杨树人工林生态系统碳交换及其环境响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杨树是世界上广泛采用的人工造林树种之一,也是中国人工林面积最大的树种。研究大兴沙地杨树人工林生态系统碳交换在不同时间尺度上的动态格局及其强度特征,分析其对环境因子的响应是提高杨树人工林生态系统净生产力和进行碳汇造林等杨树人工林经营管理中首要考虑的问题之一。采用涡度相关系统、4气室Licor-8150土壤呼吸测定系统和小气候测定系统从2006-2009年对位于北京大兴区永定河沿河沙地欧美杨(欧美107,Populus×euramericana cv. "74/76")人工林生态系统的净生态系统碳交换(NEE)、生态系统呼吸(Re)、生态系统初级生产力(GEP)和土壤呼吸(Rs)以及环境气象因子进行了连续动态测定,分析研究表明:
     (1)2006~2009年,生态系统在生长季的半小时尺度上的能量闭合度分别为0.81、0.77、0.78和0.73,日尺度上的能量闭合度分别为0.95、0.87、0.92和0.81,能量闭合程度较好。
     (2)经过分离量化,2006~2009年,生态系统的NEE年总量分别为-403.72、-372.74、-790.10和-563.18 gCm-2yr-1GEP年总量分别为1384.79、1319.30、1653.68和1380.05 gCm-2yr-1;Re年总量在2006~2009年分别为981.07、946.68、863.58和817.30 gCm-2yr-1;Rs年总量在2007~2009年分别为642.11、629.29和609.05gCm-2yr-1
     (3)2006~2009年,其NEE生长季总量分别为-590.95、-640.62、-929.41和-664.50 gCm-2yr-1;GEP生长季总量分别为1270.46、1232.91、1568.81和1278.83gCm-2yr-1;Re生长季总量分别为679.51、592.41、639.41和614.34 gCm-2yr-1。
     (4)四年中,生长季NEE年际变化少于年NEE的年际变化,GEP的生长季总量与年总量比例均在90%以上,Re生长季总量占其年总量的比例分别为69.26%、62.58%、74.04%和75.17%。Rs年总量与Re年总量比值在2007~2009年中分别为67.83%、72.87%和74.52%。
     (5)光合有效辐射(PAR)是生长季白天半小时尺度上NEE的最主要影响因子,它能够解释46.8%-67.7%的生长季白天半小时尺度上的NEE变化。
     (6)在半小时尺度上,Ts5是影响生长季夜间Re的最主要因子,空气平均温度(Ta)是影响非生长季夜间Re变化的最主要因子。
     (7)Ts5是Rs的主要影响因子;而Re相对于Rs更受到Ts5和0~20cm土壤体积含水量(vwc)耦合效应的影响,且vwc相对于Ts5更能够影响Re。
Poplar is one of the most widely used afforestation species in the world, and occupies the larg-est area of plantations in China. It is critically important to determine the carbon exchange as im-pacted by environmental factors at different time scales for managing poplar plantations to improve the productivity and carbon sequestration functionality. Net ecosystem exchange (NEE), gross eco-system production (GEP), ecosystem respiration (Re) that of the carbon exchange, and meteorologi-cal factors of a Populus×euramericana cv. "74/76" plantation located on the floodplain of Yong-ding River in Daxing District, Beijing, were measured by using an eddy covariance system and a microclimate measurement system from 2006 to 2009, respectively. Furthermore, soil respiration (Rs), was measured by a4-channel soil respiration measurement system (Li-8150, Li-Cor, NE) in the poplar plantation ecosystem from 2007 to 2009. The variations of NEE, GEP, Re, Rs and their re-sponses to environmental factors were analyzed and discussed in the paper.
     (1) The degree of energy closure was shown a better result in the data quality. It was 0.81,0.77, 0.78 and 0.73 at half-hourly scale that compared it was 0.95,0.87,0.92 and 0.81 at daily scale in the growing seasons from 2006 to 2009, respectively.
     (2) Annual NEE was-403.72,-372.74,-790.10 and-563.18 gCm-2yr-1from 2006 to 2009, re-spectively, which compared to-590.95,-640.62,-929.41 and -664.50 gCm-2yr-1 for the comulated NEE during the four growing seasons. The inter-annual variation of comulated during the growing seasons was more than that of total year.
