酯交换法碳酸二苯酯合成工艺与催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了基于碳酸二甲酯与苯酚酯交换反应的碳酸二苯酯合成方法的类水滑石催化剂和加压酯交换-减压歧化二步法合成工艺。
     类水滑石催化剂对苯酚与碳酸二甲酯酯交换合成碳酸二苯酯反应的催化性能研究是在常压条件下进行的。在课题组前期工作的基础上,通过对影响类水滑石催化剂酯交换选择性的各种因素的研究,发现层间阴离子的碱性强弱对催化剂的选择性影响不大,影响类水滑石催化剂催化选择性的主要因素是催化剂制备过程中夹带的未洗净的强碱性沉淀剂。对此,针对性的优化了类水滑石催化剂的制备方法,使类水滑石催化剂的酯交换产物的选择性达到了95%,与前期工作相比提高了约12%。
     在优化的制备条件下,合成了多种不同阳离子类水滑石催化剂,用XRD、TG-DTA、FT-IR、BET对类水滑石催化剂进行了表征,测试了它们对苯酚与碳酸二甲酯酯交换反应的催化性能。研究结果表明,n(M2+)/n(M3+)=3的Mg/Fe类水滑石(Pyroaurite)的综合催化性能最好。在Mg/Fe原子比为3:1、苯酚与碳酸二甲酯的摩尔比为2:1、催化剂的质量分数为原料总质量的1.5%、反应时间8h的优化实验条件下,碳酸二甲酯的转化率达到61.5%,碳酸甲苯酯和碳酸二苯酯的产率分别达到43.7%和13.9%,酯交换产物的选择性达到93.7%。在实验研究的范围内(4次),Mg/Fe类水滑石的催化活性保持稳定不变。
     通过对类水滑石催化剂的催化性能与其结构和组成之间的关系的研究,发现三价阳离子的极化力大小影响类水滑石催化剂的活性高低,二价阳离子的极化力大小则影响其使用寿命长短:M3+的极化力大,类水滑石催化活性较好;M2+的极化力小,负离子配位八面体的层板结构稳定,类水滑石催化剂使用寿命长。通过对类水滑石催化剂失活原因以及再生方法的研究,发现类水滑石催化剂的特征层状结构是其具有催化活性的关键:层状结构稳定,催化剂使用寿命长;层状结构垮塌,催化活性随之消失。对于活性降低或已失活的类水滑石催化剂可以通过结构重建的方法再生。
     在课题组前期工作的基础上,依靠课题组自行研制的加压精馏反应釜,系统研究了苯酚与碳酸二甲酯酯交换合成碳酸二苯酯技术的加压酯交换-减压歧化二步法工艺,找到了工艺控制的关键点。工艺研究之始,就考虑了小试技术放大的可行性,各个工艺步骤基本按照产业化技术要求设置。在反应温度180℃、压力1.OMPa、反应时间6h、钛酸丁酯催化剂用量为苯酚质量的3%的优化工艺条件下,苯酚的单程转化率达到82%,碳酸二苯酯的单程分离收率达到44%,选择性大于99%,且钛酸丁酯催化剂在整个工艺过程中的催化性能稳定,分离损失小,能够循环套用。
The Hydrotalcite-like catalysts and the transesterification-disproportionation two-step synthetic technology for the synthesis of diphenyl carbonate by transesterification from phenol and dimethyl carbonate were studied in this paper.
     The catalytic performance of hydrotalcite-like catalysts for transesterification between phenol and dimethyl carbonate was investigated under normal pressure. Based on the group's former research work, various effects affecting the selectivity of hydrotalcite-like catalyst for transesterification products were investigated. It was found that the basic strength of the interlayer organic anions has little influence on the selectivity of hydrotalcite-like catalysts. The main effect affecting the selectivity of hydrotalcite-like catalyst for transesterification productsis is the remained basic co-precipitation agent (NaOH) in the catalyst preparation process. Therefore, by improvement of the hydrotalcite-like catalyst's preparation procedure, the catalyst selectivity for transesterification products reached about 95%, at least 12% higher than the group's former result.
