离子液体阴阳离子协同催化碳酸酯参与绿色反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体与传统溶剂相比具有蒸汽压低、热稳定性和化学稳定性高、液态温度范围宽、溶解性强等优点,已经在有机合成、电化学、化学分离、聚合物材料等领域得到了广泛的应用。离子液体本身是一种超分子聚集体,其阴阳离子通过氢键、π-π堆积、π-阴离子等非共价键结合形成三维超分子网络结构。离子液体的超分子特性为离子液体高效、绿色地催化有机反应提供了一个契机。其中,离子液体催化毒性小、环保性能优异的碳酸酯类化合物与N-杂环芳香类化合物的有机反应近年来引起了人们极大的关注。
     本论文主要研究了离子液体催化亲电试剂碳酸酯与苯胺、吲哚等亲核试剂的反应。主要包括:酸碱双功能离子液体协同催化苯胺与碳酸二甲酯反应;离子液体阴阳离子协同催化苯胺与碳酸乙烯酯反应;离子液体阴阳离子协同催化芳香胺与碳酸丙烯酯反应;离子液体催化吲哚与环状碳酸酯的羟烷基化反应。
     在酸碱双功能离子液体协同催化苯胺与碳酸二甲酯反应中,合成出一种新型酸碱双功能离子液体1-(2-(1’-哌啶)乙基)-3-甲基咪唑氯化铅([PEmim]PbCl3),系统研究了该离子液体催化苯胺与碳酸二甲酯反应合成N-甲基-N-苯基氨基甲酸甲酯的性能。发现具有酸碱双活性位的离子液体[PEmim]PbCl3催化活性明显高于只具有单一活性位的碱性离子液体[PEmim]Cl和酸性金属卤化物PbCl2。离子液体[PEmim]PbCl3的高活性与其同时具有酸性和碱性中心有关,阳离子中的碱性哌啶基团活化苯胺,阴离子中的酸性铅离子活化碳酸二甲酯,阴阳离子的酸碱协同催化使得苯胺与碳酸二甲酯的反应顺利进行。密度泛函理论的研究则模拟了离子液体[PEmim]PbCl3的结构及其与反应底物的相互作用,并分析了它们自然键轨道电荷的分布,发现苯胺的N-H键长和碳酸二甲酯的C=O键长在与[PEmim]PbCl3相互作用之后分别增加了0.0142A和0.0073A,苯胺氮原子增加了0.007的负电荷,碳酸二甲酯羰基碳原子增加了0.044正电荷。与[PEmim]PbCl3相互作用之后,苯胺的亲核性和碳酸二甲酯的亲电性均增强,从而在分子的水平上进一步证实了离子液体酸碱协同作用对该反应的影响。
     在离子液体阴阳离子协同催化苯胺与碳酸乙烯酯反应中,首先利用离子液体[Bmim]BF4为催化剂,通过系统考察反应时间、反应温度及催化剂用量等反应条件对反应的影响,优化了反应条件,130℃,9 h,催化剂用量为5 mo1%时,产物3-苯基噁唑烷-2-酮的收率达到90%。为了探索离子液体阴阳离子在催化苯胺与碳酸乙烯酯反应合成噁唑烷-2-酮中的作用,详细研究了不同阴阳离子的离子液体对反应的影响,发现离子液体阳离子催化活性顺序为:1-丁基-3-甲基咪唑([Bmim])> 1,2-二甲基-3-丁基咪唑([Bmmim])>1-丁基吡啶([Bpy]),与阳离子提供氢键的能力一致;咪唑型离子液体阴离子的催化活性顺序为Cl> Br> BF4> PF6> C(CN)2COEt≈NTf2>BPh4,与离子液体阴离子接受氢键的能力一致。离子液体可以通过阴阳离子同时活化亲电试剂与亲核试剂,阴阳离子的协同催化显著增强了苯胺与碳酸乙烯酯的反应活性。利用1H NMR、ESI-MS等实验手段对反应机理进行了深入的研究。1H NMR显示出[Bmim]BF4咪唑环2位氢在碳酸乙烯酯的存在下,发生了显著的位移(从69.48移到9.33),证明咪唑环2位氢与碳酸乙烯酯发生了相互作用。ESI-MS实验捕获了一系列[Bmim]BF4与碳酸乙烯酯及苯胺相互作用的超分子聚集体,进一步证实了[Bmim]BF4同时活化反应底物苯胺和碳酸乙烯酯。
     在离子液体阴阳离子协同催化芳香胺与碳酸丙烯酯反应中,系统研究了离子液体催化芳香胺与碳酸丙烯酯一步合成5-甲基-3-芳基嗯唑烷-2-酮的反应,考察了反应温度、反应时间以及催化剂用量对反应的影响,140℃,7 h,催化剂用量为5 mmo1%时,5-甲基-3-苯基噁唑烷-2-酮的收率达99%。离子液体催化剂可重复使用5次,活性未见明显下降。通过研究不同结构离子液体对该反应的影响,发现离子液体阳离子的催化活性顺序为[Bmim]> [Bmmim]> [Bpy],与阳离子在催化过程中提供氢键的能力一致;与此同时,离子液体阴离子催化活性顺序为OAc>Cl>Br>BPh4,与阴离子在催化过程中接受氢键的能力一致,离子液体阴阳离子对催化芳香胺与碳酸丙烯酯反应具有协同作用。并利用密度泛函理论对离子液体阴阳离子协同催化机理进行了研究。发现离子液体阳离子与碳酸丙烯酯羰基氧之间的作用距离按照[Bmim]< [Bmmim]< [Bpy]的顺序依次递增,[Bmim]的咪唑环2位氢与碳酸丙烯酯羰基氧之间的距离最短,为2.022A,二者之间形成氢键,活化了碳酸丙烯酯;离子液体阴离子与苯胺之间的作用距离按照OAc     离子液体催化吲哚与碳酸乙烯酯及碳酸丙烯酯羟烷基化反应,简便、绿色地合成了羟乙基吲哚、羟丙基吲哚及其衍生物。在不添加任何有机溶剂的条件下,采用离子液体[Bmim]BF4考察反应温度、时间催化剂用量及反应底物投料比对吲哚与碳酸乙烯酯反应的影响,150℃,9h时,吲哚的转化率达到96%,羟烷基化产品1-(2-羟乙基)吲哚(1a)及其衍生物1-(2-(2-羟基)-乙氧乙基)吲哚(2a)和1-(2-(2-(2-羟基)乙氧乙基)乙氧基)吲哚(3a)总的收率达到90%。不同离子液体催化吲哚与碳酸乙烯酯反应结果显示,咪唑型离子液体催化活性顺序按照BPh4< BF4< Br< Cl< OAc依次增加,与离子液体阴离子在催化过程中接受氢键的能力一致。在吲哚与碳酸丙烯酯的反应中,反应条件为150℃,9h时,吲哚的转化率达到87%,主要产物1-(2-羟丙基)吲哚(1b)的收率达到70%。产物选择性的提高可能是由于碳酸丙烯酯的位阻效应。
Ionic liquids have many advantages compared with conventional solvent, such as negligible vapour pressure, high thermal and chemical stability, wide liquid temperature range, non-toxic, strong solubility and catalytic activity. They have been widely used in organic synthesis, electrochemistry, chemical separation and the polymer materials. Ionic liquid is a kind of supramolecular aggregates in itself, the anion and cation of ionic liquid interact each other to form three-dimensional supramolecular network structures through several non-covalent force, such as hydrogen bonds,π-πstacking,π-anion. The supramolecular properties of ionic liquids provide an opportunity for ionic liquids to effectively and greenly catalyze the organic reactions. In recent years, many ionic liquid-catalyzed organic reactions involving carbonates which are considered as low toxically, environmentally benign and green chemical raw material, have been attracted great interest.
     The ionic liquid-catalyzed organic reactions between electrophile and nucleophile were investigated in this thesis, in which carbonates and aniline, indole were used as reactants. Main content included:experimental and theoretical investigation of reaction of aniline with dimethyl carbonate catalyzed by acid-base bifunctional ionic liquids; Anion-cation cooperative catalysis by ionic liquids on the reaction of aniline and ethylene carbonate; Anion-cation cooperative catalysis by ionic liquids on the reaction of aromatic amines with propylene carbonate; Hydroxyalkylation of indole with cyclic carbonates catalyzed by ionic liquid.
     In the first section, a novel acid-base bifunctional ionic liquids 1-(2-(1'-piperidinyl) ethyl)-3-methyl imidazolium trichlorolead ([PEmim]PbCl3) was synthesized and applied in the reaction of aniline with dimethyl carbonate for producing methyl-N-methyl-N-phenylcarbamate. The reactivity of [PEmim]PbCl3 which has acid-base dual-active is significantly higher than basic [PEmim]Cl and acidic PbCl2. The studies of reaction mechanism show that the higher reactivity of [PEmim]PbCl3 is accounted for its ability to activate both aniline and dimethyl carbonate by the acidic and basic sites cooperatively. Density functional theory (DFT) calculations simulate the structures and charge properties of [PEmim]PbCl3, complex of [PEmim]PbCl3 and aniline, and complex of [PEmim]PbCl3 and dimethyl carbonate. DFT calculations show that bond length of N-H in aniline and C=O of dimethyl carbonate increases 0.0142 A and 0.0073 A, respectively. NBO charge of N in aniline and carbonyl C of dimethyl carbonate increases 0.007 negative charge and 0.044 positive charge, respectively, when the interaction between reactants and ionic liquid was formed. [PEmim]PbCl3 can increase the electrophilicity of dimethyl carbonate and the nucleophilicity of aniline by its acid and base sites.
     In the second section, in order to optimize the reaction parameters, the effects of reaction time, temperature and catalyst amount on the reaction of aniline and ethylene carbonate were investigated. Under the optimized conditions(130℃,9 h, amount of catalyst:5 mol%), the yield of 3-phenyloxazolidin-2-one reached 90%. Then we studied the effect of ionic liquids which have different cation and anion on the reaction of aniline and ethylene carbonate. The catalytic activity follows the order of 1-butyl-3-methyl-imidazolium ([Bmim])> 1,2-dimethyl-3-butyl imidazolium ([Bmmim])> 1-butyl-pyridinium ([Bpy]), which is consistent with the order of hydrogen bond donor ability. Simultaneously, the catalytic activity of imidazolium based ionic liquids follows the order Cl> Br> BF4> PF6> C(CN)2COEt≈NTf2> BPh4, which is consistent with the order of the hydrogen bond acceptor ability. The dual activation of nucleophiles and electrophiles by the cations and anions of ionic liquids is crucial to promote the reaction in high yields. Reaction mechanism was also investigated by 1H NMR and ESI-MS. In 1H NMR, the proton in 2-position of imidazolium ring of [Bmim]BF4 shifted fromδ9.48 to 9.33 in the presence of ethylene carbonate, which indicates that the proton in 2-position of imidazolium ring interacts with ethylene carbonate. The interception of supramolecular cationic species involving [Bmim]BF4, aniline and ethylene carbonate further confirm that ionic liquid [Bmim]BF4 simultaneously activate aniline and ethylene carbonate.