     (3) The comulated GEP over the four growing seasons was 1270.46,1232.91,1568.81 and 1278.83 gCm-2yr-1 from 2006 to 2009, which was part of 1384.79,1319.30,1653.68 and 1380.05 gCm-2 yr-1 over the four total years, respectively. The ratio of comulated GEP over the four growing seasons to annual GEP was more than 90% in the four years.
     (4) Annual Re was 981.07,946.68,863.58 and 817.30 gCm-2 yr-1, and comulated Re during the four growing seasons was 679.51,592.41,639.41 and 614.34 from 2006 to 2009, respectively. The ratio of comulated Re during the four growing seasons to annual Re was 69.26%,62.58%,74.04% and 75.71%.
     (5) Annual Rs was 642.11,629.29 and 609.05 gCm-2yr-1from 2007 to 2009, respectively, and the ratio of annual Rs to annual Re was 67.83%,72.87%and 74.52%in the three years,.
     (6) The most significant pertinence associated with NEE was PAR, which can explain about 46.8%~67.7% of the variation at half-hourly scale in daytime during the growing seasons.
     (7) Ts5 was the most significant factor for Re at half-hourly scale at night over the growing seasons, while in the non-growing seasons, the most significant pertinence associated with Re was Ta at night.
     (8) Re was serious affected by disease and insect or drought stress, but it was obsolete for Rs. Re and Rs were mainly controlled by Ts5, but Rs was more responsive to Ts5 than Re. Re was more affected by vwc than Rs.
引文
[1]崔骁勇,陈佐忠,陈四清.2001.草地土壤呼吸研究进展.生态学报,21(2):315-326.
    [2]方精云,朴世龙,赵淑清.2001.CO2失汇与北半球中高纬度陆地生态系统的碳汇.植物生态学报,25(5):594-602.
    [3]冯宗炜,王效科,吴刚.1999.中国森林生态系统的生物量和生产力.北京,科学出版社.
    [4]高志强,刘纪远,曹明奎,等.2004.土地利用和气候变化对农牧过渡区生态系统生产力和碳循环的影响.中国科学D辑地球科学,34(10):946-957
    [5]国家林业局森林资源管理司.中国森林资源第七次清查结果及其分析,66-72页.
    [6]韩帅,张旭东,黄玲玲,王昭艳,魏远.长江安庆段河流湿地生态系统呼吸及其影响因子.生态学报,2009,29(7):3621-3628.
    [7]康惠宁,马钦彦,袁嘉祖.1996,中国森林c汇功能基本估计[J].应用生态学,7(3):230-234.
    [8]李凌浩,陈佐忠.1998.草地群落的土壤呼吸.生态学杂志,17(4):45-51.
    [9]李凌浩,王其兵,白永飞,等.2000.锡林河流域羊草草原群落土壤呼吸及其影响因子的研究.植物生态学报,24(6):680-686.
    [10]刘绍辉,方精云.1997.土壤呼吸的影响因素及全球尺度下温度的影响.生态学报,]7(5):469-476.
    [11]刘允芬,宋霞,刘琪璟,陈永瑞,沈艳.2003.亚热带红壤丘陵区非均匀地表能量通量的初步研究[J].江西科学,21(3):183-189.
    [12]彭镇华,王妍,任海青,孙启祥,周金星.2009.安庆杨树林生态系统碳通量及其影响因子研究.林业科学研究,22(2):237-242.
    [13]王春林,周国逸,唐旭利,王旭,周传艳,于贵瑞,唐力生,孟泽.鼎湖山针阔叶混交林生态系统呼吸及其影响因子.生态学报,2007,27(7):2659-2668.
    [14]王效科,冯宗炜,欧阳志云.2001.中国森林生态系统的植物碳蓄积量和碳密度研究.生态学报,12(1):13-16.
    [15]魏远,2008.湖南岳阳杨树人工林生态系统碳通量观测研究.中国林业科学研究院.
    [16]杨景成,韩兴国,黄建辉,等.2003.土地利用变化对陆地生态系统碳贮量的影响.应用生态学报,14(8):1385-1390.
    [17]叶笃正,符淙斌.全球变化的主要科学问题.1994.大气科学,18(4):498-512
    [18]于贵瑞,孙晓敏.2006.陆地生态系统通量观测的原理和方法.北京,高等教育出版社.
