Au(III)/Schiff base配合物催化剂在羰化反应中的催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,金一直被认为是惰性的,因此其在催化领域的应用研究被忽略。然而,二十世纪八十年代初期,发现金作为催化剂在CO低温氧化和乙烯氢氯化中有非常好的活性,于是人们成功地将金催化剂用于多种反应中,如多相的氧化反应、水煤气转换反应等和均相的C-C键的形成、炔的水合作用和加氢反应等。然而,与其他贵金属催化剂相比较,金催化剂的普适性和通用性研究仍然相对比较局限。其中特别是与多相金的催化相比较,对均相金配合物催化剂的研究还远远不够。
     在目前金催化剂研究领域中,有关在羰化领域中的研究报道很少,而本课题组在羰化领域研究多年,取得一些成果,所用催化剂包括铜、钴、钯等。而在均相催化反应中,金属配合物催化的甲醇氧化羰化反应最具有代表性,而金与铜为同一族元素,Au(Ⅲ)与Pd(II)具有相同的d8电子结构,于是我们首先以甲醇氧化羰化反应为模板探讨Au(Ⅲ)/Schiff base催化剂的催化性能。
     在Au(Ⅲ)/Schiff base/CuCl_2催化剂中,经过对一系列Schiff base配体的筛选,发现[AuCl_2(bipy)]Cl/CuCl_2催化剂的活性最高,在120℃,Pco/Po2=2:1,P总=3.0MPa,反应时间4h条件下,甲醇的转化率达到14.7%,DMC选择性为92.5%,反应中未见Au(0)生成,表明在Schiff base配体和CuCl_2的共同作用下,能够稳定Au(Ⅲ),而且该催化剂经过重复使用6次,活性基本保持不变,其他Au(Ⅲ)/Schiff base/CuCl_2经过6次使用,活性也能基本保持。
     虽然Au(Ⅲ)/Schiff base/CuCl_2催化剂在甲醇氧化羰化反应中能保持较好的催化性能,但是CuCl_2的助催化作用不可忽略,为了排除原本在甲醇氧化羰化反应中具有一定活性的CuCl_2的影响,我们研究出了一种新型均相催化体系Au(Ⅲ)/Schiff base/卤化物,在甲醇氧化羰化反应中表现出较好活性,系统研究了希夫碱配体种类、反应温度,反应压力、卤化物添加剂用量和种类对催化剂活性的影响,结果表明在120℃,Pco/Po2=2:1,P总=3.0MPa,反应时间3h,甲醇/Au(Ⅲ) = 5060,KI/Au(Ⅲ) = 4,在[AuCl_2(phen)]Cl/KI催化剂上,甲醇转化率、DMC选择性以及反应TOF分别为10.8%、98%和138.9h~(-1),与传统催化剂相比,活性大大提高。
     为探讨均相金催化剂的普适性,我们将Au(Ⅲ)/Schiff base/卤化物催化剂应用于亚硝酸酯羰化反应制备碳酸酯中,研究了配体种类、卤化物添加剂种类和用量对反应活性的影响,结果表明,在T=80℃,Pco=3.0MPa,反应5h,KI为卤化物添加剂,KI/Au(Ⅲ)=4,[AuCl_2(phen)]Cl/KI在反应中的活性最好,亚硝酸乙酯转化率达到78.2%,DEC选择性大于90%。并且对其他亚硝酸酯也具有相同的反应活性。反应过程中无单质金生成,表明在该催化体系中,即使处于强还原气氛CO中,Schiff base/卤化物配合物体系能很好地稳定Au(Ⅲ)离子,使其仍然能保持较好的活性。而后采用Au(Ⅲ)/Schiff base/CuCl_2催化剂,研究了[AuCl_2(phen)]Cl/KI/CuCl_2在亚硝酸乙酯羰化反应中的催化性能,考察了CuCl_2用量以及[AuCl_2(phen)]Cl/KI/CuCl_2的重复使用性能,发现加入4倍CuCl_2后,DEC选择性由91.7%增大至99%,且该催化剂还具有一定的重复使用性能。
     采用UV-vis、ESI-MS以及循环伏安法研究探讨了[AuCl_2(phen)]Cl/KI在羰化反应中的机理,认为[AuI2(phen)]+可能为反应的活性中间体,阐述了希夫碱配体和碘化物在反应中的作用,提出了[AuCl_2(phen)]Cl/KI在甲醇氧化羰化反应中的可能机理。在亚硝酸酯羰化反应中,提出了与传统钯催化不同的反应机理,Au(Ⅲ)先与底物亚硝酸酯作用,形成Au(Ⅲ) (OR)(NO)物种,然后进行CO的配位与插入反应,得到Au(Ⅲ) (COOR)(NO)物种,然后另一分子ROH的亲核进攻,通过解离得到产物,Au(Ⅲ)在亚硝酸酯和碘化物的作用下,重新进入下一轮催化循环。
The application of gold catalysis in reaction has long been neglected due to the preconceived notion that gold is chemically inert. Due to the pioneering studies of Haruta and other researchers, extraordinarily good catalytic activities were observed with gold catalyst for low-temperature CO oxidation and hydrochlorination of ethyne in the 1980s. Since then, catalysis with gold has gained much attention, and many successful examples have shown that gold catalysts can indeed be applied to several fields of heterogeneous catalysis, such as oxidation reaction,water-gas shift reaction, and in many fields of homogeneous catalysis, e.g., carbon-carbon bond forming reactions, hydration of alkynes and hydrogenation. However, despite the fact that exploration of gold in catalysis has recently surged to unprecedented levels compared with other commonly used noble metal catalysts, the generality and applicability of gold in catalysis remain relatively limited. In particular, while the effectiveness of gold in heterogeneous catalysis has been well- recognized, far less efforts have been spent on study regarding homogeneous gold complexes.