     Various hydrotalcite-like catalysts with different combinations of cations were synthsized under the optimal preparation procedure, and characterized by XRD, TG-DTA, FT-IR and BET method. The catalytic performances of these synthtic hydrotalcite-like catalysts were tested for the transesterification reaction between dimethyl carbonate and phenol. It was found that the Mg/Fe-CO3 hydrotalcite-like catalysts (Pyroaurite) with the atomic ratio n(M2+)/n(M3+)=3 had the best catalytic performance. Under the optimal reaction condition of Mg/Fe atomic ratio of 3:1, n(phenol):n(DMC)=2:1, the mole of phenol=0.5, w(cat.)=1.5% of the total mass of phenol and DMC, time=9h, the conversion of DMC reached 61.5%, and the yields of diphenyl carbonate and methyl phenyl carbonate were 13.9% and 43.7%, respectively. The catalyst's reuse experiment indicates that Pyroaurite catalyst can be recycled, seperated and regenerated easily within the scope of this study (4 runs).
     The relation between the catalytic performance and the structure and components of the hydrotalcite-like catalysts were investigated. It was found that the catalytic performance of the hydrotalcite-like catalysts is related to the character of involved cations. While the catalytic activity was influenced by trivalent cations, the life time of catalysts was influenced by divalent cations. From the investigation of the reason for the deactivation of hydrotalcite-like catalysts, it was found that the characteristic layered structure of the hydrotalcite-like catalysts was the key factor to their catalytic activities. Once the layered structure collapsed, the activities were lost. But the catalytic activity can be recovered by the structure reconstruction of the hydrotalcite-like compounds. These research results provide a theoretical foundation for the advancement of the catalytic performance of hydrotalcite-like catalysts.
     Based on the group's former research, the transesterification-disproportionation two-step synthetic technology was studied using the self-made pressured reactive distillation reactor. Applying two-step process to the synthesis of diphenyl carbonate by the dimethyl carbonate's phenolic transesterification, under the optimal reaction condition of 180℃, 1.0MPa, w%(cat./phenol)=3,6 h, the conversion per pass of phenol reached 82%, and the isolated yield per pass of diphenyl carbonate reached 44%. The catalyst's reuse experiment shows that Ti(OBu)4 is a stable, recyclable catalyst for the synthesis of diphenyl carbonate using the transesterification-disproportionation two-step process.
引文
[1]朱清时.绿色化学与可持续发展.中国科学院院刊,1997,6:415-420.
    [2]Pietro Tundo1, Paul Anastas, David StC. Black, et al. Synthetic pathways and processes in green chemistry. Introductory overview. Pure Appl. Chem.,2000, 72(7):1207-1228.
    [3]R.J. Farrauto, R.M. Heck. Environmental catalysis into the 21st century. Catalysis Today.2000,55:179-187.
    [4]Paul T. Anastas, Lauren B. Bartlett, Mary M. Kirchhoff, Tracy C. Williamson. The role of catalysis in the design, development, and implementation of green chemistry.2000,55:11-22.
    [5]孙欲晓,关俊超,周占发.聚碳酸酯生产及市场分析.塑料工业,2010,38(8):1-4.
    [6]李亚男,吴博.聚碳酸酯完全无光气合成技术的研究动态.塑料工业,2002,30(2):4-7.
    [7]钱伯章.聚碳酸酯的技术发展及国内外市场分析.国外塑料,2007,25(6):44-57.
    [8]梅付名,李光兴,莫婉玲.碳酸二苯酯的合成工艺进展.现代化工,1999,19(5):13-15.
    [9]Michele Aresta, Chiara Berloco, Eugenio Quaranta. Synthesis of N-aryl carbamate esters from arylamines and organic carbonates promoted by phosphorus acids. Tetrahedron,1995,51(29):8073-8088.
    [10]Moriyuki Sato, Atsumi Kogawa. Preparation and thermal properties of semi-rigid homopoly(imide-carbonate)s composed of symmetric aromatic diimide units using diphenyl carbonate. European Polymer Journal,2001,37:1151-1157.
    [11]N. Hirai, T. Kagayama, Y. Tatsukawa, S. Sakaguchi, Y. Ishii. Development of an efficient method for preparation of 1,3,5-trihydroxyisocyanuric acid (THICA) and its use as aerobic oxidation catalyst. Tetrahedron Letters,2004,45:8277-8280.