    [19]于贵瑞.2003.全球变化与陆地生态系统碳循环和碳蓄积.北京,气象出版社.
    [20]张雷明,于贵瑞,孙晓敏,等.2006.中国东北森林样带典型生态系统碳收支的季节变化.中国科学,D辑,(增刊1):84-94.
    [21]张丽华,陈亚宁,赵锐锋,李卫红,谢忠奎.2010.干旱区杨树、榆树人工防护林地土壤CO2释放通量研究.植物生态学报,34(5):526~534.
    [22]郑泽梅,于贵瑞,孙晓敏,曹广民,王跃思,杜明远,李俊,李英年.涡度相关法和静态箱/气相色谱法在生态系统呼吸观测中的比较.应用生态学报,2008,19(2):290-298.
    [23]周广胜,王玉辉,蒋延玲,等.2002.陆地生态系统类型转变与碳循环.植物生态学报,26(2):250-254.
    [24]周广胜,张新时.1996.植被对于气候的反馈作用.植物学报,38:193-200.
    [25]周广胜.2003.全球碳循环.北京,气象出版社.
    [26]Anderson DE, Verma SB, osenberg NJ. Eddy correlation measurements of CO2, latent heat and sensible heat fluxes over a crop surface. Boundary Layer Meteorology,1984,29:167-183.
    [27]Anderson DE, Verma SB. Carbon dioxide, water vapor and sensible heat exchanges of a grain sorghum canopy. Boundary Layer Meteorology,1986,34:317-331.
    [28]Anthoni PM, Law BE, Unsworth MH. Carbon and water vopor exchange of an open-canopied ponderosa pine ecosystem. Agricultural and Forest Meteorology,1999,95:115-168.
    [29]Atjay GL, Ketner P, Duvigneaud P. Terrestrial primary production and phytomass. The Global Carbon Cycle. John Wiley and Sons, Chichester,1979,129-181.
    [30]Aubinet M, Chermanne B, Vandenhaute M, et al., Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes. Agricultural and Forest Meteorology,2001,108(4): 293-315.
    [31]Aubinet M, Grelle A, Ibrom A, et al., Estimates of the annual net carbon and water exchange of forests:The EUROFLUX methodology. Advances in Ecological Research,2000,30:113-175.
    [32]Baldocchi DD, Falge E, Gu LH, et al., FLUXNET:A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society,2001,82:2415-2434.
    [33]Baldocchi DD, Wilson K, et al., Finnigan J. On measuring net ecosystem carbon exchange over tall vegetation on complex terrain. Boundary Layer Meteorology,2000,96:257-291.
    [34]Baldocchi DD, Hicks BB, Meyers TT. Measuring biosphere-atmosphere exchange of biologi-cally related gases with micro meteorologically methods. Ecology,1988,69:1331-1340.
    [35]Baldocchi DD, Vogel CA. Energy and CO2 flux densities above and below a temperate broad leaved forest and a boreal pine forest. Tree Physiology,1996,16(1-2):5-16.
    [36]Baldocchi DD. Assessing the eddy covariance technique for evaluating carbon dioxide ex-change rates of ecosystem:Past, Present and future. Global Change Biology,2003,9:479-492.
    [37]Baldocchi DD. Breathing of the terrestrial biosphere:lessons learned from a global network of carbon dioxide flux measurement systems. Australian Journal of Botany,2008,56(1):1-26.
    [38]Barr AG, Black TA, Hogg EH, Griffiss TJ, Morgenstern K, Kljun N, Theede A, Nesic Z. Cli-matic controls on the carbon and water balances of a boreal aspen forest,1994-2003. Global Change Biology,2007,13(3),561-576.
    [39]Barr AG, Griffis TG, Black TA, Lee X, Staebler RM, Fuentes JD, Chen Z, Morgenstern K. Comparing the carbon budgets of boreal and temperate deciduous forest stands [J]. Canadian Journal of Forest Research,2002,32:813-822.
    [40]Barr AG, King KM, Gillespie TJ, Den Hartog G, Neumann HH. A comparison of Bowen ratio and eddy correlation sensible and latent heat flux measurements above deciduous forest [J]. Boundary Layer Meteorology,1994,71:21-41.
    [41]Barr AG, King KM, Gillespie TJ, Den Hartog G, Neumann HH. Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the meas-urement of the CO2 flux. Agricultural and forest Meteorology,2006,140:322-337.