     Few research in the field of carbonylation using Au complex as a catalyst was reported comparing with other gold catalysis areas. Oxidative carbonylation of methanol catalyzed by metal complex is a typical model reaction in the field of homogeneous catalysis. Recently, some promising results have been achieved in the oxidative carbonylation of alkyl alcohol, aniline, and phenol using Cu, Co, and Pd complexes as catalysts. We considered that the Au(Ⅲ) complexes would be catalytically active in the oxidative carbonylation of methanol due to the following reasons: (1) gold is located in the same group as Cu in the periodic table of elements, allowing Au complex to exhibit similar properties as Cu complex catalyst; and (2) the electronic configuration of Au(Ⅲ) is very similar to that of Pd(II). In this study, we presented the successful outcome of this endeavor where Au(Ⅲ)/Shiff-base complexes were used as catalysts for the oxidative carbonylation of methanol to dimethyl carbonate (DMC).
     We found that the highest activity of the catalyst emerged from [AuCl_2(bipy)]Cl/CuCl_2 in the Schiff base ligand screening test. The conversion and selectivity value of the model reaction were 14.7%, 92.5%, and no Au(0) generated under the reaction conditions: 120℃, Pco/PO2=2:1, P总=3.0MPa, t=4h, indicating that the Schiff base and CuCl_2 could stabilized Au(Ⅲ) in CO atmosphere. After the catalyst reused for 6 times, their activity keep almost unchanged.
     In the continution of the new catalyst system in the oxidation carbonylation, a new type homogeneous catalytic system was developed, Au(Ⅲ)/Schiff base/halide, which showed good activity in methanol oxidative carbonylation was found. The Schiff base ligand, reaction temperature, pressure, amount and type of halide additives on the catalytic performance was studied in detail. At an optimized condition: 120℃, Pco/Po2==2:1, Ptotal=3.0MPa, 3h, Metnaol/Au(Ⅲ) = 5060(mol/mol), KI/Au(Ⅲ)=4, on the [AuCl_2(phen)]Cl/KI, the conversion of methanol was 10.8%, the selectivity to DMC was 98% and the TOF was 138.9h-1.The activity of this new catalytic system increased substantially comparing with conventional Cu complex catalyst.
     To extend the practical application of gold in homogeneous catalysis, the experimental study presented herein describes a homogeneous gold-catalyzed carbonylation of alkyl nitrite to dialkyl carbonate. The ligand type, amount of halide additives were studied in detail. The catalytic esults shows that under 80℃, Pco=3.0MPa, 5h, KI/Au(Ⅲ) = 4(mol/mol), [AuCl_2(phen)]Cl/KI exhibited the best performance with the conversion of ethyl nitrite 78.2%, the selectivity of DEC 91.7%. This catalytic system is also capable to apply to low-carbon alkyl nitrite, which suggests good selectivity in the production of corresponding carbonate. No Au0 generated in this catalytic system. Both the ligand and promoter play crucial roles in increasing the catalytic activity of the gold ion in a homogeneous reaction. Au(Ⅲ)/Shiff-base/CuCl_2 was then employed as a catalyst in the carbonylation of ethyl nitrite, under the same reaction conditions, on [AuCl_2(phen)]Cl/KI/CuCl_2, the conversion and the selectivity were enhanced up to 80.6% and 99%, and the catalyst could be used for several times.
     Based on the experimental results of UV-vis, ESI-MS and cyclic voltammetry, the oxidation state of gold during the reaction and the role of KI were discussed. [AuI2(phen)]+ was considered as an intermediate in the reaction. A plausible catalytic cycle mechanism between AuⅢand AuI was proposed in methanol oxidative carbonylation. In alkyl nitrite carbonylation, the reaction mechanism was provided, which was different from the mechanism catalyzed by Pd catalyst system. The RO-NO is first interacts with Au(Ⅲ) to form the Au(Ⅲ)-(OR)(NO) species, and alkyloxycarbonylgold species Au(Ⅲ) (OCOR)(NO) was generated through the insertion of CO. The next step was a nucleophilic attack by the next alkyloxy on the ROH. A dialkyl carbonate is formed with release of nitric oxide (NO) by reductive elimination, and the AuⅢcomplex was regenerated in the presence of alkyl nitrite and iodide, then followed up the catalytic cyclic.
引文
[1] Huber H, McIntosh D, Ozin G A, A metal atom model for the oxidation of carbonmonoxide to carbon dioxide. The gold atom-carbon monoxide-dioxygen reaction and the gold atom-carbon dioxide reaction. Inorganic Chemistry, 1977, 16(5): 975~979.
    [2] Zhang Xin, Wang Hai, Xu Bo-Qing, Remarkable nanosize effect of zirconia in Au/ZrO_2 catalyst for CO oxidation, Journal of Physical Chemistry B, 2005, 109(19): 9678~9683.
    [3] Schubert Markus M, Hackenberg Stefan, van Veen Andre C, et al., CO oxidation over supported gold catalysts“inert”and“active”support materials and their role for the oxygen supply during reaction, Journal of Catalysis, 2001, 197(1): 113~122.