    [12]梅付名,李光兴,徐辉碧PdCl2-Mn(OAc)2催化笨酚氧化羰基化合成碳酸二苯 酯.应用化学,2001,18(9):752-754.
    [13]M. Goyal, R. Nagahata, J. Sugiyama, et al. Direct synthesis of diphenyl carbonate by oxidative carbonylation of phenol using Pd-Cu based redox catalyst system. J Molecular Catalysis A:Chemical 1999,137:147-154.
    [14]A. Vavasori, L. Toniolo. Multistep electron transfer catalytic system for the oxidative carbonylation of phenol to diphenyl carbonate. J Molecular Catalysis A: Chemical 1999,139:109-119.
    [15]Mei Fu-ming, Li Guang-xing. A new PdCl2-Co(Pyca)2 catalytic system for synthesis of diphenyl carbonate by oxidative carbonylation of phenol. J. of fuel chemistry and technology,2000,28(6):481-484.
    [16]A. Vavasori, L. Toniolo. The promoting effect of chelating ligands in the oxidative carbonylation of phenol to diphenyl carbonate catalyzed by Pd-Co-benzoquinone system. J Molecular Catalysis A:Chemical 2000,151:37-45.
    [17]G. Yin, C. Jia, T. Kitamura, et al. A new efficient Pd-catalyzed synthesis of diphenyl carbonate with heteropolyacid as a cocatalyst. J organometallic Chemistry 2001, 630:11-16.
    [18]H. Ishii, K. Takeuchi, M. Asai, et al. Oxidative carbonylation of phenol to diphenyl carbonate catalyzed by Pd-pyridyl complexes tethered on polymer support. Catalysis Communications 2001,2:145-150.
    [19]H. Ishii, M. Ueda, K. Takeuchi, et al. Oxidative carbonylation of phenol to diphenyl carbonate catalyzed by bis(benzonitrile)dichloropalladium in the presence of polyvinylpyrrolidone. Catalysis Communications 2001,2:17-22.
    [20]张光旭,马沛生,吴元欣.氧化羰基化一步合成碳酸二苯酯的研究进展.天然气化工,2002,27(2):23-29.
    [21]J.L. Gong, X.B. Ma, S.P. Wang. Phosgene-free approaches to catalytic synthesis of diphenyl carbonate and its intermediates. Appl. Catal. A:Gen.2007,316:1-21.
    [22]Won Bae Kim, Upendra A. Joshi, Jae Sung Lee. Making Polycarbonates without Employing Phosgene:An Overview on Catalytic Chemistry of Intermediate and Precursor Syntheses for Polycarbonate. Ind. Eng. Chem. Res.2004,43:1897-1914.
    [23]Abbas-Alli G. Shaikh, Swaminathan Sivaram. Dialkyl and Diaryl Carbonates by Carbonate Interchange Reaction with Dimethyl Carbonate. Ind. Eng. Chem. Res. 1992,31:1167-117.
    [24]Junzo Otera. Transesterification. Chem.Rev.1993.93:1449-1470.
    [25]Tundo P, Trotta F, Moraglio G, Ligorati F. Continuous-Flow Processes under Gas-Liquid Phase-Transfer Catalysis (GL-PTC) Conditions:The Reaction of Dialkyl Carbonates with Phenols, Alcohols, and Mercaptans. Ind Eng Chem Res, 1988,27(9):1565-1571.
    [26]Harrison G E, Dennis A J, Sharif M. Continuous production process of diaryl carbonates. U.S. Patent,5 426 207,1995.
    [27]Kim W B, Lee J S. A new process for the synthesis of diphenyl carbonate from dimethyl carbonate and phenol over heterogeneous catalysts. Catal Lett,1999,59: 83-88.
    [28]Rivetti F. The role of dimethylcarbonate in the replacement of hazardous chemicals. C R Acad Sci Paris, Serie II c, Chimie/Chemistry,2000,3:497-503.
    [29]Mei F M, Pei Z, Li G X. The Transesterification of Dimethyl Carbonate with Phenol over Mg-Al-hydrotalcite Catalyst. Org Process Res Dev,2004,8(3): 372-375.