    [42]Barr AG, Van der Kamp G, Schmidt R, Black TA. Monitoring the moisture balance of a boreal aspen forest using a deep groundwater piezometer [J]. Agricultural and forest Meteorology, 2000,102:13-24.
    [43]Barron-Gafford G, Martens D, Grieve K, Biel K, Kudeyarov V, McLain JET, Lipson D, Murthy R. Growth of eastern cottonwoods (Populus deltoides) in elevated CO2 stimulates stand-level respiration and rhizodeposition of carbohydrates, accelerates soilnutrient depletion, yet stimu-lates above and belowground biomass production. Global Change Biology,2005, 11:1220-1233.
    [44]Baumgartner A. Meteorological approach to the exchange of CO2 between atmosphere and vegetation, particularly forests stands. Photosynthetica,1969,3:127-149.
    [45]Betts RA, Cox PM, Woodward Fl. Simulated responses of potential vegetation to doubled-CO2 climate change and feedbacks on near-surface temperature. Global Ecology and Biogeography, 2000,9(2):171-180.
    [46]Bingham GE, Gillespie CH, McQuaid JH. Development of a miniature, rapid response CO2 sensor.1978, Lawrence Livermore National Laboratory Report UCRL-52440.
    [47]Black TA, den Hartog G, Neumann H, et al., Annual cycles of CO2 and water vapor fluxes above and within a Boreal aspen stand. Global Change Biology,1996,2:219-230.
    [48]Blanken PD, Black TA, Neumann HH, Denhaktog G, Yang PC, Staebler R, Chen W, Novak MD. Turbulent flux measurements above and below the overstory of a boreal aspen forest. Boundary Layer Meteorology,1998,89:109-140.
    [49]Bowden RD, NewkirkK M, Rullo GM. Carbondioxide and methane fluxes by a forest soil un-derlaboratory-controlled moisture and temperature conditions. Soil Biology and Biochemistry, 1998,30(12):1591-1597.
    [50]Brach EJ, Desjardins RL, St Amour GT. Open path CO2 analyser. Journal of Physics and Earth Science Instrumentation,1981,14:1415-1419.
    [51]Cai CX. Advance in Researching Net Primary Productivity and Its Response to Climate Change. Bimonthly of Xinjiang Meteorology,2003,6:1-8.
    [52]Ciais P, Reichstein M, Viovy N, et al., Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature,2005,437(7058):529-533.
    [53]Cox PM, Betts RA, Jones CD, et al., Acceleration of global warming due to carbon-cycle feed-backs in a coupled climate model. Nature,2000,408:184-187.
    [54]Cox PM, Betts RA, Jones CD, et al., Acceleration of global warming due to carbon-cycle feed-backs in a coupled climate model. Nature,2000,408:184-187.
    [55]Davidson EA, Verchot LV, Cattaanio JH, et al., Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry,2000,48:53-69.
    [56]Denmead OT. Comparative micrometeorology of a wheat field and a forest of Pinus radiata. Agricultural and Forest Meteorology,1969,6:357-371.
    [57]Desjardins RL, Lemon ER. Limitations of an eddy covariance technique for the determination of the carbon dioxide and sensible heat fluxes. Boundary Layer Meteorology,1974,5:475-488.
    [58]Desjardins RL. A technique to measure CO2 exchange under field conditions. International Journal of Biometeorology,1974,18:76-83.
    [59]Desjardins RL. Carbon dioxide budget of maize. Agricultural and Forest Meteorology,1985,36: 29-41.
    [60]Dixon RK, Brown S, Houghton RA, et al., Carbon pool and flux of global forest ecosystems [J]. Science,1994,263:185-190.
    [61]Falge E, Baldocchi DD, Olson R, et al., Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology,2001,107(1):43-69.
    [62]Falge E, Tenhunen J, Baldocchi DD, et al., Phase and amplitude of ecosystem carbon release and uptake potentials as derived from FLUXNET measurements. Agricultural and Forest Mete-orology,2002,113(1-4):75-95.
    [63]Fan SM, Wofsy SC, Bakwin PS. Atmosphere biosphere exchange of CO2 and O3 in the central Amazon forest. Journal of Geophysical Research,1990,95:16851-16864.