    [4] Bone William A, Anderw G W. Studies upon catalytic combustion. I. The union of carbon monoxide and oxygen in contact with a gold surface. Proceedings of the Royal Society (London) A, 1925, 109A: 459-476.
    [5] Nkosi Bongani, Covile Neil J, Hutchings Graham J, et al., Hydrochlorination of acetylene using gold catalysts: A study of catalyst deactivation. Journal of Catalysis, 1991, 128(2): 366~377.
    [6] Choudhary T V, Sivadinarayana C , Datye A K, et al., Acetylene Hydrogenation on Au-Based Catalysts,Catalysis Letters,2003,86(1): 1~8.
    [7] Tabakova T, Idakiev V, Andereva D, et al., Low-Temperature Water–Gas Shift Reaction over Au/CeO_2 Catalysts, Catalysis Today, 2002, 72(1-2): 51~57.
    [8] Ueda Atsushi, Haruta Masatake, Nitric oxide reduction with hydrogen, carbon monoxide, and hydrocarbons over gold catalysts, Gold Bulletin, 1999, 32(1): 1~11.
    [9] Bone William A, Wheeler Richard V, The Combination of Hydrogen and Oxygen in Contact with Hot Surfaces, Philosophical Transactions of the Royal Society of London. Series A, 1906, 206, 1~67.
    [10] Erkelens J, Kemball C, Galwey A K, Reactions of cyclohexene with hydrogen and deuterium on evaporated gold films, Transactions of the Faraday Society, 1963, 59,1181~1191.
    [11] Chambers Robert P, Boudart Michel, Selectivity of gold for hydrogenation and dehydrogenation of cyclohexene, Journal of Catalysis, 1966, 5(3): 517~528.
    [12] Bond G.eoffrey C, Sermon Paul A, Webb G, et al., Hydrogenation over supported gold Catalysts Journal of the Chemical Society, Chemical Communications, 1973, (13): 444~445.
    [13] Claus Peter, Heterogeneously catalysed hydrogenation using gold catalysts, Applied Catalysis A: General, 2005, 291(1-2): 222~229.
    [14] Bailie Jillian E, Hutchings Graham J, Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation, Chemical Communications 1999, (21): 2151~2152.
    [15] Mohr Christian, Hofmeister Herbert, RadnikJ?rg, et al., Identification of active sites in gold-catalyzed hydrogenation of acrolein, Journal of American Chemical Society, 2003, 125(7): 1905~1911.
    [16] Corma Avelion, Serna Pedro, Chemoselective hydrogenation of nitro compounds with supported gold catalysts, Science, 2006, 313(5785): 332~334.
    [17] Haruta Masatake, Kobayashi T, Sano H, et al., Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0℃, Chemistry Letters, 1987, 16(366): 405~ 408.
    [18] Haruta Masatake, Yamada N, Kobayashi T, et al., Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide, Journal of Catalysis, 1989, 115(2): 301~309.
    [19] Guzman Javier, Carrettin Silvio, Corma Avelino, Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO_2, Journal of American Chemical Society, 2005, 127(10): 3286~3287.
    [20] Carrettin Silvio, Concepción Patricia,Corma Avelino, et al., Nanocrystalline CeO_2 increases the activity of Au for CO oxidation by two orders of magnitude,Angewandte Chemie International Edition, 2004, 43(19): 2538~2540.
    [21] Lahr David L, Ceyer Sylvia T, Catalyzed CO oxidation at 70 K on an extendedAu/Ni surface alloy, Journal of American Chemical Society, 2006, 128(6): 1800~1801.
    [22] Yang Chia-min, Kalwei Martin, Schuth Ferdi, et al., Gold nanoparticles in SBA-15 showing catalytic activity in CO oxidation, Applied Catalysis A: General, 2003, 254(2): 289~296.
    [23] Haruta Masatake, Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications, Gold Bulletin, 2004, 37(1): 27~36.
    [24] Moreau F, Bond G.eoffrey C, Taylor A O, Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents, Journal of Catalysis. 2005, 231(1): 105~114.
    [25] Rhodes C, Hutchings Graham J, Ward A M, Water-gas shift reaction: finding the mechanistic boundary, Catalysis Today, 1995, 23(1):43~58.
    [26] Andreeva Donka, Low temperature water gas shift over gold catalysts, Gold Bulletin. 2002, 35(3):82~88.
    [27] Venugopal A, Aluha Mogano J D, et al., The gold-ruthenium-iron oxide catalytic system for the low temperature water-gas-shift reaction: The examination of gold-ruthenium interactions, Applied Catalysis A: General, 2003, 245(1): 149~158.
    [28] Daniells S T, Makkee M, Moulijn J A, The effect of high-temperature pre-treatment and water on the low temperature CO oxidation with Au/Fe2O3 catalysts, Catalysis Letters. 2005, 100(1011): 39~47.
    [29] Sakurai H, Ueda A, Kobayashi T, et al., Low-temperature water–gas shift reaction over gold deposited on TiO_2, Chemical Communications. 1997, 271~272.
    [30] Idakiev V, Tabakova T, Yuan Z Y, et al., Gold catalysts supported on mesoporous titania for low-temperature water-gas shift reaction, Applied Catalysis A: General, 2004, 270(1-2): 135~141.
    [31] Fu Qi, Saltsburg Howard, Flytzani-Stephanopoulos Maria, Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts, Science, 2003, 301(5635): 935~938.
    [32] Haruta Masatake, Catalysis: Gold rush, Nature, 2005, 437(7062): 1098~1099.
