.
    [25]何康生,曹雄夫.异质金属焊接[M].北京:机械工业出版社,1981.
    [26]李萌盛.电站锅炉异质钢接头的蠕变断裂分析[J].合肥工业大学学报,1997,20(5):138-142.
    [27]邹德安,李萌盛.电站锅炉管道异质接头断裂机理研究[J].电力建设,1999,2(5):17-22.
    [28]黄明亮,王来,亚生江,等.异质焊头Cr5Mo/Cr21Nil2碳扩散的研究[J].金属学报,2000,36(9):902-906.
    [29]Albert S K, Gill T P S, Tyagi A K, et al. Soft zone formation in dissimilar welds between two Cr-Mo steels[J]. Welding Journal,1997,76(3):135-142.
    [30]Lundin C D, Wang Y. Repair welding of service exposed Cr-Mo steel weldments [J]. Welding Research Council Bulletin,1989,348(9):17-30.
    [31]忻云彪,雷月葆,李培宁,等.奥氏体不锈钢焊条焊接Cr5Mo工艺管线接头长期高温服役前后熔合区的组织和性能[J].压力容器,1992,9(2):112-120.
    [32]Li C C, Viswanathan R. The Microstructure and Remaining Life of Dissimilar Metal Weldments after Service in fossil-fired Boilers[C]. ASME.Int. Conf. On Advances in Life Prediction Methods,1983.349(9):20-30.
    [33]杨厚君.电站用奥氏体钢管异质钢焊接研究生现状[J].电力建设,1998,3(2):8-14.
    [34]倪瑞澄,朱逢吾.关于异质钢焊接接头的碳迁移问题[J].金属学报,1978,14(1):32-34.
    [35]张心宝.电站锅炉过热管异质钢焊接性研究[D].太原:太原理工大学,2002.
    [36]Delong W T. Ferrite in austenitic stainless steel weld metal[J]. Welding Journal,1974,53(7):273-286.
    [37]Suutala N. Effect of manganese and nitrogen on the solidification mode in austenitic stainless steel welds[J]. Metallurgical Transaction A,1982,13(12):2121-2130.
    [38]潘春旭,朱凤艳,陈雁荡.不锈钢焊缝微观组织和偏析的电镜研究[J].武汉水运工程学院学报,1990,14(4):419-424.
    [39]王立刚.一种低铬高锰奥氏体钢焊接材料的研究[D].大连:大连理工大学,2003.
    [40]Nicholson R G. Creep-rupture properties of austenitic and nickel-based transition joints[J]. Met. Technol,1982,20(9):305-311.
    [41]涂善东,巩建鸣,凌祥.高温下带焊缝实验室试样的力学行为及其预测能力[J].南京化工大学学报,1998,20(4):8-13.
    [42]钱昌黔.耐热钢焊接[M].北京:水利电力出版社.1988.
    [43]李萌盛.异质焊接接头加热过程中的碳迁移现象研究[J].材料科学与工艺,1997,5(4):17-21.
    [44]李德元,徐国建.用于珠光体耐热钢与奥氏体不锈钢异质接头的新型焊接材料的研究[J].焊接设备与材料,1998,6(4):28-29.
    [45]杨厚君.异质钢焊接接头碳迁移状态辨识与焊接工艺因素对接头高温性能影响的研究[D].武汉:武汉水利电力大学,1997.
    [46]史春元,李小刚,于启湛,等.异质钢焊接接头加热后碳迁移区力学性能的变化规律[J].焊接学报,2000,21(3):59-61.
    [47]Iring B. Dissimilar metal welding paves the way to new ventures [J]. Welding Journal,1992,71(2):27.
    [48]王宽福.异质钢焊接结构的失效与防治[J].石油工程建设,1998,1(3):9-12.
    [49]郑阳,沈士明.Cr-Mo钢焊接接头中碳迁移现象研究的现状与进展[J].机械设计与制造工程,2002,31(1):55-57.