     We studied the reaction of aromatic amines with propylene carbonate for synthesizing 5-methyl-3-aryloxazolidin-2-one catalyzed by ionic liquid. The effects of reaction temperature, time and amount of catalyst were investigated in detail. Under the optimized conditions (140℃,7 h, amount of catalyst:5 mol%), the yield of 5-methyl-3-phenyl-oxazolidin-2-one was 99%. Ionic liquid can be reused five times without any obvious decrease of activity. The effects of cations and anions of ionic liquids were also studied. It was found that the catalytic activity of cation follows the order of 1-butyl-3-methyl-imidazolium ([Bmim])> 1,2-dimethyl-3-butyl imidazolium ([Bmmim])> 1-butyl-pyridinium ([Bpy]), which is consistent with the order of hydrogen bond donor ability. Simultaneously, the catalytic activity of imidazolium based ionic liquids follows the order OAc> Cl> Br> BPh4, which is consistent with the order of the hydrogen bond acceptor ability of anions. The anion-cation cooperative effect of the ionic liquids was also simulated by the density functional theory (DFT). The calculations show that distances of cations of ionic liquids and C=O of propylene carbonate follows the order [Bmim]< [Bmmim]< [Bpy]. The distance of the proton in 2-position of imidazolium ring of [Bmim] and C=O of propylene carbonate is the shortest (2.022 A). [Bmim] activate propylene carbonate throught the hydrogen bond interaction between the proton in 2-position of imidazolium ring and C=O of propylene carbonate. The distances of anions of ionic liquids and N-H in aniline follows the order OAc< Cl< Br< BPh4. Anions of ionic liquids activate aniline throught the hydrogen bond interaction between anions and N-H in aniline. Ionic liquid can simultaneously increase the electrophilicity of propylene carbonate and the nucleophilicity of aniline through the hydrogen bond interactions.
     We studied the hydroxyalkylation of indole with ethylene carbonate and propylene carbonate catalyzed by ionic liquid. Hydroxyethyl indoles, hydroxypropyl indoles and their derivatives were simply and eco-friendly synthesized. Without any other organic solvent, we systemically studied the effects of reaction temperature, time, amount of catalyst and molar ratio of reactants on the reaction of indole and ethylene carbonate catalyzed by [Bmim]BF4. Under the optimized conditions (150℃,9 h), the conversion of indole reached 96%, the total yield of the hydroxyalkylation products 1-(2-hydroxyethyl)indole (la) and its derivatives 1-(2-(2-hydroxyl)-ethoxyethyl)indole (2a) and 1-(2-(2-(2-hydroxyl)ethoxyethyl)oxyethyl)indole (3a), reached 90%. The catalytic activity of ionic liquid is affected by the anions and follows the order of BPh4< BF4< Br< Cl< OAc, which is consistent with the hydrogen bond acceptor ability of the anions of ionic liquids. In the reaction of indole with propylene carbonate, when the reaction condition was 150℃,9 h, the conversion of indole reached 87%, the yield of main product 1-(2-hydroxypropyl) indole (1b) reached 70%. The selectivity of the main product was improved may be due to steric effects of propylene carbonate.
引文
[1]闵恩泽,傅军,绿色化学的进展,化学通报1999年,第1期,10-15.
    [2]梁文平,唐晋,当代化学的一个重要前沿——绿色化学,化学进展2000年,第2期,228-230.
    [3]朱时清,绿色化学的进展,大学化学1997年,第12期,7-11.
    [4]I. Amato, The slow birth of green chemistry, Sci.1993,59,1538-1541.
    [5]M. Poliakoff, J. M. Fitzpatrick, T. R. Farren, P. T. Anastas, Science and politics of change science 2, Green Chem.2002,8,807-810.
    [6]何鸣元,戴立益,离子液体与绿色化学,化学教学2002年,第6期,1-3.
    [7]T. Welton, Room-temperature ionic liquids:solvents for synthesis and catalysis, Chem. Rev. 1999,99,2071-2083.
    [8]D. Moosbauer, S. Zugmann, M. Amereller, H. J. Gores, Effect of ionic liquids as additives on lithium electrolytes:conductivity,electrochemical stability, and aluminum corrosion, J. Chem. Eng. Data 2010,55,1794-1798.
    [9]J. G. Huddlestou, H. D. Willauer, R. P. Swatloski, A. E Visser, R. D. Rogers, Room temperature ionic liquids as novel media for 'clean' liquid-liquid extraction, Chem. Commun. 1998,1765-1766.
    [10]M. P. Scott, C. S. Brazel, M. G. Benton, R. D. Rogers. Application of ionic liquids as plasticizers for poly(methyl methacrylate), Chem. Commun.2002,1370-1371.
    [11]M. A. Pacheco, C. L. Marshall, Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive, Energy Fuels 1997,11,2-29.
    [12]L. Xing, W. Li, C. Wang, F.L. Gu, M.Q. Xu, C. Tan, J. Yi, Theoretical investigations on oxidative stability of solvents and oxidative decomposition mechanism of ethylene carbonate for lithium ion battery use, J. Phys. Chem. B 2009,113,16596-16602.
    [13]R. L. Lavall, S. Ferrari, C. Tomasi, M. Marzantowicz, E. Quartaronea, A. Magistris,P. Mustarelli, S. Lazzaroni, M. Fagnoni, Novel polymer electrolytes based on thermoplastic polyurethane and ionic liquid/lithium bis(trifluoromethanesulfonyl)imide/propylene carbonate salt system, J. Power Sources 2010,195,5761-5767.
    [14]S. Ramesh, O. P. Ling, Effect of ethylene carbonate on the ionic conduction in poly (vinylidenefluoride-hexafluoropropylene) based solid polymer electrolytes, Polym. Chem. 2010,1,702-707.
    [15]H. Yasuda, M. S. Aludin, N. Kitamura, M. Tanabe, H. Sirahama, Syntheses and physical properties of novel optically active poly (ester-carbonate)s by copolymerization of substituted trimethylene carbonate with (?)-caprolactone and their biodegradation behavior, Macromolecules 1999,32,6047.
    [16]H. Wang, J. H. Dong, K. Y. Qiu,, Z. W. Gu, Synthesis of poly (1,4-dioxan-2-one-co-trimethylene carbonate) for application in drug delivery systems, J. Polym. Sci. Part A: Polym. Chem.1998,36,1301-1307.
    [17]P. Roussel, M. Bradley, P. Kane, C. Bailey, R. Arnold, A. Cross, Inhibition of the tissue factor/factor Ⅶa complex-lead optimisation using combinatorial chemistry, Tetrahedron 1999,55,6219-6230.
    [18]J. Kozakiewicz, G. Rokicki, J. Przybylski, K. Sylwestrzak, P. G. Parzuchowski, K. M. Tomczyk, Studies of the hydrolytic stability of poly(urethaneeurea) elastomers synthesized from oligocarbonate diols, Polym. Degrad. Stab.2010,95,2413-2420.
    [19]F. Mustata, I. Bicu, A novel route for synthesizing esters and polyesters from the Diels-Alder adduct of levopimaric acid and acrylic acid, Eur. Polym. J.2010,46,1316-1327.
    [20]J. P. Parrish, R. N. Salvatorea, K. W. Jung, Perspectives on alkyl carbonates in organic synthesis, Tetrahedron 2000,56,8207-8237.
    [21]K. Teranishi, H. Nakao, A. Komoda, M. Hisamatsu, T. Yamada, One-step synthesis of novel carbonates:alkoxymethyl carbonates, from alcohols and chloromethyl alkyl ethers using silver carbonate, Synth.1995,176-180.
    [22]J. E. P. Davidson, E. A. Anderson, W. Buhr, J. R. Harrison, P. T. O'Sullivan, I. Collins, R. H. Green, A. B. Holmes, Synthesis of medium-ring lactones via tandem methylenation/Claisen rearrangement of cyclic carbonates, J. Chem.Soc. Chem. Commun.2000,629-630.
    [23]M. Silvestri, M. P. Hanson, J. G. Pavlovich, L. F. Studen, M. S. DeClue, M. R. DeGraffenreid, C. D. Amos, Reactivity of enol carbonates with ozone, J. Org. Chem.1999,64,6597-6602.
    [24]J. R. Porter, W. G. Wirschun, K. W. Kuntz, M. L Snapper, A. H. Hoveyda, Ti-catalyzed regio-and enantioselective synthesis of unsaturated a-amino nitriles, amides, and acids:catalyst identification through screening of parallel libraries, J. Am. Chem. Soc.2000,122, 2657-2658.
    [25]Y. Morisaki, T. Kondo, T. Mitsudo, A new route to cyclopentenones via ruthenium-catalyzed carbonylative cyclization of allylic carbonates with alkenes, Org. Lett.2000,2,949-952.
    [26]P. Le Gendre, T. Braun, C. Bruneau, P. H. Dixneuf, Preparation of optically active cyclic carbonates and 1,2-diols via enantioselective hydrogenation of α-methylenedioxolanones catalyzed by chiral Ruthenium(Ⅱ) complexes J. Org. Chem.1996,61,8453-8455.
    [27]M. Allainmat, D. Plusquellec, A novel and convenient route to cyclic and acyclic carbonates from unprotected methyl d-glycosides, Tetrahedron Lett.1991,32,2751-2754.
    [28]T. Iimori, T. Shibazaki, S. Ikegami, A novel intramolecular decarboxylative glycosylation via mixed carbonate, Tetrahedron Lett.1996,37,2267-2270.
    [29]T. E. Lehmann, G. Muller, A. Berkessel, Photochemistry of 4'-benzophenone-substituted nucleoside derivatives as models for ribonucleotide reductases:competing generation of 3'-radicals and photoenols, J. Org. Chem.2000,65,2508-2516.
    [30]M. H. B. Stowell, R. S. Rock, D. C. Rees, S. I. Chan, Efficient synthesis of photolabile alkoxy benzoin protecting groups, Tetrahedron Lett.1996,37,307-310.
    [31]L. J. Whalen, C. J. Morrow, Resolution of a chiral alcohol through lipase-catalyzed transesterication of its mixed carbonate by poly(ethylene glycol) in organic media, Tetrahedron:Asymmetry 2000,11,1279-1288.
    [32]R. Giernoth, Task-Specific ionic liquids, Angew. Chem. Int. Ed.2010,49,2834-2839.
    [33]H. Olivier-Bourbigou, L. Magna, D. Morvan, Ionic liquids and catalysis:Recent progress from knowledge to applications, Appl. Catal. A:General 2010,373,1-56.
    [34]P. Wasserscheid, C. M. Gordon, C. Hilgers, M. J. Muldoon, I. R. Dunkin, Ionic liquids:polar, but weakly coordinating solvents for the first biphasic oligomerisation of ethene to higher a-olefins with cationic Ni complexes, Chem.Commun.2001,1186-1187.
    [35]A. J. Carmichael, M. J. Earle, J. D. Holbery, P. B. McCormac, K. R. Seddon, Synthesis of (-)-Lasubine(Ⅰ) via a planar chiral [(η6-arene)Cr(CO)3] complex, Org. Lett.1999,1, 1997-1999.
    [36]Y. Chauvin, L. Mussman, H. Oliver, A novel class of versatile solvents for two-phase catalysis:hydrogenation, isomerization, and hydroformylation of alkenes catalyzed by rhodium complexes in liquid 1,3-dialkylimidazoliurn salts, Angew. Chem., Int. Ed. Engl. 1996,34,2698-2700.
    [37]F. A. Khan, J. Dash, R. Satapathy, Upadhyay, S. K. Hydrotalcite catalysis in ionic liquid medium:a recyclable reaction system for heterogeneous Knoevenagel and nitroaldol condensation, Tetrahedron Lett.2004,45,3055-3058.