    [33] Davis Robert J, All that glitters is not Au0, Science, 2003, 301(5635): 926~927.
    [34] Sinha Anil K, Seelan Sindhu, Tsubota Susumu, et al., A Three-DimensionalMesoporous Titanosilicate Support for Gold Nanoparticles: Vapor‐Phase Epoxidation of Propene with High Conversion, Angewandte Chemie International Edition, 2004, 43(12): 1546~1548.
    [35] Hughes Mathew D, Xu Yi-Jun., Jenkins Patrick, et al., Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions, Nature 2005, 437, 1132~1135.
    [36] Nijhuis Alexander T, Huizinga Bart J, Makkee M, et al., Direct epoxidation of propene using gold dispersed on TS-1 and other titanium-containing supports, Industry Engineering Chemistry Research, 1999, 38(3): 884~891.
    [37] Prati L, Rossi M, Gold on Carbon as a New Catalyst for Selective Liquid Phase Oxidation of Diols, Journal of Catalysis, 1998, 176(2): 552~560.
    [38] Prati L, Rossi M, Chemoselective catalytic oxidation of polyols with dioxygen on gold supported catalysts, Studies in Surface Science and Catalysis, 1997, 110, 509~516.
    [39] Carrettin Silvio, McMorn Paul, Johnston Peter, et al., Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide, Chemical Communications, 2002, 696~698.
    [40] Prati L, Martra G, New gold catalysts for liquid phase oxidation, Gold Bulletin, 1999, 32(3): 96~101.
    [41] Tsunoyama Hironori, Sakurai Hidehiro, Negishi Yuichi, et al., Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water, Journal of American Chemical Society, 2005, 127(26): 9374~9375.
    [42] Corma Avelion, Domine Marcelo E, Gold supported on a mesoporous CeO_2 matrix as an efficient catalyst in the selective aerobic oxidation of aldehydes in the liquid phase Chemical Communications, 2005, 4042~4045.
    [43] Zhao Rui, Ji Dong, Lv Gao-Meng, et al., A highly efficient oxidation of cyclohexane over Au/ZSM-5 molecular sieve catalyst with oxygen as oxidant, Chemical Communications, 2004, 904~905.
    [44] Xu Yi-Jun, Landon Philip, Enache Dan, et al., Selective conversion of cyclohexane to cyclohexanol and cyclohexanone using a gold catalyst under mild conditions,Catalysis Letters, 2005,101(3-4): 175~179.
    [45] Hess H T, Kroschwitz I, Howe-Grant M, Kirk-Othmer Encyclopedia of Chemical Engineering, Vol. 13, Wiley, New York, 1995, 961.
    [46] Landon Philip., Collier Paul J, Papworth Adam J, et al., Direct formation of hydrogen peroxide from H2/O_2 using a gold catalyst, Chemical Communications. 2002, 2058~2059.
    [47] Landon Philip, Collier Paul J, Carley Albert F, et al., Direct synthesis of hydrogen peroxide from H2 and O_2 using Pd and Au catalysts, Physical Chemistry Chemical Physics, 2003, 5, 1917~1923.
    [48] Zwijnenburg A, Makkee M, Moulijn Jacob A, Increasing the low propene epoxidation product yield of gold/titania-based catalysts, Applied Catalysis A: General, 2004, 270(1-2): 49~56.
    [49] Ishihara T, Ohura Y, Yoshida S, et al., Synthesis of hydrogen peroxide by direct oxidation of H2 with O_2 on Au/SiO_2 catalyst, Applied Catalysis A:General, 2005, 291(1-2): 215~ 221.
    [50] Edwards Jennifer K, Solsona Benjamin E, Landon Philip, et al., Direct synthesis of hydrogen peroxide from H2 and O_2 using TiO_2-supported Au-Pd catalysts, Journal of Catalysis, 2005, 236(1): 69~79.
    [51] W. Schwemberger, W. Gordon, Chem. Zentralbl., 1935, 106, 514~514.
    [52] Meyer L U, de Meijere, A Gold catalyzed rearrangements of strained small ring hydrocarbons, Tetrahedron Letter. 1976, 497~500.
    [53] Gasparrini F, Giovannoli M, Misiti D, et al., A general procedure for the selective oxidation of sulfides to sulfoxides by nitric acid: tetrabromoaurate(III) catalyst in a biphasic system, Journal of Organic Chemistry, 1990, 55(4): 1323~1328.
    [54] Boring Eric, Geletii Yurii V, Hill Craig L, A Homogeneous Catalyst for Selective O_2 Oxidation at Ambient Temperature. Diversity-Based Discovery and Mechanistic Investigation of Thioether Oxidation by the Au(III)C12NO3(thioether)/O_2 System, Journal of American Chemical Society, 2001, 123(8): 1625~1635.
    [55] Sundermeyer J, Jost C, DE 10041510 1999 [Chemical Abstract, 2001, 134, 280723]
    [56] Guan Bing-Tao, Xing Dong, Cai Gui-Xing, et al., Highly Selective AerobicOxidation of Alcohol Catalyzed by a Gold(I) Complex with an Anionic Ligand, Journal of American Chemical Society, 2005, 127(51): 18004~18005.
    [57] Xing Dong, Guan Bing-Tao, Cai Gui-Xing, et al., Gold(I)-Catalyzed Oxidative Cleavage of a C-C Double Bond in Water. Organic Letters, 2006, 8(4): 693~696.