    [30]H. Buysch, N. Schon, J. Rechner. Process for preparing aromatic carbonates. U.S. Patent,5 284 965,1994.
    [31]S. Fukuoka, M. Tojo, M. kawamura. Process for continuously producing an aromatic carbonate. U.S. Patent,5 210 268,1993.
    [32]F. Yoshihisa, M. Yuichi. Process for production of aromatic carbonate compound. U.S. Patent,5 034 557,1991.
    [33]M. Victor. Process for the preparation of aromatic carbonates. U.S. Patent,4 554 110,1985.
    [34]Hallgren J. E. Diaryl carbonate process. U.S. Patent,4 410 464,1983.
    [35]G. Illuminati, U. Romano, R. Tesei. Process for the preparation of aromatic carbonates. U.S. Patent,4 182 726,1980.
    [36]H. Krimm, H. Buysch, H. Rudolph. Process for the preparation of aromatic carbonic acid esters. U.S. Patent,4 252 737,1981.
    [37]M. Victor. Process for the preparation of aromatic carbonates. U.S. Patent,4 552 704,1985.
    [38]N. Schon, H. Buysch, W. Ebert. Process for the preparation of aromatic carbonic acid diesters containing at least one aromatic ester group. U.S. Patent,5 149 856, 1992.
    [39]N. Schon, R. Langer, H. Buysch, P. Wagner. Process for the continuous preparation of diaryl carbonates from dialkyl carbonates. U.S. Patent,5 334 742,1994.
    [40]J. Rechner, N. Schon, P. Wagner, et al. Process for the continuous preparation of aryl carbonates. U.S. Patent,5 523 451,1996.
    [41]孙碧绣,吕耀宏.碳酸二甲酯合成碳酸二苯酯的研究.天然气化工.1992,17(4):21-25.
    [42]李光兴,梅付名,莫婉玲,浦永佳.Lewis酸催化酯交换合成碳酸二苯酯研究.精细化工,2000,17(3):170-172.
    [43]梅付名,李光兴,莫婉玲.n-Bu2SnO催化酯交换合成碳酸二苯酯的研究.现代化工,2000,20(4):29-31.
    [44]梅付名,李光兴,莫婉玲.Ti(OC4H9)4催化酯交换合成碳酸二苯指的研究.化学试剂,2000,22(4):93-196.
    [45]高俊杰,程波,朱永强,胡长伟,王公应.二丁基二月桂酸锡催化碳酸二甲酯和苯酚酯交换反应研究.合成化学,2000,8(6):528-530.
    [46]高俊杰,姚洁,梅花,王公应.钛酸酯催化碳酸二甲酯与苯酚的酯交换反应.催化学报,2001,22(4):405-407.
    [47]高俊杰,姚洁,王公应,陆愚.钛酸酯催化碳酸二甲酯与苯酚酯交换反应的研究.分子催化,2001,15(1):21-24.
    [48]姚洁,高俊杰,王公应.Lewis酸、碱催化碳酸二甲酯与苯酚酯交换反应.石油化工,2002,31(2):99-101.
    [49]陶昭才,田恒水,王相田,朱云峰.PbO均相催化反应精馏合成碳酸二苯酯的研究.安徽理工大学学报(自然科学版),2003,23(3):54-57.
    [50]陶昭才,田恒水,朱云峰.Ti(OC4H9)4-PbO均相催化反应蒸馏合成碳酸二苯 酯.山东大学学报(工学版),2004,34(2):71-75.
    [51]Mei F M, Li G X, Nie J, Xu H B. A novel catalyst for transesterification of dimethyl carbonate with phenol to diphenyl carbonate:samarium trifluoro-methane sulfonate. J. Mol. Catal.,2002,184:465-468.
    [52]Lee H, Kim S J, Ahn B S, et al. Role of sulfonic acids in the Sn-catalyzed transesterification of dimethyl carbonate with phenol. Catal. Today,2003,87: 139-144.
    [53]Fu Z, Ono Y. Two-step synthesis of diphenyl carbonate from dimethyl carbonate and phenol using MoO3SiO2 catalysts. J. Mol. Catal. A Chem.,1997,118: 293-299.