    [50]徐恒钧,石巨岩,阮玉忠,等.材料科学基础[M].北京:北京工业大学出版社,2001.
    [51]Agren J. Simulation of carbon diffusion in compound welds [J]. Scandinavian Journal of Metallurgy,1981,10(3):134-140.
    [52]Campbell G M, Elmer J W, Gibbs W S, at al. Evaluation of Factors Controlling High Temperature Service Life2-1/4Cr-1Mo Steel to Austenitic Stainless Steel Weldments[C]. In:Proc. Trends in Welding Research in The United States'(Conf), David, S. A.(Ed), Metal Park, OH,1982.
    [53]Celik A, Alsaran A. Mechanical and structural properties of similar and dissimilar steel joints[J]. Materials characterization,1999,43(1):311-318.
    [54]王晓宇.奥氏体不锈钢与珠光体耐热钢异质钢焊接的碳迁移研究[D].沈阳:沈阳工业大学,2012.
    [55]Li Y J, Zou Z D, Zhou B, et al. Microstructure in the weld metal of austenitic-pearlitic dissimilar steels and diffusion of element in the fusion zone[J]. Mater. Sci. Technol.,2001,17(3):338-342.
    [56]张发,张丽红.异质钢的焊接及其应用[J].内蒙古石油化工,2012,11(7):33-34.
    [57]李勇.TP347H与T91异质钢焊接性分析[J].广东电力,2007,20(7):19-21.
    [58]梁新斌.低镍奥氏体不锈钢组织与凝固模式[D].兰州:兰州理工大学,2007.
    [59]武英利.T91TP347H异质耐热钢焊接接头组织及性能研究[D].天津:天津大学,2003.
    [60]陈剑虹.不锈钢焊接冶金学及焊接性[M].北京:机械工业出版社,2008.
    [61]潘春旭,沈棣华,张志慧.异质钢焊接熔合区显微组织在高温服役中的转变[J].电子显微学报,1994,13(2):121-124.
    [62]史春元,田锡唐,陈宇刚,等.异质钢接头界面蠕变脆断的力学控制参量[J].焊接学报,1995,16(4):185-189.
    [63]廖红卫,潘春旭,陈中.珠光体-奥氏体异质钢焊接中碳迁移的计算[J].武汉交通科技大学学报,1997,21(1):11-16.
    [64]刘晓波.奥氏体钢和珠光体钢焊接的裂纹研究[J].材料科学与工艺,2000,11(7):14-16.
    [65]李卫东,余丽杰.用于珠光体不锈钢与奥氏体不锈钢异质接头的新型焊接材料的研究[J].焊接 技术,1998,12(5):28-29.
    [66]杜兵,李彦.异质钢熔合区的脆化与断裂行为[J].焊接学报,1998,9(4):24-28.
    [67]刘敏初.珠光体钢与奥氏体钢焊接接头的组织分析[J].焊接技术,1994,7(2):15-20.
    [68]孙咸.焊缝金属对异质钢接头力学性能的影响[J].焊接技术,1995,8(6):8-10.
    [69]杨厚君,章应霖.异质钢焊接接头碳迁移试验现象的分析[J].焊接学报,2001,12(4):89-92.
    [70]杨瑞成,傅公维,王晖.12Crl MoV钢高温时效中组织结构变化的原子扩散分析[J].特殊钢,2004,15(5):6-9.
    [71]王立刚.一种高铬低锰焊接材料的研究[D].大连:大连理工大学,2003.
    [72]Thibaux P, Metenier A. Carbon diffusion measurement in austenite in the temperature range500℃to900℃[J]. Metallurgical and Materials Transaction,2007,21(6):1169-1176.
    [73]黄文长,潘春旭,付强珠.珠光体-奥氏体异质钢焊接接头中碳迁移的跟踪观测[J].机械工程材料,2006,18(4):89-92.
    [74]Lars H, John A. Simulation of carbon diffusion in steel driven by a temperature gradient[J]. Basic and Applied Research,2010,20(3):212-215.