    [58] Li Hua-Rong, Guan Bing-Tao, Wang Wen-Jin, et al., Aerobic oxidation of alcohol in aqueous solution catalyzed by gold, Tetrahedron 2007, 63(35): 8430~8434.
    [59] Cinellu Maria A, Minghetti Ciovanni, Cocco Fabio, et al., Reactions of Gold(Ⅲ) Oxo Complexes with Cyclic Alkenes, Angewandte Chemie International Edition, 2005, 44(42): 6892~6895.
    [60] Yuan Yuan, Bian Yu-Bo, Gold(Ⅲ) catalyzed oxidation of sulfides to sulfoxides with hydrogen peroxide, Tetrahedron Letters, 2007, 48(48): 8518~8520.
    [61] Witham Cole A, Mauleon Pablo, Shapiro Nathan D, et al., Gold(I)-Catalyzed Oxidative Rearrangements, Journal of the American Chemical Society, 2007, 129(18): 5838~5839.
    [62] Norman Richard O C, Parr William J E, Thomas C Barry, The reactions of alkynes, cyclopropanes, and benzene derivatives with gold(Ⅲ), Journal of the Chemical Society, Perkin Transactions 1976, 1(18): 1983~1987.
    [63] Fukuda Y, Utimoto K, Nozaki H, Preparation of 2,3,4,5-Tetrahydropyridines from 5-Alkynylamines under the Catalytic Action of Au(Ⅲ), Heterocycles, 1987, 25(385): 297~300.
    [64] Miiller Thomas E, Intramolecular catalytic addition of amines to alkynes, Tetrahedron Letters. 1998, 39, 5961~5962.
    [65] Lok Roger, Leone Ronald E, Williams Antony J, Facile Rearrangements of Alkynylamino Heterocycles with Noble Metal Cations. The Journal of Organic Chemistry, 1996, 61(10), 3289~3297.
    [66] Mizushima Eiichiro, Hayashi Teruyuki, Tanaka Masato, Au(I)-Catalyzed Highly Efficient Intermolecular Hydroamination ofAlkynes, Organic Letters, 2003, 5(18): 3349~3352.
    [67] Kobayashi Shu, Kakumoto Kentaro, Sugiura Masaharu, Transition Metal Salts-Catalyzed Aza-Michael Reactions of Enones with Carbamates. Organic Letters, 2002, 4(8): 1319~1322.
    [68] Arcadi A, Chiarini M, Di Giuseppe S, et al., A New Green Approach to the Friediander Synthesis of Quinolines, Synlett, 2003, 203~206.
    [69] Teles J Henrique, Brode Stefan, Chabanas Mathieu, Cationic Gold(I)Complexes: Highly Efficient Catalysts for the Addition of Alcohols to Alkynes. Angewandte Chemie International Edition. 1998, 37(10): 1415~1418.
    [70] Mizushima Eiichiro, Sato Kazuhiko, Hayashi, Teruyuki, et al., Highly Efficient AuI-Catalyzed Hydration ofAlkynes, Angewandte Chemie International Edition. 2002, 114(23): 4745~4747.
    [71] Baker R Thomas, Nguyen Paul, Marder Todd B, et al., Transition Metal Catalyzed Diboration of Vinylarenes, Angewandte Chemie International Edition, 1995, 34(12): 1336~1338.
    [72] Baker R Thomas, Calabrese Joseph C, Westcott Stephen A, Coinage metal-catalyzed hydroboration of imines, Journal of Organometallic Chemistry, 1995, 498(2): 109~117.
    [73] Schmid Gunter, West Heike, Malm Jan-Olle, et al., Catalytic Properties of Layered Gold–Palladium Colloids A Europin Journal of Chemistry, 1996, 2(9): 1099~1103.
    [74] Mitchell T N, Encyclopedia of Reagents for Organic Synthesis (Ed. L.A.Paquette), Vol. 4, Wiley, Chichester, 1995, 2664~2666.
    [75] Ito Hajime, Yajima Tatsuki, Tateiwa Jun-ichi, et al., First gold complex-catalysed selective hydrosilylation of organic compounds, Chemical Communications, 2000, 981~982.
    [76] Lo Vanessa Kar-Yan, Liu Yungen, Wong Man-Kin, et al., Gold(Ⅲ) Salen Complex-Catalyzed Synthesis of Propargylamines via a Three-Component Coupling Reaction, Organic Letters, 2006, 8 (8): 1529~1532.
    [77] Murai Toshiaki, Mutoh Yuichiro, Ohta Yukiyasu, et al., Synthesis of Tertiary Propargylamines by Sequential Reactions of in Situ Generated Thioiminium Salts with Organolithium and -magnesium Reagents, Journal of the American Chemical Society, 2004, 126(19): 5968~5969.
    [78] Wei Chun-Mei, Li Chap-Jun, A Highly Efficient Three-Component Coupling of Aldehyde, Alkyne, and Amines via C?H Activation Catalyzed by Gold in Water, Journal of the American Chemical Society. 2003, 125(32): 9584~9585.
    [79] Transition Metals for Organic Synthesis; Building blocks and Fine Chemicals (Ed.: M. Beller), Wiley-VCH, Weinheim, 2004.
    [80] González-Arellano Camino, Abad Alberto, Corma Avelino, et al., Catalysis by Gold(I) and Gold(Ⅲ): A Parallelism between Homo- and Heterogeneous Catalysts for Copper-Free Sonogashira Cross-Coupling Reactions, Angewandte Chemie International Edition. 2007, 46(40): 1536 ~1538.