    [54]Kim W B, Lee J S. Gas Phase Transesterification of Dimethylcarbonate and Phenol over Supported Titanium Dioxide. J. Catal.,1999,185:307-313.
    [55]Kim W B, Kim Y G, Lee J S. The role of carbon deposition in the gas phase transesterification of dimethylcarbonate and phenol over TiO2/SiO2 catalyst. Appl. Catal. A,2000,194-195:403-414.
    [56]周炜清,赵新强,王淑芳,王延吉.负载型n-Bu2SnO催化剂上合成碳酸二苯酯的研究.四川大学学报(工程科学版),2002,34(5):39-41.
    [57]周炜清,赵新强,王延吉.酯交换法合成碳酸二苯酯用氧化铅-氧化锌催化剂的研究.催化学报,2003,24(10):760-764.
    [58]Zhou W Q, Zhao X Q, Wang Y J, Zhang J Y. Synthesis of diphenyl carbonate by transesterification over lead and zinc double oxide catalyst. Appl. Catal. A,2004, 260:19-24.
    [59]Mei Fu-ming, Pei Zhi, Li Guang-xing. The Transesterification of Dimethyl Carbonate with Phenol over Mg-Al-hydrotalcite Catalyst. Organic Process Research & Development,2004,8:372-375.
    [60]梅付名,裴志,李光兴.MgAl水滑石催化碳酸二甲酯与笨酚酯交换反应.应用化学,2004,21(7):702-707.
    [61]V. Romano, R. Tesei. Process for the preparation of aromatic carbonates. U.S. Patent,4 045 464,1977.
    [62]M. Victor. Process for the preparation of aromatic carbonates. U.S. Patent,4 609 501,1986.
    [63]S. Fukuoka, R. Deguchi, M. Tojo. Process for producing diaryl carbonate. U.S. Patent,5 166 393,1992.
    [64]N. Schon, H. Buysch, P. Wagner, R. Langer. Process for the preparation of diaryl carbonates. U.S. Patent,5 344 954,1994.
    [65]N. Schon, H. Buysch, E. Zirngiebl, J. Kischkewitz. Process for the preparation of aromatic carbonic diesters. U.S. Patent,5 354 923,1994.
    [66]P. Wagner, N. Schon, H. Buysch. Process for the preparation of organic carbonates having at least one aromatic ester group. U.S. Patent,5 362 901,1994.
    [67]K. Murata, K. Kawahashi, M. watabiki. Continuous production of aromatic carbonates. U.S. Patent,5 380 908,1995.
    [68]G. E. Harrison, A. J. Dennis, M. Sharif. Continuous production process of diaryl carbonates. U.S. Patent,5 426 207,1995.
    [69]N. Schon, J. Rechner, P. Wagner, et al. Process for the continuous production of aryl carbonates. U.S. Patent,5 463 102,1995.
    [70]H. Tsuneki, Y. Onda, A. Moriya, H. Yoshida. Process for preparing carbonate esters. U.S. Patent,5 543 546,1996.
    [71]F. Rivetti, R. Paludetto, U. Romano. Continuous process for the preparation of phenyl methyl carbonate. U.S. Patent,5 705 673,1998.
    [72]H. Yoshida, H. Tsuneki, A. Moriya, et al. Process for preparing aromatic carbonic ester. U.S. Patent,5 874 605,1999.
    [73]M. Mizukami, Y. Arai, H. Harada, et al. Process for producing diaryl carbonate. U.S. Patent,5 980 445,1999.
    [74]H. Tsuneki, A. Moriya, H. Yoshida, et al. Reaction distillation apparatus and reaction distillation method. U.S. Patent,6 057 470,2000.
    [75]M. H. Oyevaar, B. W. To, M. F. Doherty, M. F. Malone. Process for continuous production of carbonate esters. U.S. Patent,6 093 842,2000.
    [76]P. R. de Bruin, J. S. Law, V. A. Vriens. Method and apparatus for the continuous production of diaryl carbonates. U.S. Patent,0021786 A1,2001.
    [77]P. R. de Bruin, J. S. Law, V. A. Vriens. Method and apparatus for the continuous production of diaryl carbonates. U.S. Patent,6 294 684 B1,2001.