    [38]B. Wang, Y. Gu, C. Luo, T. Yang, L. Yang, J. Suo, Pyrrole synthesis in ionic liquids by Paal-Knorr condensation under mild conditions, Tetrahedron Lett.2004,45,3417-3419.
    [39]S. R. Yang, H. F. Jiang, H. J. Chen, Y. B. Xu, W. Luo, Palladium-catalyzed enyne cyclization of 2'-alkenyl 2-alkynoates in imidazolium-type ionic liquids, Synth. Commun.2007,37, 2121-2129.
    [40]D. M. Cui, Y.K. Ke, D. W. Zhuang, Q. Wang, C. Zhang, Gold-catalyzed hydrative cyclization of 1,6-diynes in ionic liquid media, Tetrahedron Lett.2010,52,980-982.
    [41]H. M. Meshram, P. N. Reddy, P. Vishnu, K. Sadhashiv, J. S. Yadav, A green approach for efficient α-halogenation of (3-dicarbonyl compounds and cyclic ketones using N-halosuccinimides in ionic liquids, Tetrahedron Lett.2006,47,991-995.
    [42]H. M. Meshram, D. A. Kumar, B. R. V. Prasad, P. R. Goud, Efficient and convenient polyethylene glycol (PEG)-mediated synthesis of spiro-oxindoles, Helv. Chemi. Acta.2010, 93,648-653.
    [43]H. Y. Zhan, H. Y. Liu, H. J. Chen, H. F. Jiang, Preparation of meso-substituted trans-A2B-corroles in ionic liquids, Tetrahedron Lett.2009,50,2196-2199.
    [44]H. M. Meshram, P. Ramesh, G. S. Kumar, B. C. Reddy, One-pot synthesis of quinoxaline-2-carboxylate derivatives using ionic liquid as reusable reaction media, Tetrahedron Lett.2010,51,4313-4316.
    [45]M. Dewan, A. Kumar, A. Saxena, A. De, S. Mozumdar, Molecular iodine in [bmim][BF4]:a highly efficient green catalytic system for one-pot synthesis of 1,3-oxathiolan-5-one, Tetrahedron Lett.2010,51,6108-6110.
    [46]G. Tabarelli, E. E. Alberto, A. M. Deobald, G. Marin, O. E. D. Rodrigues, L. Dornelles, A. L. Braga, Ionic liquid:an efficient and reusable media for seleno- and thioester synthesis promoted by indium, Tetrahedron Lett.2010,51,5728-5731
    [47]J. Li, J. Peng, Y. Bai, G. Lai, X. Li, Synthesis of rhodium N-heterocyclic carbene complexes and their catalytic activity in the hydrosilylation of alkenes in ionic liquid medium, J. Organomet. Chem.2011,696,2116-2121.
    [48]A. Natrajan, D. Wen, Facile N-alkylation of acridine esters with 1,3-propane sultone in ionic liquids, Green Chem.2011,13,913-921.
    [49]Y Hua, Z. C. Chen, Z. G. Le, Q. G. Zheng, Organic reactions in ionic liquids:an efficient method for selective salkylation of 2-mercaptobenzothia(xa)zole with alkyl halides, Synth. Commun.2004,34,11,2039-2046.
    [50]J. Q. Nie, H. W. Chen, Q. H. Song, B. Liao, Q. X. Guo, O-methylation of the phenolic bio-oil with dimethyl carbonate in an ionic liquid [bmim]Cl, Energy Fuels 2010,24,5722-5726.
    [51]K. Qiao, Y. Q. Deng, A novel reaction in ionic liquids:selective cyclization of 1-dodecene to cyclododecane under moderate pressure, Tetrahedron Lett.2003,44,2191-2193.
    [52]Y. Q. Deng, F. Shi, J. Beng, K. Qiao, Ionic liquid as a green catalytic reaction medium for esterifications, J. Mol. Catal. A:Chemical 2001,165,33-36.
    [53]Y. L. Gu, F. Shi, Y. Q. Deng, Esterification of aliphatic acids with olefin promoted by Bransted acidic ionic liquids, J. Mol. Catal. A:Chemical 2004,212,71-75.
    [54]Z. Y. Duan, Y. L. Gu, Y. Q. Deng, Neutral ionic liquid [BMIm]BF4 promoted highly selective esterification of tertiary alcohols by acetic anhydride, J. Mol. Catal. A:Chemical,2006,246, 70-75.
    [55]Y. L. Gu, F. Shi, Y. Q. Deng, SO3H-functionalized ionic liquid as efficient, green and reusable acidic catalyst system for oligomerization of olefins, Catal. Commun.2003,4,597-601.
    [56]J. J. Peng, Y. Q. Deng, Ionic liquids catalyzed Biginelli reaction under solvent-free conditions, Tetrahedron Lett.2001,42,5917-5919.
    [57]B. S. Chhikara, S. Tehlan, A. Kumar, 1-Methyl-3-butylimidazolium decatungstate in ionic liquid:an efficient catalyst for the oxidation of alcohols, Synlett 2005,1,63-66.
    [58]Y. W. Zhao, J. X. Long, F. G. Deng, X. F. Liu, Z. Li, C. G. Xia, J. J. Peng, Catalytic amounts of bransted acidic ionic liquids promoted esterification:study of acidity-activity relationship, Catal. Commun.2009,10,732-736.
    [59]D. Fang, C. M. Jiao, C. J. Ni, S03H-Functionalized Ionic liquids catalyzed the synthesis of a-aminophosphonates in aqueous media, Heteroat. Chem.2010,1-4.
    [60]X. M. Liu, H. Y. Ma, Y. Wu, C. Wang, M. Yang, P. F. Yan U. W. Biermann, Esterification of glycerol with acetic acid using double SO3H-functionalized ionic liquids as recoverable catalysts, Green Chem.2011,13,697-701.
    [61]C. P. Frizzo, D. N. Moreira, E. A. Guarda, G. F. Fiss, M. R. B. Marzari, N. Zanatta, H. G. Bonacorso, M. A. P. Martins, Ionic liquid as catalyst in the synthesis of N-alkyl trifluoromethyl pyrazoles, Catal. Commun.2009,10,1153-1156.
    [62]M. Z. Rong, C. Liu, J. Y. Han, H. Wang, Catalytic oxidation of alcohols by a double functional ionic liquid [bmim]BF4, Catal. Commun.2009,10,362-364.
    [63]H. Wang, B. Lu, X. G. Wang, J. W. Zhang, Q. H. Cai, Highly selective synthesis of dimethyl carbonate from urea and methanol catalyzed by ionic liquids, Fuel Process. Technol.2009, 90,1198-1201.
    [64]M. Stricker, T. Linder, B. Oelkersa, J. Sundermeyer, Cu(I)/(II) based catalytic ionic liquids, their metallo-laminate solid state structures and catalytic activities in oxidative methanol carbonylation, Green Chem.2010,12,1589-1598.
    [65]J. Li, L. G. Wang, F. Shi, S. M. Liu, Y. D. He, L. J. Lu, X. Y. Ma, Y. Q. Deng, Quaternary ammonium ionic liquids as bi-functional catalysts for one-step synthesis of dimethyl carbonate from ethylene oxide, carbon dioxide and methanol, Catal Lett.2011,141,339-346.
    [66]V. Mavrodinova, M. Popova, Selective p-xylene formation upon toluene disproportionation over MCM-22 and ZSM-5 zeolites modified with indium, Catal. Commun.2005,6,247-252.
    [67]P. Wu, T. Komatsu, T. Yashima, Selective formation of p-xylene with disproportionation of toluene over MCM-22 catalysts, Micropor. Mesopor. Mater.1998,22,343-356.
    [68]V. Mavrodinova, M. Popova, R.M. Mihalyi, G. Pal-Borbely, Ch. Minchev, Acidity modification of MCM-22 for selective p-xylene formation in toluene disproportionation, Studies in Surf. Sci. Catal.2005,158,1843-1850.
    [69]B. Xue, J. Xu, C. F. Xu, R. Z. Wu, Y. X. Li, K. Zhang, A novel, shape-selective H-MCM-22/MCM-41 composite catalyst:Synthesis,characterization and catalytic performance, Catal. Commun.2010,12,95-99.
    [70]A. Dhakshinamoorthy, A. Sharmila, K. Pitchumani, Layered double hydroxide-supported 1-methionine-catalyzed chemoselective o-methylation of phenols and esterification of carboxylic acids with dimethyl carbonate:a "green" protocol, Chem. Eur. J.2010,16, 1128-1132.
    [71]F. Li, J. Miao, Y. Wang, X. Zhao, Ind. Eng. Chem. Res.2006,45,4892-4897.
    [72]K. Sreekumar, T.M. Jyothi, T. Mathew, M.B. Talawar, S. Sugunan, B.S. Rao, Selective N-methylation of aniline with dimethyl carbonate over Zn1-xCoxFe2O4 (x=0,0.2,0.5,0.8 and 1.0) type systems, J. Mol. Catal. A 2000,159,327-334.
    [73]Z. L. Shen, X. Z. Jiang, Selective N,N-dimethylation of primary aromatic amines with dimethyl carbonate in the presence of diphenylammonium triflate, J. Mol. Catal. A 2004, 213,193-198.
    [74]M. Selva, A. Perosa, P. Tundo, D. Brunelli, Selective N,N-dimethylation of primary aromatic amines with methyl alkyl carbonates in the presence of phosphonium salts, J. Org. Chem. 2006,71,5770-5773.
    [75]A. B. Shivarkar, S. P. Gupte, R. V. Chaudhari, Selective synthesis of N,N-dimethyl aniline derivatives using dimethyl carbonate as a methylating agent and onium salt as a catalyst, J. Mol. Catal. A 2005,226,49-56.
    [76]A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Metal organic frameworks as heterogeneous catalysts for the selective N-methylation of aromatic primary amines with dimethyl carbonate, Appl. Catal. A:General 2010,378,19-25.
    [77]P. N. Gooden, R. A. Bourne, A. J. Parrott, H. S. Bevinakatti, D. J. Irvine, M. Poliakoff, Continuous acid-catalyzed methylations in supercritical carbon dioxide:comparison of methanol, dimethyl ether and dimethyl carbonate as methylating agents, Org. Process Res. Dev.2010,14,411-416.
    [78]A. J. Parrott, R. A. Bourne, P. N. Gooden, H. S. Bevinakatti, M. Poliakoff, D. J. Irvine, The continuous acid-catalysed etherification of aliphatic alcohols using stoichiometric quantities of dialkyl carbonates, Org. Process Res. Dev.2010,14,1420-1426.
    [79]R. Juarez, P. Concepcion, A. Corma, V. Fornes, H. Garcia, Gold-catalyzed phosgene-free synthesis of polyurethane precursors, Angew. Chem. Int. Ed.2010,49,1286-1290.
    [80]D. L. Sun, S. J. Xie, J. R. Deng, C. J. Huang, E. Ruckenstein, Z. S. Chao, CH3COONa as an effective catalyst for methoxycarbonylation of 1,6-hexanediamine by dimethyl carbonate to dimethylhexane-1,6-dicarbamate, Green Chem.,2010,12,483-490.
    [81]E. Reixach, N. Bonet, F. X. R. Ruiz, S. Wershofen, A. V. Ferran, Zinc acetates as efficient catalysts for the synthesis of bis-isocyanate precursors, Ind. Eng. Chem. Res.2010,49, 6362-6366.