    [64]Fang C, Moncrieff JB. A model for soil CO2 production and transport:Model development. Ag-ricultural and Forest Meteorology,1999,95:225-236.
    [65]Fang C, Moncrieff JB. The dependence of soil CO2 efflux on temperature. Soil Biology Bio-chemistry,2001,33:155-165.
    [66]Fang JY, Pu SL, Zhao PQ. The terrestrial carbon cycle:implications for Kyoto protocol. Sci-ence,1998,280:1393-1394.
    [67]FAO. Global forest resources assessment,2010-Main Report.2010a, FAO Forestry Paper 163. Rome, Italy. (Also available at www.fao.org/forestry/fra/fra2010/en/).
    [68]FAO. Reforming forest tenure:issues, principles and process.2011, FAO Forestry Paper. Rome, Italy (in press).
    [69]Foken T, Oncley S. Workshop on Instrumental and Methodical Problems of Land-Surface Flux Measurements. Bulletin of the American Meteorological Society,1995,76(7):1191-1193.
    [70]Foken T, Wichura B. Tools for quality assessment of surface based flux measurements. Agri-cultural and Forest Meteorology,1996,78:83-105.
    [71]Foken T. The energy balance closure problem:an overview [J]. Ecological applications,2008, 18(6):1351-1367.
    [72]Fu YL, Yu GR, Sun XM, et al., Depression of net ecosystem CO2 exchange in semi-arid Ley- mus chinensis steppe and alpine shrub. Agricultural and Forest Meteorology,2006,137(3-4): 234-244.
    [73]Gielen B, Calfapietra C, Lukac M, Wittig VE, De Angelis P, Janssens I A, Moscatelli MC, Grego S, Cotrufo MF, Godbold DL, Hoosbeek MR, Long SP, Miglietta F, Polle A, Bernacchi CJ, Davey PA, Ceulemans R, Scarascia Mugnozza GE. Net carbon storage in a poplar planta-tion (POPFACE) after three years of free-air CO2 enrichment. Tree Physiology,2005,25: 1399-1408.
    [74]Gielen B, Calfapietra C, Sabatti M, Ceulemans R. Leaf area dynamics in a closed poplar planta-tion under free-air carbon dioxide enrichment. Tree Physiology,2001,21:1245-1255.
    [75]Gielen B, Ceulemans R. The likely impact of rising atmospheric CO2 on natural and managed Populus:a literature review. Environmental Pollution,2001,115:335-358.
    [76]Gilmanov TG, Soussana JE, Aires L, et al, Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response func-tion analysis. Agriculture Ecosystems and Environment,2007,121(1-2):93-120.
    [77]Gilmanov TG, Soussana JE, Aires L, et al, Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response func-tion analysis. Agriculture Ecosystemsand Environment,2007,121 (1-2):93-120.
    [78]Goldstein AH, Hultman NE, Fracheboud JM, Bauer MR, Panek JA, Xu M, Qi Y, Guenther AB, Baugh W. Effects of climate variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa pine plantat ion in the Sierra Nevada (CA)[J]. Agricultural and Forest Mete-orology,2000,101:113-129.
    [79]Goulden ML, Munger J W, Fan SM, et al., Exchange of carbon dioxide by a decidous forest re-sponse to interannual climate varability. Science,1996a,271:778-780.
    [80]Goulden ML, Munger J W, Fan SM, et al., Measurements of carbon sequestration by long-term eddy covariance:Methods and a critical evaluation of accuracy. Global Change Biology,1996, 2(3):169-182.
    [81]Grace J, Jose SJ, Meir P, et al., Productivity and carbon fluxes of tropical savannas. Journal of Biogeography,2006,33:387-400.
    [82]GReco S, Baldocchi D. Seasonal variations of CO2 and water vapour exchange rates over a temperate deciduous forest. Global Change Biology,1996.2:183-198.
    [83]Griffis TJ, Black TA, Morgenstern K, et al., Ecophysiological controls on the carbon balances of three southern boreal forests. Agricultural and Forest Meteorology,2003,117(1-2):53-71.
    [84]Hanson PJ, Wullschleger SD, Bohlman SA, et al., Seasonal and topographic patterns of forest floor CO2 efflux from an upland oak forest. Tree Physiology,1993,13:1-15.
    [85]He J K, Liu B, Chen Y, et al., National Assessment report of Climate Change (Ⅲ):Integrated evaluation of strategies on response to climate change in China. Advances in Climate Change research,2006,2(4):147-153.