    [78]S. M. Bouwens, M. Vieveen. Method for the continuous production of aromatic carbonates. U.S. Patent,0156312 Al,2002.
    [79]S. M. Bouwens, M. Vieveen. Method for the continuous production of aromatic carbonates. U.S. Patent,6 600 061 B1,2003.
    [80]S. M. Bouwens, M. Vieveen. Method for the continuous production of aromatic carbonates. U.S. Patent,6 596 894 B2,2003.
    [81]P. R. de Bruin, J. S. Law, V. A. Vriens. Method and apparatus for the continuous production of diaryl carbonates. U.S. Patent,6 767 517 B2,2004.
    [82]Goyal M, Nagahata R, Sugiyama J, et al. Direct Synthesis of Aromatic Polycarbonate from Polymerization of Bisphenol A with CO Using a Pd-Cu Catalyst System. Polymer,1999,40:3237-3241.
    [83]M. Goyal, R. Nagahataa, J. Sugiyamaa, et al. Pd catalyzed polycarbonate synthesis from bisphenol A and CO:control of polymer chain—end structure. Polymer,2000, 41:2289-2293.
    [84]王岚,詹正坤.水滑石类阴离子黏土的合成及催化应用研究进展.化学研究与应用,2003,15(4):437-442.
    [85]Vicente Rives. Characterisation of layered double hydroxides and their decomposition products. Materials Chemistry and Physics 2002,75:19-25.
    [86]杜以波,D. G. Evans,孙鹏,段雪.阴离子型层柱材料研究进展.化学通报,2000,(5):20-24.
    [87]段雪,矫庆泽.阴离子层柱结构选择性红外吸收材料及制备方法.中国专利:CN001035517,2000.
    [88]赵芸,矫庆泽,段雪.非平衡晶化控制水滑石晶粒尺寸.无机化学学报,2001,17(6):830-833.
    [89]段雪,矫庆洋.均分散超细阴离子层状材料的新合成方法.中国专利:CN991193857,1999.
    [90]Guido Busca. Spectroscopic characterization of the acid properties of metal oxide catalysts. Catalysis Today,1998,41:191-206.
    [91]李蕾,张春英,矫庆泽,段雪Mg-Al-CO3与Zn-Al-CO3水滑石热稳定性差异的研究.无机化学学报,2001,17(1):113-118.
    [92]J. Stratton, B. Gatlin, K. S. Venkatasubban. Proton inventories of the basic methanolysis of phenyl methyl carbonate and diphenyl carbonate [J]. Journal of Organic Chemistry,1992,57:3237-3240.
    [93]李殿卿,冯桃,Evans D G,等.有机阴离子柱撑水滑石的插层组装及超分子结构.过程工程学报,2002,4(2):355-360.
    [94]段雪,何静,任玲玲.用于青霉素酰化酶固定化的新型载体.中国专利:CN:00106228.X,2000.
    [95]Dimetakis E D, Pinnavaia T J. New Route to Layered Double Hydroxides Intercalated by Organic Anions:Precursors to Polyoxometalate-pillared Derivatives. Inorg. Chem.,1990,29(13):2393-2394.
    [96]Reichle W T. Synthesis of Anionic Clay Minerals (Mixed Metal Hydroxides, Hydrotalcite). Solid State Ionics,1986,22:135-141.
    [97]朱大建,谢育红,王庶,梅付名,白荣献,李光兴.碳酸甲苯酯歧化反应的研究.第十三届全国催化会议论文集,甘肃兰州,2006,P300.
    [98]梅付名,李光兴,莫婉玲.碳酸二苯酯提纯工艺进展.化工进展,2001,2:21-23.
    [99]张晓燕,白荣献,王庶,黄金明,李光兴.重结晶提纯碳酸二苯酯的溶剂选择.化学工程,2006,34(10):21-24.
    [100]白荣献,张晓燕,李金金,王庶,李光兴.水析结晶提纯碳酸二苯酯的研究.化学工程,2009,37(3):13-15.
    [101]陶昭才,田恒水,朱云峰,刘纪昌.碳酸苯甲酯歧化反应动力学的研究.安徽理工大学学报(自然科学版),2003,23(4):56-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700