    [82]M. Pagliaro, R. Ciriminna, H. Kimura, M. Rossi, C. D. Pina, From glycerol to value-added products, Angew. Chem. Int. Ed.2007,46,4434-4440.
    [83]A. Behr, J. Eilting, K. Irawadi, J. Leschinski, F. Lindner, Improved utilisation of renewable resources:New important derivatives of glycerol, Green Chem.2008,10,13-30.
    [84]Y. Zheng, X. Chen and Y. Shen, Commodity chemicals derived from glycerol, an important biorefinery feedstock, Chem. Rev.2008,108,5253-5277.
    [85]A. Takagaki, K. Iwatani, S. Nishimura, K. Ebitani, Synthesis of glycerol carbonate from glycerol and dialkyl carbonates using hydrotalcite as a reusable heterogeneous base catalyst, Green Chem.2010,12,578-581.
    [86]J. B. Li, T. Wang, Coupling reaction and azeotropic distillation for the synthesis of glycerol carbonate from glycerol and dimethyl carbonate, Chem. Eng. Process.2010,49,530-535.
    [87]M. Hatano, S. Kamiya, K. Moriyama, K. Ishihara, Lanthanum(III) Isopropoxide catalyzed chemoselective transesterification of dimethyl carbonate and methylcarbamates, Org. Lett. 2011,13(3),430-433.
    [88]Y. Ono, Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block, Appl. Catal. A 1997,155,133-166.
    [89]J. P. Parrish, R. N.Salvatore, K. W. Jung, Perspectives on alkyl carbonates in organic synthesis, Tetrahedron,2000,56,8207-8237.
    [90]R. M. Burk, M. B. Roof, A Safe and efficient method for conversion of 1,2- and 1,3-diols to cyclic carbonates utilizing triphosgene, Tetrahedron Lett.1993,34,395-398.
    [91]G. Bertolini, G. Pavich, B. Vergani, A new simple one-pot regioselective preparation of mixed diesters of carbonic acid, J. Org. Chem.1998,63,6031-6034.
    [92]A. R. Choppin, J. W. Rogers, The preparation of di-t-butyl carbonate and t-butyl chlorocarbonate, J. Am. Chem. Soc.1948,70,2967.
    [93]J. L. Song, B. B. Zhang, T. B. Wu, G. Y. Yang, B. X. Han, Organotin-oxomolybdate coordination polymer as catalyst for synthesis of unsymmetrical organic carbonates, Green Chem.2011,13,922-927.
    [94]T. F. Degnan Jr, C. M. Smith, C. R. Venkat, Alkylation of aromatics with ethylene and propylene:recent developments in commercial processes, Appl. Catal. A 2001,221,283-294.
    [95]V. R. Vijayaraghavan, K. J. A. Raj, Ethylation of benzene with ethanol over substituted large pore aluminophosphate-based molecular sieves, J. Mol. Catal. A 2004,207,41-50.
    [96]K. J. A. Raj, E. J. P. Malar, V. R. Vijayaraghavan, Shape-selective reactions with AEL and AFI type molecular sieves alkylation of benzene, toluene and ethylbenzene with ethanol, 2-propanol, methanol and t-butanol, J. Mol. Catal. A 2006,243,99-105.
    [97]Y. X. Li, B. Xue, X.Y. He, Synthesis of ethylbenzene by alkylation of benzene with diethyl carbonate over parent MCM-22 and hydrothermally treated MCM-22, J. Mol. Catal. A 2009, 301,106-113.
    [98]B. Xue, Y X. Li, S. J. Wang, H. Y. Liu, C. F. Xu, Selective synthesis of ethylbenzene by alkylation of benzene with diethyl carbonate over MCM-22 modified by MgO, Reac. Kinet. Mech. Cat.2010,100,417-425.
    [99]M. Moethrath, L. Bunzel, H. Deml, W. Ebert, Production and use of high molecular weight aliphatic polycarbonates, U.S. Patent 6,767,986,
    [100]T. Chen, Y. Bai, R. Sun, Study on relationship between mechanical properties and particle size distribution for polyhexamethylene carbonate diol toughened epoxy resin, J. Appl. Polym. Sci.1998,67,569-575.
    [101]W. Hinz, E. M. Dexheimer, J. Broge, R. A. Neff, T. M. Smiecinski, A method of forming a polymethercarbonate polyol technical field, PCT Int. Appl. WO2006/103214(A1),2006.
    [102]C. Liu, Z. Z. Jiang, J. Decatur, W. C. Xie, R. A. Gross, Chain growth and branch structure formation during lipase-catalyzed synthesis of aliphatic polycarbonate polyols, Macromolecules 2011,44,1471-1479.
    [103]I. Cota, E. Ramirez, F. Medina, J. E. Sueiras, G. Layrac, D. Tichit, Highly basic catalysts obtained by intercalation of La-containing anionic complexes in layered double hydroxides, Appl. Catal. A:General 2010,382,272-276.
    [104]L. P. Wang, B. Xiao, G. Y. Wang, Kinetic model of transesterification of diphenyl carbonate and 1,4-butyldiol, J. Natural Gas Chem.2010,19,436-440.
    [105]R. Seto, T. Sato, T. Kojima, K. Hosokawa,Y. Koyama, G. I. Konishi, T. Takata, 9,9'-Spirobifluorene-containing polycarbonates:transparent polymers with high refractive index and low birefringence, J. Poly. Sci.:Part A:Poly. Chem.2010,48,3658-3667.
    [106]C. H. Zhou, J. N. Beltramini, Y. X. Fan, G. Q. Lu, Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals, Chem. Soc. Rev.2008, 37,527-549.
    [107]J. B. Bell, C. V. Arthur, Method for preparing glycerin carbonate, US2915529,1959.
    [108]M. J. Climent, A. Corma, P. De Frutos, S. Iborra, M. Noy, A. Velty, P. Concepcion, Chemicals from biomass:Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid-base pairs, J. Catal. 2010,269,140-149.
    [109]F. Bigi, R. Maggi, G. Sartori, Selected syntheses of ureas through phosgene substitutes, G. Green Chem.2000,2,140-148.
    [110]F. Shi, Y. Q. Deng, Polymer-immobilized gold catalysts for the efficient and clean syntheses of carbamates and symmetric ureas by oxidative carbonylation of aniline and its derivatives, J. Catal.2002,211,548-551.
    [111]A. Ion, V. Parvulescu, P. D. Jacobs DeVos, Synthesis of symmetrical or asymmetrical urea compounds from CO2 via base catalysis, Green Chem.2007,9,158-161.
    [112]E. Angeles, A. Santillan, I. Martinez, A. Ramirez, E. Moreno, M. Salmon, R. Martinez, A simple method for the synthesis of carbamates, Synth. Commun.1994,24,2441-2447.
    [113]S. R. Jagtapa, Y. P. Patila, A. G. Panda B. M. Bhanage, Synthesis of 1,3-disubstituted symmetrical/unsymmetrical ureas via Cs2CO3-catalyzed transamination of ethylene carbonate and primary amines, Synth. Commun.2009,39,2093-2100.
    [114]F. Saliu, B. Rindone, Organocatalyzed synthesis of ureas from amines and ethylene carbonate, Tetrahedron Lett.2010,51,6301-6304.
    [115]G. Stoica, S. Abello, J. Perez-Ramirez, Na-dawsonite derived aluminates for DMC production by transesterification of ethylene carbonate, Appl. Catal. A:General 2009,365, 252-260.
    [116]R. Juarez, A. Corma, H. Garcia, Gold nanoparticles promote the catalytic activity of ceria for the transalkylation of propylene carbonate to dimethyl carbonate, Green Chem.2009,11, 949-952.
    [117]M. Sankar, S. Satav, P. Manikandan, Transesterification of cyclic carbonates to dimethyl carbonate using solid oxide catalyst at ambient conditions:environmentally benign synthesis, ChemSusChem 2010,3,575-578.
    [118]M. Selva, A. Perosa, M. Fabri, sequential coupling of the transesterification of cyclic carbonates with the selective N-methylation of anilines catalysed by faujasites, Green Chem. 2008,10,1068-1077.
    [119]S. C. Lee, S. W. Lee, K. S. Kim, T. J. Lee, D. H. Kim and J. C. Kim, O-alkylation of phenol derivatives over basic zeolites, Catal. Today 1998,44,253-258.
    [120]V. Vishwanathan, S. Ndou, L. Sikhwivhilu, N. Plint, K. V. Raghavan and N. J. Coville, Evidence for weak base site participation in the vapour phase methylation of catechol over solid base catalysts, Chem. Commun.2001,893-894.
    [121]R. Bal, S. Sivasanker, Vapour phase selective O-alkylation of phenol over alkali loaded silica, Appl. C atal., A.2003,246,373-382.
    [122]Z. L. Shen, X. Z. Jiang, W. M. Mo, B. X. Hu, N. Sun, Catalytic O-methylation of phenols with dimethyl carbonate to aryl methyl ethers using [BMIm]Cl, Green. Chem.2005,7,97-99.
    [123]J. Ropponen, M. Lahtinen, S. Busi, M. Nissinen, E. Kolehmainen, K. Rissanen, Novel one-pot synthesis of quaternary ammonium halides:new route to ionic liquids, New J. Chem.2004,28,1426-1430.
    [124]Z. Q. Zheng, T. H. Wu, R. W. Zheng, Y. Wu, X. P. Zhou, Study on the synthesis of quaternary ammonium salts using imidazolium ionic liquid as catalyst, Catal. Commun. 2007,8,39-42.
    [125]Z. Q. Zheng, J. Wang, T. H. Wu, X. P. Zhou, Alkylation of ammonium salts catalyzed by imidazolium-based ionic liquid catalysts, Adv. Synth. Catal.2007,349,1095-1101.
    [126]P. Mauleon, I. Alonso, M. R. Rivero, J. C. Carretero, Enantioselective synthesis of chiral sulfones by Rh-catalyzed asymmetric addition of boronic acids to,α-unsaturated 2-pyridyl sulfones, J. Org. Chem.2007,72,9924-9935.
    [127]M. M. Heravi, N. Z. Ahari, H. A. Oskooie, M. Ghassemzadeh, Solid state s-methylation of thiols and o-methylation of phenols and naphthols with dimethyl sulfate under microwave irradiation, Phosphorus, Sulfur Silicon Relat. Elem.2005,180,1701-1712.
    [128]J. G. Xie, C. Y. Wu, B. W. Christopher, J. Quan, L. M. Zhu, Ionic lquids-promoted s-methylation of thiols utilizing dimethyl carbonate, Phosphorus, Sulfur, and Silicon 2011, 186,31-37.
    [129]T. L. Sima, S. Guo, F. Shi, Y. Q. Deng, The syntheses of carbamates from reactions of primary and secondary aliphatic amines with dimethyl carbonate in ionic liquids, Tetrahedron Lett.2002,43,8145-8147.
    [130]H. C. Zhou, F. Shi, X. Tian, Q. H. Zhang, Y. Q. Deng, Synthesis of carbamates from aliphatic amines and dimethyl carbonate catalyzed by acid functional ionic liquids, J. Mol. Catal. A:Chemical 2007,271,89-92.
    [131]X. L. Fu, Z. Zhang, C. M. Li, L. B. Wang, H. Y. Ji, Y. Yang, T. Zou, G. H. Gao, N-heterocyclic carbomethoxylation catalyzed by ionic liquids in the presence of dimethyl carbonate, Catal. Commun.2009,10,665-668.