    [86]Hollinger DY, Goltz SM, Davidson EA, Lee JT, Tu K,Valent ine HT. Seasonal patterns and environmental control of carbon dioxide and water vapour exchange in an ecotonal boreal forestm [J]. Global Change Biology,1999,5:891-902.
    [87]Houghton RA. Balancing the Global Carbon Budget. Annual Review of Earth and Planetary Sciences,2007,35:313-347.
    [88]IPCC. Summary for Policymakers of Climate Change 2007:The Physical Science Basis. Con-tribution of Working Group 1 to the Fourth Assessment report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press,2007 (in Press).
    [89]Janssens IA, Lankreijer H, Matteucci G, Kowalski AS, Buchmann N, Epro D, Pilegaard K, Kutsch W, Longdoz B, Grunwald T, Montagnani L, Dore S, rebmann C, Moors EJ, Grelle A, Rannik U, Morgenstern K, Oltchev S, Clement R, Guomundsson J, Minerbi S, Berbigier P, Ibrom A, Moncrieff J, Aubinet M, Bernhofer C, Jensen NO, Vesala T, Granier A, Schulze ED, Lindroth A, Dolman AJ, Jarvis PG, Ceulemans R,Valentini R. Productivity overshadows tem-perature in determining soil and ecosystem respiration across European forests. Global Change Biology,2001,7 (3):269-278.
    [90]Jarvis PG, James GB, Landsberg JJ. Coniferous forest vegetation and the Atmosphere.1976, Academic Press, London.
    [91]Jia ZJ, Song CC, Wang YS, HuangY, Shi LQ. Studies on evapotranspirat ion over Mire in the Sanjiang Plain [J]. Climatic and Environmental Research,2007,12(4),496-503.
    [92]Jobbagy EG, Jackson RB. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Application,2000,10:423-436.
    [93]Jones EP, Zwick H, Ward TV. A fast response atmospheric CO2 sensor for eddy correlation flux measurement. Atmospheric Environment,1978,12:845-851.
    [94]Kaimal JC, Finnigan JJ. Atmospheric boundary layer flows:their struceture and measurement. 1994, Oxford press, New York.
    [95]Kaimal JC, Wyngarrd JC. The Kansas and Minnesota experiment. Boundary-Layer Meteorolo-gy,1990,52:135-149.
    [96]Keith H, Jacobsen KL, Raison RJ. Effects of soil phosphorus availability, temperature and moisture on soil respiration in Eucalyptus pauciflora forest. Plant Soil,1997,190(1):127-141.
    [97]Kim HS, Oren R, Hinckley TM. Actual and potential transpiration and carbon assimilation in an irrigated poplar plantation. Tree Physiology,2008,28:559-577.
    [98]Kim J, Verma SB. Carbon dioxide exchange in a temperate grassland ecosystem. Boundary Layer Meteorology,1990,52:135-149.
    [99]Law BE, Falge E, Gu L, et al., Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology,2002,113(1-4): 97-120.
    [100]Lee XH. On micrometeorological observation of surface-air exchange over tall vegetation. Agricultural and Forest Meteorology,1998,91:39-49.
    [101]Lee XH, Massman W, Law B. Handbook of Micrometeorology. Kuwer Academic Publishers, 2004.
    [102]Lenschow DH. Micrometeorological techniques for measuring biosphere-atmosphere trace gas exchange. BiogenicTrace Gases:Measuring Emissions from Soil and Water.1995, Blackwell, London.
    [103]Leuning R. Measurements of trace gas fluxes in the atmosphere using eddy covariance:WPL correct ions revisited. In:Handbook of mirometeorology. A guide to surface flux measurement and analysis eds Lee X, Massman WJ and Law BE, pp.2005.29:119-132.
    [104]Li ZQ, Yu GR, Wen XF, Zhang LM, Re CY, Fu YL. Energy balance closure at ChinaFLUX sites [J]. Science in China Series D:earth Sciences,2005,48:51-62.
    [105]Lloyd J, Taylor JA. On the temperature dependence of soil respiration. Functional Ecology, 1994,8:315-323.
    [106]Mahrt L. Flux sampling errors for air craft and towers. Journal of Atmospheric and ocean technology,1998,15:416-429.