    [81] Marciniec B, Gulinkym J, Urbaniak W, et al., Comprehensive Handbook on Hydrosilylation (Ed.: B. Marciniec), Pergamon, Oxford, 1993.
    [82] Corma Avelino, González-Arellano Camino, Iglesias Marta, et al., Gold Nanoparticles and Gold(Ⅲ) Complexes as General and Selective Hydrosilylation Catalysts, Angewandte Chemie International Edition, 2007, 46(41): 7820~7822.
    [83] Comas-Vives Aleix, González-Arellano Camino, Corma Avelino, et al., Single-Site Homogeneous and Heterogeneized Gold(Ⅲ) Hydrogenation Catalysts: Mechanistic Implications, Journal of the American Chemical Society, 2006, 128(14): 4756~4765.
    [84] Carrettin S, Corma Avelino, Iglesias Marta, et al., Stabilization of Au(Ⅲ) on heterogeneous catalysts and their catalytic similarities with homogeneous Au(Ⅲ) metal organic complexes, Applied Catalysis A: General, 2005, 291(1-2): 247~252.
    [85] González-Arellano Camino, Corma Avelino, Iglesias Marta, et al., Soluble Gold and Palladium Complexes Heterogenized on MCM-41 Are Effective and Versatile Catalysts, Europin Journal of Inorganic Chemistry, 2008, 2008(7): 1107~1115.
    [86] Xu Qiang, Imamura Yuki, Fujiwara Masahiro, et al., A New Gold Catalyst: Formation of Gold(I) Carbonyl, [Au(CO)n]+ (n = 1, 2), in Sulfuric Acid and Its Application to Carbonylation of Olefin, The Journal of Organic Chemistry, 1997, 62(6): 1594~1598
    [87] Shi Feng, Deng You-Quan, First gold(I) complex-catalyzed oxidative carbonylation of amines for the syntheses of carbamates. Chemical Communications, 2001, 443~444.
    [88] Shi Feng, Deng You-Quan, Yang Hong-Zhou, et al., The first syntheses of diformamides by carbonylation of aliphatic diamines with Au(I) complex catalysts. Chemical Communications, 2001, 345~346.
    [89] Filardo Giuseppe, Galia Alessandro, Rivetti Franco, et al. Catalytic systems based ontransition metals for the carbonylation of methanol to dimethylcarbonate. Electrochimica Acta, 1997, 42(13~l4): 1961~1965.
    [90] Funakawa Akiyasu, Yamanaka Ichiro, Takenaka Sakae ,et al., Selectivity control of carbonylation of methanol to dimethyl oxalate and dimethyl carbonate over gold anode by electrochemical potential. Journal of the American Chemical Society, 2004, 126(17): 5346~5347.
    [91] Romano U, Tesei R, Mauri M M, et al., Synthesis of dimethyl carbonate from methanol, carbon monoxide, and oxygen catalyzed by copper compounds, Industrial & Engineering Chemistry Product Research and Development, 1980, 19(3): 396~403.
    [92] Rivetti F, Dimethyl carbonate: an answer to the need for safe chemicals, Green Chemistry: challenging perspectives (Editors. Tundo P, Anastas P), London: Oxford University Press, 2000: 201~219.
    [93] Yang Ping, Cao Yong, Hu Jun-Cheng, et al., Mesoporous bimetallic PdCl2-CuCl2 catalysts for dimethyl carbonate synthesis by vapor phase oxidative carbonylation of methanol, Applied Catalysis A: General, 2003, 241(1-2): 363~373.
    [94] Delledonne Daniele, Rivetti Franco, Romano Ugo, Oxidative carbonylation of methanol to dimethyl carbonate (DMC): a new catalytic system, Journal of Organometallic Chemistry, 1995, 488(1-2): 15~19.
    [95] Zhu Da-Jian, Mei Fu-Ming, Chen Li-Juan, et al., Synthesis of dimethyl carbonate by oxidative carbonylation using an efficient and recyclable catalyst Co-Schiff base/zeolite, Energy & Fuels 2009, 23(5): 2359~2363.
    [96]朱大建, Co(Salen)配合物及其固载化催化剂在氧化羰化反应中的催化性能研究,华中科技大学博士学位论文,华中科技大学图书馆, 2009.
    [97]李光兴,梅付名,王俊义,等,吡啶-2-羧酸钴制备、表征及羰化催化性能研究,天然气化工, 2000, 25(1): 12~14.
    [98] Li Ya-Ling, Zhao Ju-Quan, Zheng Yan, et al., Sol-Gel Entrapped Cobalt Pyridine-Carboxylate and Its Catalytic Performance for Oxidative Carbonylation of Methanol, Chinese Journal of Catalysis, 2002, 23(5): 395~399.
    [99] Romano Ugo, Tesei Renato, Mauri Marcello Massi, et al., Synthesis of dimethylcarbonate from methanol, carbon monoxide and oxygen catalyzed by copper compounds, Industrial & Engineering Chemistry Product Research and Development, 1980, 19(3): 396~403.
    [100] Dong Wen-Sheng, Zhou Xian-Shu, Xin Chun-Sheng, et al., Ionic liquid as an efficient promoting medium for synthesis of dimethyl carbonate by oxidative carbonylation of methanol, Applied Catalysis A: General, 2008, 334(4): 100-105.
    [101] Raab Voker, Merz Michael, Sundermeyer Jorg, Ligand Effects in the Copper Catalyzed Aerobic Oxidative Carbonylation of Methanol to Dimethyl Carbonate (DMC), Journal of Molecular Catalysis A: Chemical, 2001, 175(1-2): 51~63.