    [132]K. M. Deshmukh, Z. S. Qureshi, K. P. Dhake, B. M. Bhanage, Transesterification of dimethyl carbonate with phenol using Brφnsted and Lewis acidic ionic liquid, Catal. Commun.2010,12,207-211.
    [133]H. Y. Ju, M. M. Dharman, D. W. Park, Y. Choe, S. W. Park, Performance of ionic liquid as catalysis in the synthesis of dimethyl carbonate from ethylene carbonate and methanol, React. Kinet.Catal.Lett.2007,90,3-9.
    [134]M. M. Dharman, H. Y. Ju, H. L. Shim, M. K. Lee, K. H. Kim, D. W. Park, Significant influence of microwave dielectric heating on ionic liquid catalyzed transesterification of ethylene carbonate with methanol, J. Mol. Catal. A:Chemical 2009,303,96-101.
    [135]Z. Z. Yang, L. N. He, X. Y. Dou, S. Chanfreau, Dimethyl carbonate synthesis catalyzed by DABCO-derived basic ionic liquids via transesterification of ethylene carbonate with methanol, Tetrahedron Lett.2010,51,2931-2934.
    [136]D. W. Kim, C. W. Kim, J. C. Koh, D. W. Park, Synthesis of dimethyl carbonate from ethylene carbonate and methanol using immobilized ionic liquid on amorphous silica, J. Ind. Eng. Chem.2010,16,474-478.
    [137]K. H. Kim, D. W. Kim, C. W. Kim, J. C. Koh, D. W. Park, Synthesis of dimethyl carbonate from transesterification of ethylene carbonate with methanol using immobilized ionic liquid on commercial silica, Korean J. Chem. Eng.,2010,27,1441-1445.
    [138]D. W. Kim, D. O. Lim, D. H. Cho, J. C. Kohc, D. W. Park, Production of dimethyl carbonate from ethylene carbonate and methanol using immobilized ionic liquids on MCM-41, Catal. Today 2011,164,556-560.
    [139]H. J. Cho, H. M. Kwon, J. Tharun, D. W. Park, Synthesis of glycerol carbonate from ethylene carbonate and glycerol using immobilized ionic liquid catalysts, J. Ind. Eng. Chem. 2010,16,679-683.
    [140]Z. Y. Meng, J. Sun, J. Q. Wang, J. X. Zhang, Z. Z. Fu, W. G. Cheng, X. P. Zhang, An efficient and stable ionic liquid system for synthesis of ethylene glycol via hydrolysis of ethylene carbonate, Chin. J. Chem. Eng.2010,18,962-966.
    [141]H. Y. Ju, M. D. Manju, K. H. Kim, S. W. Park, D. W. Park, Chemical fixation of carbon dioxide to dimethyl carbonate from propylene carbonate and methanol using ionic liquid catalysts, Korean J. Chem. Eng.,2007,24,917-919.
    [142]L. F. Xiao, Q. F. Yue, C. G. Xia, L. W. Xu, Supported basic ionic liquid:highly effective catalyst for the synthesis of 1,2-propylene glycol from hydrolysis of propylene carbonate, J. Mol. Catal. A:Chemical 2008,279,230-234.
    [143]B. D. Palmer, W. R.Wilson, S. M. Pullen, W. A. Denny, Hypoxia-selective antitumor agents. 3. relationships between structure and cytotoxicity against cultured tumor cells for substituted N,N-bis(2-chloroethyl)anilines, J. Med. Chem.1990,33,112-121.
    [144]M. H. Benn, L. N. Owen, A. M.Creighton, Cytotoxic compounds. Part Ⅰ. p-(NN-Di-2'-chloroethyl- and p- (NN- Di-2'-bromoethyl-amino) thiophenol, J. Chem. Soc. 1958,2800-2810.
    [145]Z. Y. Sun, E. Botros, A. D. Su, Y. Kim, E. Wang, N. Z. Baturay, C. H. Kwon, Sulfoxide-containing aromatic nitrogen mustards as hypoxia-directed bioreductive cytotoxins, J. Med. Chem.2000,43,4160-4168.
    [146]F. Jourdain, J. C. Pommelet, A new synthetic route to macrocycles:synthesis of large ring enaminolactones, Tetrahedron Lett.,1994,35,1545-1548.
    [147]A. B. Shivakar, S. P. Gupte, R. V. Chaudari, Synthesis of α-amino alcohols from aromatic amines and alkylene carbonates using Na-Y zeolite catalyst, Synlett,2006,9,1374-1378.
    [148]M. Selva, P. Tundo, T. Foccardi, Mono-N-methylation of functionalized anilines with alkyl methyl carbonates over NaY faujasites:4. kinetics and selectivity, J. Org. Chem.2005,70, 2476-2485.
    [149]M. Selva, P. Tundo, A. Perosa, Reaction of functionalized anilines with dimethyl carbonate over NaY faujasite:3. chemoselectivity toward mono-N-methylation, J. Org. Chem.2003, 68,7374-7378.
    [150]M. Selva, E. Militello, M. Fabris, The methylation of benzyl-type alcohols with dimethyl carbonate in the presence of Y- and X-faujasites:selective synthesis of methyl ethers, Green Chem.2008,10,73-79.
    [151]A. Loris, A. Perosa, M. Selva, P. Tundo, Selective N,N-dibenzylation of primary aliphatic amines with dibenzyl carbonate in the presence of phosphonium salts, J. Org, Chem.2004, 69,3953-3956.
    [152]M. Selva, A. Perosa, P. Tundo, D. Brunelli, Selective N,N-dimethylation of primary aromatic amines with methyl alkyl carbonates in the presence of phosphonium salts, J. Org.Chem.2006,71,5770-5773.
    [153]M. Selva, M. Fabris, V. Lucchini, A. Perosa, M. No, The reaction of primary aromatic amines with alkylene carbonates for the selective synthesis of bis-N-(2-hydroxy)alkylanilines:the catalytic effect of phosphonium-based ionic liquids, Org. Biomol. Chem.,2010,8,5187-5198.
    [154]L. Q. Liao, C. Zhang, S. Q. Gong, Microwave-assisted ring-opening polymerization of trimethylene carbonate in the presence of ionic liquid, Polym. Sci. Part A:Polym. Chem. 2007,45,5857-5863.
    [1]I. Vauthey, F. Valot, C. Gozzi, F. Fache, M. Lemaine, An environmentally benign access to carbamates and ureas, Tetrahedron Lett.2000,41,6347-6350.
    [2]T. T. Wu, J. M. Huang, D. A. Noel, G. D. Dill, Synthesis and herbicidal activity of a-heterocyclic carbinol carbamates, J. Agric. Food Chem.1987,35,817-823.
    [3]J. E. Macor, A. Cuff, L. Cornelius, Neutral acylation (protection) of the indole nitrogen:a simple synthesis of indole-1-carboxylates, indole-1-thiocarboxylates and indole-1-carboxamides, Tetrahedron Lett.1999,40,2733-2736.
    [4]J. S. Norwick, N. A. Powell, T. M. Nguyen, G. Noronha, An improved method for the synthesis of enantiomerically pure amino acid ester isocyanates, J. Org. Chem.1992,57,7364-7366.
    [5]R. Batey, V. Santhakumar, C. Yoshina-Ishii, S. Taylor, An efficient new protocol for the formation of unsymmetrical tri- and tetrasubstituted ureas, Tetrahedron Lett.1998,39, 6267-6270.
    [6]K. Naonobu, F. Haruhisa, N. Yukinori, Catalytic activity of mesoporous silica for synthesis of methyl N-phenyl carbamate from dimethyl carbonate and aniline, Catal. Lett.2002,80,47-51.
    [7]T. Baba, M. Fujiwara, A. Oosaku, A. Kobayashi, R.G. Deleon, Y. Ono, Catalytic synthesis of N-alkyl carbamates by methoxycarbonylation of alkylamines with dimethyl carbonate using Pb(NO3)2, Appl. Catal. A2002,227,1-6.
    [8]M. Curini, F. Epifano, F. Maltese, O. Rosati, Carbamate synthesis from amines and dimethyl carbonate under ytterbium triflate catalysis, Tetrahedron Lett.2002,43,4895-4897.
    [9]N. Lucasa, A. P. Amrutea, K. Palraja, Non-phosgene route for the synthesis of methyl phenyl carbamate using ordered AlSBA-15 catalyst, J. Mol. Catal. A 2008,295,29-33.
    [10]P. Tundo, L. Rossi, A. Loris, Dimethyl carbonate as an ambident electrophile, J. Org. Chem. 2005,70,2219-2224.
    [11]M. Distasoa, E. Quaranta, Group 3 metal (Sc, La) triflates as catalysts for the carbomethoxylation of aliphatic amines with dimethylcarbonate under mild conditions, Tetrahedron 2004,60,1531-1539.
    [12]Z. H. Fu, O. Yoshio, Synthesis of methyl N-phenyl carbamate by methoxycarbonylation of aniline with dimethyl carbonate using Pb compounds as catalysts, J. Mol. Catal.1994,91, 399-405.
    [13]M. Aresta, E. Quaranta, Mechanistic studies on the role of carbon dioxide in the synthesis of methylcarbamates from amines and dimethylcarbonate in the presence of CO2, Tetrahedron 1991,47,9489-9502.
    [14]S. Raucher, S. D. Jones, A convenient method for the conversion of amines to carbamates, Synth. Commun.1985,15,1025-1031.
    [15]G. Barany, A. L. Schroll, A. W. Mott, D. A. Halsrud, A general strategy for elaboration of the dithiocarbonyl functionality,-(C:O)SS-:application to the synthesis of bis(chlorocarbonyl)disulfane and related derivatives of thiocarbonic acids, J. Org. Chem. 1983,48,4750-4761.
    [16]Jr. Kesling, Process for the preparation of aromatic urethanes, U.S. Patent,1981, US4,251, 667.
    [17]P. Tundo, S. Bressanello, A. Loris, G. Sathicq, Direct synthesis of N-methylurethanes from primary amines with dimethyl carbonate, Pure Appl. Chem.2005,77,1719-1725.
    [18]Z. L. Shen, X. Z. Jiang, A novel synthesis of N-methyl-N-aryl carbamates from aromatic amines and dimethyl carbonate catalyzed by K2CO3/Bu4NBr, Chin. Chem. Lett.2004,15, 889-891.
    [19]T. Sima, S. Guo, F. Shi, Y. Q. Deng, The syntheses of carbamates from reactions of primary and secondary aliphatic amines with dimethyl carbonate in ionic liquids, Tetrahedron Lett. 2002,43,8145-8147.
    [20]H. C. Zhou, F. Shi, X. Tian, Q. H. Zhang, Y. Q. Deng, Synthesis of carbamates from aliphatic amines and dimethyl carbonate catalyzed by acid functional ionic liquids, J. Mol. Catal. A: Chem.2007,271,89-92.
    [21]X. L. Fu, Z. Zhang, C. M. Li, L. B. Wang, H. Y. Ji, Y. Yang, T. Zou, G. H. Gao, N-heterocyclic carbomethoxylation catalyzed by ionic liquids in the presence of dimethyl carbonate, Catal. Commun.2009,10,665-668.
    [22]S. F. Sousa, P. A. Fernandes, M. J. Ramos, General performance of density functionals, J. Phys. Chem. A 2007,111,10439-10452.