    [107]Massman WJ, Lee X. Eddy covariance flux corrections and uncertainties in long term studies of carbon and energy exchanges. Agricultural and Forest Meteorology,2002,113:121-144.
    [108]McMillen RT. An eddy correlation technique with extended applicability to non-simple terrain. BoundLayer Meteorology,1998,43:231-245.
    [109]Michaelis L. The kenetics of the inversion effect. Biochemische Zeitschrift,1913,49: 333-337.
    [110]Migliavacca M, Meroni M, Manca G, Matteucci G, Montagnani L, Grassi G, Zenone T, Teo-baldelli M, Goded I, Colombo R. Seasonal and interannual patterns of carbon and water fluxes of a poplar plantation under peculiar eco-climatic conditions. Agricultural and Forest Meteor-ology,2009,149(9),1460-1476.
    [111]Moncrieff JB, Mahli Y, Leuning R. The propagation of errors in long term measurements of land atmosphere fluxes of carbon and water. Global Change Biology,1996,2:231-240.
    [112]Noormets A, Chen JQ, Crow TR. Age-dependent changes in ecosystem carbon fluxes in man-aged forests in northern Wisconsin. USA. Ecosystems,2007,10:187-203.
    [113]Noormets A, Desai A, Cook BD, Ricciuto DM, Euskirchen ES, Davis K, Bolstad P, Schmid HP, Vogel CS, Carey EV, Su HB, Chen JQ. Moisture sensitivity of ecosystem respiration:com-parison of 14 forest ecosystems in the Upper Great Lakes Region, USA. Agricultural and Forest Meteorology,2008,148:216-230.
    [114]Noormets A. http://www4.ncsu.edu/-anoorme/ECP/.2008.
    [115]Otaki E, Matsui T. Infrared device for simultaneous measurements of fluctuations of atmos-pheric CO2 and water vapor. Boundary Layer Meteorology.1982,24:109-119.
    [116]Otaki E. Application of an infrared carbon dioxide and humidity instrument to studies of tur-bulent transport. Boundary Layer Meteorology,1984,29:85-107.
    [117]Post W. Soil carbon pools and wold life zones. Nature,1982,298:156-159.
    [118]Raupach MR. Anomalies in flux-gradient relationships over forests. Boundary Layer Meteor-ology,1979,16:467-486.
    [119]Reichstein M, Tenhunen JD, Roupsard O, et al., Ecosystem respiration in two Mediterranean evergreen Holm Oak forests:drought effects and decomposition dynamics. Functional Ecology, 2002,16:27-39.
    [120]Reynolds 0. On the dynamical theory of incompressibleviscous fluids and the determination of criterion.1895, Philosophical Transactions of Royal Society of London.
    [121]Running SW, Baldocchi DD, Turner DP, et al., A global terrestrial monitoring network inte-grating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote sens-ing of Environment,1999,70:108-127.
    [122]Schmid HP, Grimmond CSB, Cropley F, Offerle B, Su HB. Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States [J]. Agricultural and Forest Meteorology,2000,103:357-374.
    [123]Scrase FJ. Some Characteristics of Eddy Motion in the Atmosphere, Geophysical, Memoirs. 1930, Meteorological Office, London.
    [124]Serrano-Ortiz P.Variations in daytime net carbon and water exchange in a montane shrubland ecosystem in southeast Spain. Photosynthetica,2007,45(1):30-35.
    [125]Simpson IJ, Thurtell GW, Neumann HH, et al. The validity of similarity theory in the rough-ness sublayer above forests. Boundary Layer Meteorology,1998,87:69-99.
    [126]Sjogersten S, Wookey PA. Climatic and resource quality controls on soil respiration across a forest-tundra ecotone in Swedish Lapland Soilbiology and Bochemistry,2002,34:1633-1646.
    [127]Swinbank WC. Measurement of vertical transfer of heat and water vapor by eddies in the low-er atmosphere. Journal of Meteorology,1951,8:135-145.
    [128]Tang JW, Bolstad PV, Desai AR, Matin JG, Cook BD, Davis KJ, Carey EV Ecosystem respi-ration and its components in an old-growth forest in the Great Lakes region of the United States. Agricultural and forest meteorology,2008,148(2):171-185.