    [102]莫婉玲,CuXn/L配合物及其固载化催化剂在液相羰基化反应中的催化性能研究,华中科技大学博士学位论文,华中科技大学图书馆,2010.
    [103] Cao Yong, Hu Jun-Cheng, Fan Kang-Nian, et al., CuCl catalyst heterogenized on diamide immobilized SBA-15 for efficient oxidative carbonylation of methanol to dimethyl carbonate, Chemical Communications, 2003, 908~909.
    [104]刘海涛,聚苯乙烯负载邻菲咯啉/CuCl2配合物的合成及其对羰化反应催化性能研究,华中科技大学硕士学位论文,华中科技大学图书馆,2005.
    [105] Yuan You-Zhu, Wei Cao, Weng Wei-Zheng, CuCl2 immobilized on amino -functionalized MCM-41 and MCM-48 and their catalytic performance toward the vapor-phase oxy-carbonylation of methanol to dimethyl carbonate, Journal of Catalysis, 2004, 228(2): 311~320.
    [106] Zhang Yi-Hua, Briggs Daniel N, Smit Emiel de, et al., Effects of zeolite structure and composition on the synthesis of dimethyl carbonate by oxidative carbonylation of methanol on Cu-exchanged Y, ZSM-5, and Mordenite, Journal of Catalysis, 2007, 251(2): 443~452.
    [107] Liu Tuan-Chi, Chang Chung-Shin, Preparation of CuCl/C catalyst for the synthesis of dimethyl carbonate: Effects of calcination temperature, Journal of the Chinese Institute of Chemical Engineers, 2007, 38(1): 29~34.
    [108] Fenton Donald M, Steinwand Paul J, Noble metal catalysis.Ⅲ. Preparation of dialkyl oxalates by oxidative carbonylation, The Journal of Organic Chemistry, 1974, 39(5): 701~704.
    [109] Miyazaki Haruhiko, Shiomi Yasushi, Fujitus Satoru, et al., Process for the preparation of oxalic acid diesters, US patent, 4384133, 1982, 5, 17~23.
    [110] Uchiumi Shin-Ichiro, Ataka Kikuo, Matsuzaki Tokuo. Oxidative reactions by a palladium-alkylnitrite system, Journal of Organometallic Chemistry, 1999, 576(3): 278~289.
    [111] Nakamura Asumaru, Matsuzaki Tokuo, A new oxidation system using nitrite oxidants, Research on Chemical Intermediates, 1998, 24(2): 213~225.
    [112] Mastuzaki Tokuo, Nakamura Asumaru, Dimethyl carbonate synthesis and other oxidative reactions using alkyl nitrites, Catalysis Surveys from Japan, 1997, 1(1): 77~88.
    [113]陈庚申,陈贻盾,一氧化碳催化偶联合成草酸,中国专利, CN 85101616, 1986,, 13~21.
    [114]姜玄珍,王正宝,草酸二乙酯的气相催化合成,精细化工,1989,6(1):37~39
    [115]高正虹,胡超权,李振花,等,一氧化碳偶联制草酸二乙酯用Pd-Fe/α-Al2O3催化剂的表面结构,催化学报, 2004, 25(3): 205-209.
    [1]卡尔雅金I O B,安捷洛夫著H H,曹素忱等译,纯化学试剂(无机试剂和制剂实验室制备指南),北京:高等教育出版社,1989:337-338.
    [2] McCarthy P J, Hovey R J, Ueno K, Martell A E, Inner Complex Chelates.I.Analogs of Bisacetylacetoneethylenediimine and its Metal Chelates, Journal of American Chemical Society, 1955, 77(22): 5820~5824.
    [3] Barnholtz Steven L, Lydon John D, Huang Gloria, et.al., Syntheses and Characterization of Gold(Ⅲ) Tetradentate Schiff Base Complexes. X-ray Crystal Structures of [Au(sal2pn)]Cl·2.5H2O and [Au(sal2en)]PF6, Inorganic Chemistry. 2001, 40(5): 972~976.
    [4] Block B P, Bailar J C, The reaction of gold(Ⅲ) with some bidentate coordinating groups, Journal of American Chemical Society, 1951, 73(10): 4722~4725.
    [5] Giordana Marcon, Stefania Carotti, Marcella Coronnello,et al., Gold(Ⅲ) Complexes with Bipyridyl Ligands: Solution Chemistry, Cytotoxicity, and DNA Binding Properties, Journal of Medicinal Chemistry, 2002, 45(8): 1672~1677.
    [6]刘海涛,莫婉玲,李光兴等,甲醇氧化羰化反应中含氮配体助催化剂的空间及电子效应,应用化学,2005, 22(9): 997~1001.
    [7] Zhang Xin, Corma Avelino, Effcient addition of alcohols,amines and phenol to unactivated alkenes by AuⅢor PdII stabilized by CuCl2. Dalton Transations, 2008, 397~403.
    [8] Dobrzynski Edward D, Angelici Robert J, Alkoxalyl complexes of palladium(II) and platinum(II), Inorganic Chem.istry, 1975, 14(1): 59~63.
    [9] Hidai M, Kokura M, Uchida Y, Reactions of palldium(II) compounds with carbon monoxide in alcohol/amine systems : a new route to palladium(O) carbonyl and carboalkoxy-palladium(II) complexes, Journal of Organometallic Chemistry, 1973, 52(2): 431~435.