    [23]F. Trotta, P. Tundo, G Moraglio, Selective mono-N-alkylation of aromatic amines by dialkyl carbonate under gas-liquid phase-transfer catalysis (GL-PTC) conditions, J. Org. Chem.1987, 52,1300-1304.
    [24]S. P. Wang, G. L. Zhang, X. B. Ma, J. L. Gong, Investigations of catalytic activity, aeactivation, and regeneration of Pb(OAc)2 for methoxycarbonylation of 2,4-toluene diamine with dimethyl carbonate, Ind. Eng. Chem. Res.2007,46,6858-6864.
    [25]J. S. Wilkes, J. A. Levisky, R. A. Wilson, C. L. Hussey, Dialkylimidazolium chloroaluminate melts:a new class of room-temperature ionic liquids for electrochemistry, spectroscopy, and synthesis, Inorg. Chem.1982,21,1263-1264.
    [26]T. Welton, Room-temperature ionic liquids:solvents for synthesis and catalysis, Chem. Rev. 1999,99,2071-2083.
    [27]M. J. Frisch, G. W. Trucks, H. B. Schlegel, Gaussian 03, Gaussian, Inc., Pittsburgh, PA,2003.
    [28]A. E. Shchavlev, A. N. Pankratov, V. B. Borodulin, O. A. Chaplygina, DFT study of the monomers and dimers of 2-pyrrolidone:equilibrium structures, vibrational, orbital, topological, and NBO analysis of hydrogen-bonded interactions, J. Phys. Chem. A 2005,109, 10982-10996.
    [29]A. E. Reed, L. A. Curtiss, F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chem. Rev.1988,88,899-926.
    [1]E. L. Margelefsky, R. K. Zeidanb, M. E. Davis, Cooperative catalysis by silica-supported organic functional groups, Chem. Soc. Rev.2008,37,1118-1126.
    [2]J. K. Lee, M. C. Kung, H. H. Kung, Cooperative Catalysis:A new development in heterogeneous catalysis, Top Catal.2008 49,136-144.
    [3]H. Omote, N. P. Le, M. Y. Park, M. Maeda, M. Futai, p Subunit Glu-185 of escherichia coli H--ATPase (ATP Synthase) is an essential residue for cooperative catalysis, J. Biol. Chem. 1995,270,25656-25660.
    [4]C. Kaibara, T. Matsui, T. Hisabori, M. Yoshida, Structural asymmetry of F1-ATPase caused by the y subunit generates a high affinity nucleotide binding site, J. Biol. Chem.1996,271, 2433-2438.
    [5]L. Tai, K. Hwang, Cooperative catalysis in the homodimer subunits of xanthine oxidase, Biochem.2004,43,4869-4876.
    [6]A. N. Malyan, Role of short conserved segments of a and β subunits that link F1 ATPase catalytic and noncatalytic sites, Biochem. (Moscow) 2010,75,81-84.
    [7]J. Ma, D. Cahard, Towards perfect catalytic asymmetric synthesis:dual activation of the electrophile and the nucleophile, Angew. Chem. Int. Ed.2004,43,4566-4583.
    [8]A. E. Kadib, K. Molvinger, M. Bousmina, D. Brunel, Decoration of chitosan microspheres with inorganic oxide clusters:Rational design of hierarchically porous, stable and cooperative acid-base nanoreactors, J. Catal.2010,273,147-155.
    [8]S. H. McCooey, S. J. Connon, Urea- and thiourea-substituted cinchona alkaloid derivatives as highly efficient bifunctional organocatalysts for the asymmetric addition of malonate to nitroalkenes:inversion of configuration at C9 dramatically improves catalyst performance, Angew. Chem. Int. Ed.2005,44,6367-6370.
    [9]T. Okino, Y. Hoashi, T. Furukawa, X. N. Xu, Y. Takemoto, Enantio- and diastereoselective michael reaction of 1,3-dicarbonyl compounds to nitroolefins catalyzed by a bifunctional thiourea, J. Am. Chem. Soc.2005,127,119-125.
    [10]T. Okino, Y. Hoashi, Y. Takemoto, Enantioselective michael reaction of malonates to nitroolefins catalyzed by bifunctional organocatalysts, J. Am. Chem. Soc.2003,125, 12672-12673.
    [11]H. Xu, S. J. Zuend, M. G. Woll, Y. Tao, E.N. Jacobsen, Asymmetric cooperative catalysis of strong brφnsted acid-promoted reactions using chiral ureas, Sci.2010,327,986-990.
    [12]E. A. Turner, C. C. Pye, R. D. Singer, Use of ab Initio Calculations toward the Rational Design of Room Temperature Ionic Liquids, J. Phys. Chem. A 2003,107,2277-2288.
    [13]K. Dong, S. Zhang, D. Wang, X. Yao, Hydrogen bonds in imidazolium ionic liquids, J. Phys. Chem. A 2006,110,9775-9782.
    [14]J. M. Lee, J. M. Prausnitz, Polarity and hydrogen-bond-donor strength for some ionic liquids: effect of alkyl chain length on the pyrrolidinium cation, Chem. Phys. Lett.2010,492,55-59.
    [15]M. J. Muldoon, C. M. Gordon, I. R. Dunkin, Investigations of solvent-solute interactions in room temperature ionic liquids using solvatochromic dyes, J. Chem. Soc. Perkin Trans.2001, 2,433-435.
    [16]R. Lungwitz, M. Friedrich, W. Linertc, S. Spange, New aspects on the hydrogen bond donor (HBD) strength of 1-butyl-3-methylimidazolium room temperature ionic liquids, New J. Chem.2008,32,1493-1499.
    [17]J. Mo, J. Xiao, The Heck reaction of electron-rich olefins with regiocontrol by hydrogen-bond donors, Angew. Chem. Int. Ed.2006,45,4152-4157.
    [18]A. Kawai, T. Hidemori, K. Shibuya, Solvation of a-hydroxydiphenylmethyl radical in room temperature ionic liquids studied by transient FT-EPR spectroscopy, Chem. Phys. Lett.2005, 414,378-383.
    [19]A. Makowska, E. Dyoniziak, A. Siporska, J. Szydlowski, Miscibility of ionic liquids with polyhydric alcohols, J. Phys. Chem. B 2010,114,2504-2508.
    [20]L. Xie, A. F. Reguillon, X. Wang, X. Fu, S. P. Rostaing, G. Toussaint, C. Geantet, M. Vrinatd, M. Lemaire, Selective extraction of neutral nitrogen compounds found in diesel feed by 1-butyl-3-methyl-imidazolium chloride, Green Chem.2008,10,524-531.
    [21]T. Singh, T. J. Trivedi, A. Kumar, Dissolution, regeneration and ion-gel formation of agarose in room-temperature ionic liquids, Green Chem.2010,12,1029-1035.
    [22]A. R. Gholap, K. Venkatesan, T. Daniel, R. J. Lahoti, K.V. Srinivasan, Ultrasound promoted acetylation of alcohols in room temperature ionic liquid under ambient conditions, Green Chem.2003,5,693-696.
    [23]X. Fu, Z. Zhang, C. Li, L. Wang, H. Ji, Y. Yang, T. Zou, G. Gao, N-heterocyclic carbomethoxylation catalyzed by ionic liquids in the presence of dimethyl carbonate, Catal. Commun.2009,10,665-668.
    [24]A. Aggarwal, N. L. Lancaster, A.R. Sethi, T. Welton, The role of hydrogen bonding in controlling the selectivity of Diels-Alder reactions in room-temperature ionic liquids, Green Chem.2002,4,517-520.
    [25]A. K. Chakraborti, S. R. Roy, On catalysis by ionic liquids, J. Am. Chem. Soc.2009,131, 6902-6903.
    [26]S. R. Roy, A. K. Chakraborti, Supramolecular assemblies in ionic liquid catalysis for Aza-Michael reaction, Org. Lett.2010,12,3866-3869.
    [27]R. Bini, C. Chiappe, V. L. Mestre, C. S. Pomellic, T. Welton, A rationalization of the solvent effect on the Diels-Alder reaction in ionic liquids using multiparameter linear solvation energy relationships, Org. Biomol. Chem.2008,6,2522-2529.
    [28]A. C. Pinto, A. A. M. Lapis, B. V. d. Silva, R. S. Bastos, J. Dupont, B. A. D. Neto, Pronounced ionic liquid effect in the synthesis of biologically active isatin-3-oxime derivatives under acid catalysis, Tetrahedron Lett.2008,49,5639-5641.
    [29]T. Gutel, P. Campbell, C. C. Santini, F. Lefebver, C. Lucas, Y. Chauvin, On the influence of iconicity over catalysis in ionic liquids, Chim. Oggi-Chem. Today 2009,27,48-50.
    [30]T. Komine, A. Kojima, Y. Asahina, T. Saito, H. Takano, T. Shibue, Y. Fukuda, Synthesis and structure-activity relationship studies of highly potent novel oxazolidinone antibacterials, J. Med. Chem.2008,51,6558-6562.
    [31]F. Li, C. Xia, Synthesis of 2-oxazolidinone catalyzed by palladium on charcoal:a novel and highly effective heterogeneous catalytic system for oxidative cyclocarbonylation of β-aminoalcohols and 2-aminophenol, J. Catal.2004,227,542-546.
    [32]Y. Chu, H. Deng, J.P. Cheng, Methods for the synthesis of antiinflammatory 2-aryl propionic acids, J. Org. Chem.2007,72,7790-7793.
    [33]T. Zou, L. Lu, X. L. Liu, Z. Zhang, L. B. Wang, X. L.Fu, G. H. Gao,* Y. Kou, M. Y. He, Synthesis, characterization and properties of asymmetric methide anion based ionic liquids containing nitrile groups, Chin. J. Chem.2008,26,1469-1480.
    [34]A. Kumara, I. Ahmada, M. S. Rao, A simple and efficient thia-Michael addition to a, β-unsaturated ketones catalyzed by Yb(OTf)3 in [bmim][BF4], J. Sulfur Chem.2009,30, 570-577.
    [35]M. S. Rasalkar, M. K. Potdar, S. S. Mohile, M. M. Salunkhe, An ionic liquid influenced L-proline catalysed asymmetric Michael addition of ketones to nitrostyrene, J. Mol. Catal. A: Chem.2005,235,267-270.
    [36]S. T. Handy, X. Zhang, Organic synthesis in ionic liquids:the stille coupling, Org. Lett.2001, 3,233-236.
    [37]X. Lv, Z. Wang, W. Bao, CuI catalyzed C-N bond forming reactions between aryl/heteroaryl bromides and imidazoles in [Bmim]BF4, Tetrahedron 2006,62,4756-4761.
    [38]M. L. Kantam, B. Neelima, C. V. Reddy, V. Neeraja, N-Arylation of imidazoles, imides, amines, amides and sulfonamides with boronic acids using a recyclable Cu(OAc)2-H2O/[bmim][BF4] system, J. Mol. Catal. A:Chem-- .2006,249,201-206.
    [39]Y. Gu, Q. Zhang, Z. Duan, J. Zhang, S. Zhang, Y. Deng, Ionic liquid as an efficient promoting medium for fixation of carbon dioxide:a clean method for the synthesis of 5-methylene-1,3-oxazolidin-2-ones from propargylic alcohols, amines, and carbon dioxide catalyzed by Cu(I) under mild conditions, J. Org. Chem.2005,70,7376-7380.