    [129]Tanner C, Turtell GW. Anemoclinometer measurement of reynold stress and heat transport in the atmospheric surface layer. Department of soil Science, Research and Development Tech-nique Report ECOM-66-G22-F to the US Army Command.1969, University of Wisconsin.
    [130]Twine TE, Kustas WP, Norman JM, Cook DR, Houser PR, Meyers TP, Prueger JH, Starks PJ, Wesely M L. Correcting eddy-covariance flux underestimates over a grassland [J]. Agricultural and Forest Meteorology,2000,103:279-300.
    [131]Valentini R,De Angelis P, Matteucci G, et al., Seasonal net carbon dioxide exchange of a beech forest with the atmosphere. Global Change Biology,1996,2:99-208.
    [132]Valentini R, Matteucci G, Dolman AJ, et al., Respiration as the main determinant of carbon balance in European forests. NatuRe,2000,404:861-865.
    [133]Valentini R, Scarascia Mugnozza GE, deAngelis P, et al., An experimental test of the eddy correlation technique over a Mediterranean macchia canopy. Plant, Cell and Environment,1991, 14:987-994.
    [134]Verma SB, Baldocchi DD, Anderson DE, et al., Eddy fluxes of CO2, water vapor, and sensible heat over a deciduous forest. Boundary Layer Meteorology,1986,36:71-91.
    [135]Verma SB, Baldocchi DD, Anderson DE, et al., Eddy fluxes of CO2, water vapor, and sensible heat over a deciduous forest. Boundary Layer Meteorology,1986,36:71-91.
    [136]Verma SB, Kim J, Clement RJ. Carbon dioxide, water vapor and sensible heat fluxes over a tall grass prairie. Boundary Layer Meteorology,1989,46:53-67.
    [137]Vickers D, Mahrt L. Quality control and flux sampling problems for tower and aircraft data. Journal of Atmospheric and ocean technology,1997,14:512-526.
    [138]Webb EK, Pearman GI, Leuning R. Corrections of flux measurements for density effects due to heat and water vapor transfer. Quart. J. R. Meteorol. Soc,1980,106:85-100.
    [139]Wesely ML, Cook DR, Hart RL. Fluxes of gases and particles above a deciduous forest in wintertime. Boundary Layer Meteorology,1983,27:237-255.
    [140]Wilczark JM, Oncley SP, Stage SA. Sonic anemometertilt correction algorithms. Boundary Layer Meteorology,2001,99:127-150.
    [141]Wilson K, Baldocchi DD. Seasonal and interannual variability of energy fluxes over a broad-leaved temperate deciduous forest in North America [J]. Agricultural and Forest Meteor-ology,2000,100:1-18.
    [142]Wilson K, Goldstein A, Falge E, et al., Energy balance closure at FLUXNET sites. Agricultur-al and Forest Meteorology,2002,113(1-4):223-243.
    [143]Wittig VE, Bernacchi CJ, Zhu XG, Calfapietra C, Ceulemans R, Deangelis P, Gielen B, Miglietta F, Morgan PB, Long SP. Gross primary production is stimulated for three Populus species grown under free-air CO2 enrichment from planting through canopy closure. Global Change Biology,2005,11:644-656.
    [144]Wofsy SC, Goulden ML, Munger J W, et al., Net exchange of CO2 in a mid-latitude forest. Science,1993,260:1314-1317.
    [145]Xu LK, Baldocchi DD. Seasonal variation in carbon dioxide exchange over Mediterranean annual grassland in California. Agricultural and Forest Meteorology,2004,123(1-2):79-96.
    [146]Yamamoto S, Murayama S, Saigusa N, et al., Seasonal and interannual variation of CO2 flux between a temperate forest and the atmosphere in Japan. Tellus, B,1999,51:147-571.
    [147]Yu GR, Fu YL, Sun XM, Wen XF, Zheng LM. Recent progress and future directions of China FLUX. Science in China Ser D. Earth Sciences,2006,49 (SuppⅡ):1-23.
    [148]Yu GR, Zhang LM, Sun XM, Li ZQ, Fu YL. Advances in carbon flux observation and research in Asia. Science in China Ser D. Earth Sciences,2004,34 (Supp Ⅱ):15-29.
    [149]Zhou J, Wang CX, Li X, Yang YM, Pan XD. Energy water balance of Meadow ecosystem in cold frozen soil areas [J]. Journal of Glaciology and Geocryology,2008,30(3):398-408.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700