    [75]谢霞.电站锅炉异质钢焊接接头的应力模拟与使用寿命分析[D].合肥:合肥工业大学,2004.
    [76]陈文静.异质金属焊接工艺及接头性能研究[D].四川:西华大学,2008.
    [77]李辉平,贺连芳.基于有限元方法的渗碳浓度场数值模拟[J].计算机应用,2008,8(10):79-83.
    [78]Thibaux P, Metenier A, Xhoffer C, et al. Carbon diffusion measurement in austenite in the temperature range500℃to900℃[J]. Metallurgical and Materials Transaction,2007,10(6):1169-1176.
    [79]Darken L S. Diffusion, mobility and their interrelation through free energy in binary metallic systems[J]. Transactions AIME,1948,174:184-201
    [80]Hoglund A, John A. Simulation of carbon diffusion in steel driven by a temperature gradient [J]. Basic and Applied Research,2010,13(31):212-215.
    [81]张文钺.焊接冶金学(基本原理)[M].北京:机械工业出版社,2005.
    [82]李辉平,赵国群,贺连芳.有限元方法的表面渗碳数值分析[J].分析化学,2010,10(5):12-16.
    [83]陈祝年.焊接工程师手册[M].北京:机械工业出版社,2002.
    [84]王笑天.金属材料学[M].北京:机械工业出版社,1987.
    [85]赵忠,丁仁亮,周而康.金属材料及时效处理第三版[M].北京:机械工业出版社,1998.
    [86]肖纪美.不锈钢的金属学问题[M].北京:冶金工业出版社,1983.
    [87]王立刚,王来,黄明亮,等.Cr6Mn13Ni10/Cr5Mo异质接头时效过程中碳的扩散行为[J].金属学报,1999,35(8):883-887.
    [88]孙咸.不锈钢焊条脱渣性影响因素研究[J].焊接,1994,5(8):2-6.
    [89]吕文广,章应霖,曹晟.过热器/再热器异质钢接头热应力分析与破口改进[J].武汉水利电力大学学报,1998,31(6):101-104.
    [90]吴军,李辛庚.火电厂焊接技术发展状况及展望[J].国际电力,2002,16(1):31-35.
    [91]岳增武,胡新芳,马翠花,等.TP304H与钢102异质钢接头失效分析[J].山东电力技术,2004,21(6):68-70.
    [92]肖正国.奥氏体不锈钢与珠光体耐热钢异质钢焊接研究[J].锅炉技术,1989,7(5):11-18.
    [93]李亚江,王娟,刘鹏.异质难焊接材料的焊接及应用[M].北京:化学工业出版社,2004.44-46.
    [94]章守华.合金钢.北京:冶金工业出版社,1981,10(5):212-240.
    [95]周晓辉,胡传顺,朱健,等.含铝钢焊接加工中的碳迁移问题[J].电焊机,2002,32(11):7-10.
    [96]许晓峰.焊缝针状铁素体中温转变机制的热力学分析[J].焊接学报,2007,7(5):61-64.
    [97]Cane B J. Inter granular creep-cavity form action in low alloy Bain tic steels[J]. Metals Science,2001,15(7):295-301.
    [98]杨世伯,潘春旭.焊后时效处理对奥氏体/珠光体钢接头熔合区断裂形态的影响[J].材料科学与工艺,1996,4(3):71-75.
    [99]靳红梅,任世宏.镍基合金在异质钢焊接中的应用[J].电焊机,2009,7(8):148-150.
    [100]赵世臣.常用金属材料手册[M].北京:冶金工业出版社,1987.
    [101]航空航天工业部科学技术研究院.复合材料设计手册[M].北京:航空航天出版社,1990.
    [102]胡德林.金属学原理[M].西安:西北工业大学出版社,1982.
    [103]DeWitt M. Investigation of a P-22/316transition joint in main steam piping division[J].1994,23(6):243-252.
    [104]Lund C D. Dissimilar metal welds-transition joints literature review[J]. Welding Journal,1982,61(2):585-635.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700