    [40]L. S. Santos, B. A. D. Neto, C. S. Consorti, C. H. Pavam, W. P. Almeida, F. Coelho, J. Dupont, M. N. Eberlin, The role of ionic liquids in co-catalysis of Baylis-Hillman reaction: Interception of supramolecular species via electrospray ionization mass spectrometry, J. Phys. Org. Chem.2006,19,731-736.
    [41]L. S. Santos, C. H. Pavam, W. P. Almeida, F. Coelho, M. N. Eberlin, Probing the mechanism of the Baylis-Hillman reaction by electrospray ionization mass and tandem mass spectrometry, Angew. Chem. Int. Ed.2004,43,4330-4333.
    [1]S. J. Katz, S. C. Bergmeier, Convenient methods for the hydrolysis of oxazolidinones to vicinal aminoalcohols, Tetrahedron Lett.2002,43,557-559.
    [2]G. S. Poindexter, D. A. Owens, P. L. Dolan, E. Woox, The use of 2-oxazolidinones as latent aziridine equivalents.2. aminoethylation of aromatic amines, phenols, and thiophenol, J. Org. Chem.1992,57,6257-6265.
    [3]C. S. Park, M. S. Kim, T. B. Sim, D. K. Pyun, C. H. Lee, D. Choi, W. K. Lee, Novel stereoselective synthesis of functionalized oxazolidinones from chiral aziridines, J. Org. Chem. 2003,68,43-49.
    [4]B. J. Ueberbacher, H. Griengla, H. Weber, Chemo-enzymatic synthesis of new ferrocenyl-oxazolidinones and their application as chiral auxiliaries, Tetrahedron:Asymmetry 2008,19,838-846.
    [5]G. K. Friestad, J. Qin, Highly Stereoselective intermolecular radical addition to aldehyde hydrazones from a chiral 3-amino-2-oxazolidinone, J. Am. Chem. Soc.2000,122,8329-8330.
    [6]E. Naydenova, M. T. Ancheva, P. Todorov, T. Yordanovac, K. Troev, Novel a-aminophosphonic acids:design, characterization, and biological activity, Bioorg. Med. Chem.2006,14,2190-2196.
    [7]张旭琴,李建龙,白子文,粟平阳,孙奉瑞,含噁唑烷酮基聚氨酯弹性体的合成,聚氨酯工业2002年,第17卷,第2期,9-12.
    [8]陈晓东,周南桥,张海,耐蒸煮软包装用聚氨酯胶黏剂的研制,化学与黏合2009年,第31卷,第2期,67-70.
    [9]H. Yeganeh, S. Jamshidi, P. H. Talemi, Synthesis, characterization and properties of novel thermally stable poly(urethane-oxazolidone) elastomers, Eur. Polym. J.2006,42,1743-1754.
    [10]刘建华,陈静,夏春谷,石油化工2010,11,1189-1197.
    [11]F. Moureau, J. Wouters, D. P. Vercauteren, S. Collin, G. Evrard, F. Durant, F. Ducrey, J. J. Koenig, F. X. Jarreau, A reversible monoamine oxidase inhibitor, Toloxatone: spectrophotometric and molecular orbital studies of the interaction with flavin adenine dinucleotide (FAD), Eur. J. Med. Chem.1994,29,269-277.
    [12]A. Mai, M. Artico, M. Esposito, G. Sbardella, S. Massa, O. Befani, P. Turini, V. Glovannini, B. Mondovi,3-(1H-Pyrrol-1-yl)-2-oxazolidinones as reversible, highly potent, and selective inhibitors of monoamine oxidase type A, J. Med. Chem.2002,45:1180-1183.
    [13]N. Selvakumar, D Srinivas, M. K. Khera, M. S. Kumar, N. V. S. R. Mamidi, H. Sarnaik, C. Chandrasekar, B. S. Rao, M. A. Raheem, J. Das, J. Iqbal, R. Rajagopalan, Synthesis of conformationally constrained analogues of linezolid:structure-activity relationship (SAR) studies on selected novel tricyclic oxazolidinones, J. Med. Chem.2002,45,3953-3962.
    [14]C. H. Park, D. R. Brittelli, C. L. J. Wang, F. D. Marsh, W. A. Gregory, M. A. Wuonola, R. J. McRipley, V. S. Eberly, A. M. Slee, M. Forbes, Antibacterials. Synthesis and structure-activity studies of 3-aryl-toxooxazolidines 4:multiply-substituted aryl derivatives, J. Med. Chem.1992,35,1156-1165.
    [15]S. J. Brickner, D. K. Hutchinson, M. R. Barbachyn, P. R. Manninen, D. A. Ulanowicz, S. A. Garmon, K. C. Grega, S. K. Hendges, D. S. Toops, C. W. Ford, G. E. Zurenko, Synthesis and antibacterial activity of u-100592 and u-100766, two oxazolidinone antibacterial agents for the potential treatment of multidrug-resistant gram-positive bacterial infections, J. Med. Chem.1996,39,673-679.
    [16]G. P. Speranza, W. J. Peppel, Preparation of substituted 2-oxazolidones from 1,2-epoxides and isocyanates, J. Org. Chem.1958,23,1922-1924.
    [17]K. Gulbins, K. Hamann, Klaus gulbins und karl hamann anlagerungsreaktionen mit epoxyden, Chem. Ber.1961,94,3287-3292.
    [18]J. E. Herweh, W. J. Kauffman,2-Oxazoliwnes via the lithium bromide catalyzhd reaction of isocyanates with epoxides in hydrocarbon solvents, Tetrahedron Lett.1971,12,809-812.
    [19]J. Herwe, Synthesis and nuclear magnetic resonance spectra of 2-oxazolidones, J. Org. Chem. 1968,33,4029-4033.
    [20]A. Baba, I. Shibata, K. Masuda, H. Matsuda, The cycloaddition of isocyanates and carbodiimides to oxiranes catalyzed by organotin iodide -Lewis base complexes, Synthesis, 1985,12,1144-1146.
    [21]I. Shibata, A. Baba, H. Iwasaki, H. Matsuda, Cycloaddition reaction of heterocumulenes with oxiranes catalyzed by an organotin iodide-lewis base complex, J. Org. Chem.1986,51, 2177-2184.
    [22]H. Y. Wu, J. C. Ding, Y. K. Liu, Samarium triiodide catalyzed cycloaddition of epoxides with isocyanates:A facile synthesis of oxazolidinones, J. Indian Chem. Soc.2003,80,36-37.
    [23]C. T. Qian, D. M. Zhu, A facile synthesis of oxazolidinones via lanthanide-catalyzed cycloaddition of epoxides with isocyanates, Synlett.1994,2,129-130.
    [24]E. A. Barsa, R. Richter, Chemistry of the adducts of N,N'-Diphenylformamidine with oxalyl chloride and phosgene, J. Org. Chem.1986,51,4483-4485.
    [25]R. J. Slocomebdeg, E. E. Hardy, J. H. Saunders, R. L. Jenkins, Phosgene derivatives, the preparation of isocyanates, carbamyl chlorides and cyanuric acid, J. Am. Chem. Soc.1950, 72,1888-1891.
    [26]K. C. Nicolaou, Y. L. Zhong, P. S. Baran, New synthetic technology for the rapid construction of novel heterocycles Part 2. The reaction of IBX with anilides and related compounds, Angew. Chem. Int. Ed.2000,39,625-628.
    [27]S. Jegham, A. Nedelec, P. Burnier, Y. Guminski, F. Puech, J. J. Koenig, P. George, Use of chiral glycerol 2,3-carbonate in the synthesis of 3-ary-2-oxazolidinones, Tetrahedron Lett., 1998,39,4453-4454.
    [28]S. Cacchi, G. Fabrizi, A. Goggiamani, G. Zappia,3-Aryl-2-oxazolidinones through the Palladium-catalyzed N-Arylation of 2-oxazolidinones, Org. Lett.,2001,3,2539-2541.
    [29]B. Mallesham, B. M. Rajesh, P. Rajamohan Reddy, D. Srinivas, and Sanjay Trehan, Highly efficient cui-catalyzed coupling of aryl bromides with oxazolidinones using buchwald's protocol:a short route to linezolid and toloxatone, Org. Lett.2003,5,963-965.
    [30]Y. J. Chen, H. H. Chen, 1,1,1-Tris(hydroxymethyl)ethane as a new, efficient, and versatile tripod ligand for copper-catalyzed cross-coupling reactions of aryl iodides with amides, thiols, and phenols, Org. Lett.2006,8,5609-5612.
    [31]T. Mino, Y. Harada, H. Shindo, M. Sakamoto, T. Fujita, Copper-catalyzed N-arylation of amides and azoles using phosphine-free hydrazone ligands, Synlett 2008,4,614-620.
    [32]S. Jammi, S. Sakthivel, L. Rout, T. Mukherjee, S. Mandal, R. Mitra, P. Saha, T. Punniyamurthy, CuO nanoparticles catalyzed C-N, C-O, and C-S cross-coupling reactions: scope and mechanism, J. Org. Chem.2009,74,1971-1976.
    [33]M. A. Fahim, S. Q. Merchant, Liquid-liquid equilibria of systems containing propylene carbonate and some hydrocarbons, J. Chem. Eng. Data 1998,43,884-888.
    [34]J. R. Black, G. Umeda, B. Dunn, W. F. McDonough, A. Kavner, Electrochemical isotope effect and lithium isotope separation, J. Am. Chem. Soc.2009,131,9904-9905.
    [35]X. B. Lu, B. Liang, Y. J. Zhang, Y Z. Tian, Y M. Wang, C. X. Bai, H. Wang, R. Zhang, Asymmetric catalysis with CO2:direct synthesis of optically active propylene carbonate from racemic epoxides, J. Am. Chem. Soc.2004,126,3732-3733.
    [36]A. A. G. Shaikh, S. Sivaram, Organic Carbonates, Chem. Rev.1996,96,951-976.
    [37]K. C. Nicolaou, E. A. Couladouros, P. G. Nantermet, J. Renaud, R. K. Guy, W. Wrasidlo, Synthesis of C-2 taxol analogues, Angew. Chem., Int. Ed. Engl.1994,33,1581-1583.
    [38]J. H. Clements, Reactive applications of cyclic alkylene carbonates, Ind. Eng. Chem. Res. 2003,42,663-674.
    [39]M. North, P. Villuendas, A chiral solvent effect in asymmetric organocatalysis, Org. Lett. 2010,12,2378-2381.
    [40 J. Bayardon, J. Holz, B. Schaffner, V. Andrushko, S. Verevkin, A. Preetz, A. Borner, Propylene carbonate as a solvent for asymmetric hydrogenations, Angew. Chem. Int. Ed. 2007,46,5971-5974.
    [41]A. Decortes, A. M. Castilla, A. W. Kleij, Salen-complex-mediated formation of cyclic carbonates by cycloaddition of CO2 to epoxides, Angew. Chem. Int. Ed.2010,49, 9822-9837.
    [42]T. Sakakura, K. Kohno, The synthesis of organic carbonates from carbon dioxide, Chem. Commun.2009,1312-1330.
    [43]T. Tokata, Y. Furusho, K. I. Murakawa, T. Endo, H. Matsuoka, T. Hirasa, J. Matsuo, M. Sisido, Optically active poly(aryl carbonates) consisting of axially chiral units chiral binaphthyl group induced helical polymer, J. Am. Chem. Soc.1998,120,4530-4531.