    [1] Adams Hans-Norbert, Strahle Joachim, Die Pyridinaddukte der Goldhalogenide. 1. Darstellung und Struktur von [Hpy][AuCl4], AuCl3·py, [AuCl_2(py)2]Cl·H2O und [AuCl_2(py)2][AuCl_2], Zeitschrft fur Anorganische and Allgemenine Chemie, 1982, 485(1): 65~68.
    [1] Aresta M, Giannoccaro P, Tommasi I, et al, Synthesis and Solid State and Solution Characterization of Mono- and Di-(η1-C) Carbamoyl?Palladium Complexes. New Efficient Palladium-Catalyzed Routes to Carbamoyl Chlorides: Key Intermediates to Isocyanates, Carbamic Esters, and Ureas,Organometallics, 2000, 19(19): 3879~3889.
    [2] Bontempi A, Alessio E, Chanos G, et al, Reductive carbonylation of nitroaromatic compounds to urethanes catalyzed by [Pd(1,10-phenanthroline)2][PF6]2 and related complexes, Journal of Molecular Catalysis, 1987, 42(1): 67~80.
    [3] Vavasori A, Toniolo L, The promoting effect of chelating ligands in the oxidative carbonylation of phenol to diphenyl carbonate catalyzed by Pd–Co–benzoquinone system, Journal of Molecular Catalysis A: Chemical, 2000, 151(1-2): 37~45.
    [1] González-Arellano C, Corma A, Iglesias M, et al., Gold (I) and (III) catalyze Suzuki cross-coupling and homocoupling, respectively, Journal of Catalysis. 2006, 238 (2): 497~501.
    [2] González-Arellano C, Abad A, Corma A, et al.,Catalysis by Gold(I) and Gold(III): A Parallelism between Homo- and Heterogeneous Catalysts for Copper-Free Sonogashira Cross-Coupling Reactions, Angewandte Chemie International Edition, 2007, 119 (9):1558~1560.
    [3]朱大建, Co(Salen)配合物及其固载化催化剂在氧化羰化反应中的催化性能研究,华中科技大学博士学位论文,华中科技大学图书馆, 2009.
    [4] Corma A, Domínguez I, Doménech A, et al, Enantioselective epoxidation of olefins with molecular oxygen catalyzed by gold(III): A dual pathway for oxygen transfer, Journal of Catalysis, 2009, 265 (2): 238~244.
    [5] Koelle U, Laguna A, Electrochemistry of Au-complexes, Inorganic Chimica Acta 1999, 290 (1): 44~50.
    [6] Tonde S S, Kelkar A A, Bhadbhade M M, et al., Isolation and characterization of an iodide bridged dimeric palladium complex in carbonylation of methanol, Journal of Organometallic Chemistry, 2005, 690 (3): 1677~1681.
    [7] Elding L I, Olsson L F, Kinetics, mechanism, and equilibrium for formation/cleavage of a dinuclear iodide-bridged complex of palladium(II), Inorganic Chemistry, 1977, 16 (11): 2789~2794.
    [8] Pearson Ralph G, Hard and Soft Acids and Bases, Journal of American Chemical Society, 1963,85(22): 3533~3539.
    [9] Haynes A, Maitlis P M, Morris G E, et al., Promotion of Iridium-Catalyzed Methanol Carbonylation: Mechanistic Studies of the Cativa Process, Journal of American Chemical Society, 2004, 126 (9): 2847~2861.
    [10] Maitlis P M, Haynes A, James B R, et al., Iodide effects in transition metal catalyzed reactions, Dalton Transations, 2004, (21): 3409~3419.
    [11] Hu Jiang-Lin, Li Jin-Jin, Li Guang-Xing, et al., Oxidative carbonylation of glycerol to glycerol carbonate catalyzed by PdCl_2(phen)/KI, Applied Catalysis A: General, 2010, 386 (1-2): 188~193.
    [12] Amatore C, Azzabi M, Jutand A, Role and effects of halide ions on the rates and mechanisms of oxidative addition of iodobenzene to low-ligated zerovalent palladium complexes Pd0(PPh3)2, Journal of American Chemical Society, 1991, 113 (22): 8375~8384.
    [13] Xu Q, Imamura Y, Fujiwara M, et al., A New Gold Catalyst: Formation of Gold(I) Carbonyl, [Au(CO)n]+ (n = 1, 2), in Sulfuric Acid and Its Application to Carbonylation of Olefin, The journal of Organic Chemistry, 1997,62(6): 1594~1598.
    [14] Qiu S, Ohnishi R, Ichikawa M, Novel preparation of gold(I) carbonyls and nitrosyls in NaY zeolite and their catalytic activity for NO reduction with CO, ChemicalCommunication, 1992,(19): 1425~1427.
    [15] Dell’Amico D B, Calderazzo F, Carbonyl Derivatives of Gold and Related Organometallics,Gold Bull. 1977, 30(1): 21~24.
    [16] Guan Bing-Tao, Xing Dong, Cai Gui-Xing, et al., Highly Selective Aerobic Oxidation of Alcohol Catalyzed by a Gold(I) Complex with an Anionic Ligand, Journal of American Chemical Society, 2005, 127(51): 18004~18005.
    [17] Pushkarev V V, Kovalchuk V I, d’Ihi J L, Probing Defect Sites on the CeO2 Surface with Dioxygen, The Journal of Physical Chemistry B, 2004, 108 (17): 5341~5348.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700