    [44]K. C. Nicolaou, Z. Yang, J. J. Liu, H. Ueno, P. G. Nantermet,R. K. Guy, C. F. Claiborne, J. Renaud, E. A. Couladouros, K.Paulvannan, E. J. Soresen, Total synthesis of taxol, Nature 1994,367,630-634.
    [45]H. T. Chang, K. B. Sharpless, A practical route to enantiopure 1,2-aminoalcohols, Tetrahedron Lett.1996,37,3219-3222.
    [46]A. B. Shivarkar, S. P. Gupte, R. V. Chaudhari, Synthesis of P-amino alcohols from aromatic amines and alkylene carbonates using Na-Y zeolite catalyst, Synlett 2006,9,1374-1378.
    [47]M. Selva, A. Perosa, M. Fabris, Sequential coupling of the transesterification of cyclic carbonates with the selective N-methylation of anilines catalysed by faujasites, Green Chem. 2008,10,1068-1077.
    [48]H. Gong, N. F. Yang, A convenient method for the synthesis of 2-oxazolidinones from ethylene carbonate and primary aryl amines, Heterocycles,2009,78,2093-2100.
    [49]H. Gong, N. F. Yang, G. J. Deng, G. Y. Xu, An eco-friendly, convenient, and practical conversion of arylamines to oxazolidinones, Chem Lett.2009,38,584-585.
    [50]H. O. Bourbigou, L. Magnal, D. Morvan, Ionic liquids and catalysis:Recent progress from knowledge to applications, Appl. Catal. A:Gen.2010,373,1-56.
    [51]E. Baciocchi, C. Chiappe, C. Fasciani, O. Lanzalung, A. Lapi, Reaction of singlet oxygen with thioanisole in ionic liquid-acetonitrile binary mixtures, Org. Lett.2010,12,5116-5119.
    [52]A. Alizadeh, M. M. Khodaei, A. Eshghi, Ambiphilic dual activation role of a task-specific ionic liquid:2-hydroxyethylammonium formate as a recyclable promoter and medium for the green synthesis of β-nitrostyrenes, J. Org. Chem.2010,75,8295-8298.
    [53]M. Selva, M. Fabris, V. Lucchini, A. Perosa, M. No, The reaction of primary aromatic amines with alkylene carbonates for the selective synthesis of bis-N-(2-hydroxy)alkylanilines:the catalytic effect of phosphonium-based ionic liquids, Org. Biomol. Chem.2010,8,5187-5198.
    [54]X. Fu, Z. Zhang, C. Li, L. Wang, H. Ji, Y. Yang, T. Zou, G. Gao, N-heterocyclic carbomethoxylation catalyzed by ionic liquids in the presence of dimethyl carbonate, Catal. Commun.2009,10,665-668.
    [55]L. Zhang, Y. Yang, Y. Xue, X. Fu, Y. An, G. Gao, Experimental and theoretical investigation of reaction of aniline with dimethyl carbonate catalyzed by acid-base bifunctional ionic liquids, Catal. Today 2010,158,279-285.
    [56]L. Zhang, X. Fu, G. Gao, Anion-cation Cooperative Catalysis by Ionic Liquids, ChemCatChem.2011,3,1359-1364.
    [57]A. K. Chakraborti, S. R. Roy, On catalysis by ionic liquids, J. Am. Chem. Soc.2009,131, 6902-6903.
    [58]Y. Yang, L. Wang, Z. Zhang, C. Li, X. Fu, G. Gao, [Bmim]OAc Catalyzed Michael Addition of Active Methylene to α,β-Unsaturated Carboxylic Esters and Nitriles, Chem. Res. Chinese Universities,2010,26,554-557.
    [59]M. J. Frisch, G. W. Trucks, H. B. Schlegel, Gaussian 03, Gaussian, Inc., Pittsburgh, PA,2003.
    [1]L. Tang, J. H. Yu, H. S. Wu, H. X. Fan, Y. S. Yang, R. Y. Ji, Insulin-releasing activity of a series of phenylalanine derivatives, Eur. J. Med. Chem.2008,43,1997-2003.
    [2]B. B. Lohray, V. Bhushan, B. P. Rao, G. R. Madhavan, N. Murali, K. N. Rao, A. K. Reddy, B. M. Rajesh, P. G. Reddy, R. Chakrabarti, R. K. Vikramadithyan, R. Rajagopalan, R. N. V. S. Mamidi, H. K. Jajoo, S. Subramaniam, Novel euglycemic and hypolipidemic agents.1, J. Med. Chem.1998,41,1619-1630.
    [3]J. A. Schiffner, T. H. Woste, M. Oestreich, Enantioselective Fujiwara-Moritani, Indole and pyrrole annulations catalyzed by chiral palladium(II)-NicOx complexes, Eur. J. Org. Chem. 2010,1,174-182.
    [4]A. Padwa, D. L. Hertzog, W. R. Nadler, Intramolecular cycloaddition of isomiinchnone dipoles to heteroaromatic π-system, J. Org. Chem.1994,59,7072-7084.
    [5]Y. Gu, C. Ogawa, S. Kobayashi, Silica-supported sodium sulfonate with ionic liquid:a neutral catalyst system for michael reactions of indoles in water, Org. Lett.2007,9,175-178.
    [6]Z. Li, J. Qin, S. Li, C. Ye, J. Luo, Y. Cao, Polyphophazene containing indole-based dual chromophores:synthesis and nonlinear optical characterization, Macromolecules 2002,35, 9232-9235.
    [7]Z. Li, W. Gong, J. Qin, Z. Yang, C. Ye, Second-order nonlinear optical property of polyphosphazenes containing charge-transporting agents and indole-based chromophore, Polymer 2005,46,4971-4978.
    [8]Q. Li, Z. Li, F. Zeng, W. Gong, Z. Li, Z. Zhu, Q. Zeng, S. Yu, C. Ye, J. Qin, From controllable attached isolation moieties to possibly highly efficient nonlinear optical main-chain polyurethanes containing indole-based chromophores, J. Phys. Chem. B 2007,111,508-514.
    [9]J. Bloxham, C. J. Moody, A. M. Z. Slawin, Synthesis and solid state structures of N,N'-linked carbazoles and indoles, Tetrahedron 2002,58,3709-3720.
    [10]F. Gianness, N. Dell'uomo, E. Tassonl, M. O. Tinti, Derivatives of alpha phenylthiocarboxylic and alpha phenyloxy-carboxylic acids useful the treatment of diseases responding to pparalpha activation, US Patent 20080027098 2008.
    [11]H. Moon, J. Hwang, N. Kim, S. Y. Park, Synthesis and properties of photorefractive polymers containing indole-based multifunctional chromophore as a pendant group, Macromolecules 2000,33,5116-5123.
    [12]J. P. Parrish, R. N. Salvatorea, K. W. Jung, Perspectives on alkyl carbonates in organic synthesis, Tetrahedron 2000,56,8207-8237.
    [13]D. Bai, Q. Wang, Y. Song, B. Li, H. Jing, Synthesis of cyclic carbonate from epoxide and CO2 catalyzed by magnetic nanoparticle-supported porphyrin, Catal. Commun.2011,12, 684-688.
    [14]A. B. Shivarkar, S. P. Gupte, R. V. Chaudhari, Synthesis of P-amino alcohols from aromatic amines and alkylene carbonates using Na-Y zeolite catalyst, Synlett 2006,9,1374-1378.
    [15]M. Selva, A. Perosa, M. Fabris, Sequential coupling of the transesterification of cyclic carbonates with the selective N-methylation of anilines catalysed by faujasites, Green Chem. 2008,10,1068-1077.
    [16]H. O. Bourbigou, L. Magnal, D. Morvan, Ionic liquids and catalysis:Recent progress from knowledge to applications, Appl. Catal. A:Gen.2010,373,1-56.
    [17]E. Baciocchi, C. Chiappe, C. Fasciani, O. Lanzalung, A. Lapi, Reaction of singlet oxygen with thioanisole in ionic liquid-acetonitrile binary mixtures, Org. Lett.2010,12,5116-5119.
    [18]A. Alizadeh, M. M. Khodaei, A. Eshghi, Ambiphilic dual activation role of a task-specific ionic liquid:2-hydroxyethylammonium formate as a recyclable promoter and medium for the green synthesis of β-nitrostyrenes, J. Org. Chem.2010,75,8295-8298.
    [19]J. Mo, L. Xu, J. Xiao, Ionic Liquid-Promoted, Highly regioselective heck arylation of electron-rich olefins by aryl halides, J. Am. Chem. Soc.2005,127,751-760.
    [20]J. Mo, J. Xiao, The Heck reaction of electron-rich olefins with regiocontrol by hydrogen-bond donors, Angew. Chem. Int. Ed.2006,45,4152-4157.
    [21]J. Mo, L. Xu, J. Ruan, S. Liu, J. Xiao, Regioselective Heck arylation of unsaturated alcohols by palladium catalysis in ionic liquid, Chem. Commun.2006,3591-3593.
    [22]H. J. Cho, H.M. Kwon, J. Tharun, D.W. Park, Synthesis of glycerol carbonate from ethylene carbonate and glycerol using immobilized ionic liquid catalysts, J. Ind. Eng. Chem.2010,16, 679-683.
    [23]M. Selva, M. Fabris, V. Lucchini, A. Perosa, M. Noe, The reaction of primary aromatic amines with alkylene carbonates for the selective synthesis of bis-N-(2-hydroxy)alkylanilines: the catalytic effect of phosphonium-based ionic liquids, Org. Biomol. Chem.2010,8, 5187-5198.
    [24]X. Fu, Z. Zhang, C. Li, L. Wang, H. Ji, Y. Yang, T. Zou, G. Gao, N-heterocyclic carbomethoxylation catalyzed by ionic liquids in the presence of dimethyl carbonate, Catal. Commun.2009,10,665-668.
    [25]L. Zhang, X. Fu, G. Gao, Anion-cation cooperative catalysis by ionic liquids, ChemCatChem. 2011,3 1359-1364.
    [26]L. Zhang, Y. Yang, Y. Xue, X. Fu, Y. An, G. Gao, Experimental and theoretical investigation of reaction of aniline with dimethyl carbonate catalyzed by acid-base bifunctional ionic liquids, Catal. Today 2010,158,279-285.
    [27]Y. Chu, H. Deng, J. P. Cheng, An acidity scale of 1,3-dialkylimidazolium salts in dimethyl sulfoxide solution, J. Org. Chem.2007,72,7790-7793.
    [28]H. Zhao, G. A. Bakerb, Z. Song, O. Olubajo, L. Zandersa, S. M. Campbell, Effect of ionic liquid properties on lipase stabilization under microwave irradiation, J. Mol. Catal. B:Enzym. 2009,57,149-157.
    [29]J. Palgunadi, S. Hong, J. Lee, H. Lee, S. Lee, M. Cheong, H. Kim, Correlation between hydrogen bond basicity and acetylene solubility in room temperature ionic liquids, J. Phys. Chem. B 2011,115,1067-1074.
    [30]A. K. Kinage, S. P. Gupte, R. K. Chaturvedi, R. V. Chaudhari, Highly selective synthesis of mono-ethylene glycol phenyl ethers via hydroxyalkoxylation of phenols by cyclic carbonates using large pore zeolites, Catal. Commun.2008,9,1649-1655.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700