氮掺杂多孔炭材料的制备、表征及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔炭材料通常具有发达的孔隙、高的比表面积、优良的耐热、耐酸碱和独特电子传导性质,在吸附、催化、生物、电子等领域用途广泛。在炭材料中引入氮等异质元素能进一步调变材料的结构、表面化学性质及电子传导性,使其具有更加广阔的应用发展前景。在催化及吸附领域中,氮掺杂多孔炭材料作为一类新型固体碱催化剂或吸附剂已经显示出了独特的优势。目前,针对一些具有重要应用前景的碱催化反应工艺和水中重金属离子(如汞离子)吸附去除,开发性能更加优异的氮掺杂多孔炭材料,已经成为相关领域的研究热点。
     本论文主要采用溶胶-凝胶路线,结合高温炭化及表面后修饰等方法制备了几类氮掺杂多孔炭材料,通过不同表征手段对材料的组成、结构及表面化学性质进行了研究,并通过汞离子吸附实验及碳酸二甲酯和碳酸二乙酯酯交换反应、苯酚和草酸二甲酯酯交换反应,研究了材料的吸附性能和催化性能。论文的主要研究内容和结果概述如下:
     以蔗糖和柠檬酸为碳源,采用溶胶-凝胶路线,并结合高温炭化的方法制备出了一类具有介孔结构特征的多孔炭材料(NC);采用后修饰的方法用乙二胺对NC材料进行了改性研究,得到了具有较高氮含量的氮掺杂多孔炭材料(NC-EDA);对NC-EDA进一步加热处理(873K,惰性气氛下),得到的材料记为NC-EDA-873。上述材料均具有比表面积大、孔径分布均匀等特点,并且材料表面含有丰富的含氧官能团和含氮官能团,其中NC-EDA表面含有大量的氨基官能团,经高温处理的材料NC-EDA-873上则含有较多的吡啶氮和吡咯氮。水体系中汞离子吸附实验结果表明:NC-EDA材料对汞离子的吸附明显高于NC材料,这说明有机胺的引入能够有效提高材料对汞离子的吸附性能;经高温处理的NC-EDA-873材料依然保持了较高的汞离子吸附性能,并且吸附过程符合朗格缪尔等温吸附。结合XPS等表征结果,可以认为材料表面存在的含氮官能团(如氨基和吡啶氮)对汞离子的吸附起到了关键作用。上述含氮官能团本身所具有的弱碱性与具有弱酸性的汞离子之间能够形成较强的相互作用,从而使NC-EDA材料表现出良好的汞离子吸附性能。
     通过改变多孔炭材料NC的后处理温度,得到了一系列表面化学性质不同的NC材料,并考察了这些材料对碳酸二甲酯和碳酸二乙酯酯交换合成碳酸甲乙酯反应的催化性能。研究结果表明:随着热处理温度的升高,NC材料表面的含氧官能团(包括氮氧化物)逐渐减少,含氮官能团的种类和相对含量也会产生变化,继而影响了NC材料的表面化学(酸碱性)性质。不同温度处理的NC材料均对碳酸二甲酯和碳酸二乙酯酯交换合成碳酸甲乙酯反应表现出了较高的催化活性和优异的主产物选择性。其中473K处理的材料(NC-473)表现出了相对更高的催化活性,随着热处理温度的继续升高,催化剂的反应活性逐渐降低。此外,NC-473材料还表现出良好的稳定性和循环性。多次循环使用后,催化剂的活性没有明显降低,且反应过程中没有发生活性组分流失的现象,是典型的多相催化反应。XPS结果表明,NC-473材料表面存在相对较多的氨基官能团,可能是其表现出较高反应活性的主要原因。
     以柠檬酸和六亚甲基四胺为碳源、氮源,采用溶胶-凝胶法制备出了一系列氮掺多孔杂炭材料(NNC),使用多种表征方法对其结构和性质进行了研究。结果表明:NNC材料具有较高的比表面积和孔容,而且材料的结构和表面性质还可以通过改变六亚甲基四胺的量进行调变;NNC材料表面除了含有多种含氧官能团外,还含有大量的吡啶氮、吡咯氮、季氮等含氮官能团。将NNC作为多相催化剂,在苯酚和草酸二甲酯酯交换合成草酸二苯酯和草酸苯甲酯的反应中进行了催化性能评价。NNC催化剂在反应中表现出了非常高的催化活性和主产物选择性,催化剂通过简单的过滤、丙酮洗涤、烘干后即可重复使用,且催化性能基本保持不变,性能明显优于负载型金属氧化物催化剂、有机-无机杂化材料等多种类型的催化剂体系。结合不同的表征结果,可以认为NNC材料表面存在的含氮官能团(如吡啶氮等)是主要的活性中心,这类含氮官能团能稳定地分布在炭材料骨架中且其碱强度适合该反应的要求,应该是NNC催化剂具有高活性、高选择性及高稳定性的主要原因。
Porous carbon materials with well-developed pore, high specific surface area,excellent heat resistance and/or unique electronic conduction properties are of greatinterest for their important applications in many fields such as adsorption, catalysis,biology and electronics. The introduction of nitrogen into the carbon materials canfurther tune their structure, surface chemical properties and electronic conductivity,thus giving rise to a wide spectrum of potential applications. In the fields ofheterogeneous catalysis and adsorption, porous nitrogen-doped carbon materials haveshown unique advantage as new types of solid base catalysts or adsorbents. Currently,the preparation of high active porous nitrogen-doped carbon materials for theapplications in some importent basic catalytic reactions and the removal of heavymetal ions (such as mercury ion) have attention in the related fields.
     In this thesis, a series of porous nitrogen-doped carbon materials were prepared bysol-gel route, combining with high temperature carbonization and post-modificationmethods. The structure and surface properties of porous nitrogen-doped carbonmaterials were studied by various characterization means. The adsorption propertiesof mercury ion, as well as the catalytic properties for the transeterification of dimethyloxalate with phenol or dimethyl carbonate with diethyl carbonate were investigatedover various porous nitrogen-doped carbon materials. The main study contents andresults are summarized as follows:
     A series of porous carbon (NC) materials with mesoporous characteristics wereprepared by sol-gel method via high temperature carbonization using sucrose andcitric acid as the carbon and nitrogen precursors. The nitrogen amount in theethylenediamine-modified porous carbon (NC-EDA) is higher than that of NCmaterials. The materials of NC, NC-EDA and thermal-treated NC-EDA-873(NC-EDA after thermal-treatment at873K) possess high specific surface area, similarpore size distributions and various oxygen-containing and nitrogen-containing groups.The adsorption performance of NC, NC-EDA and NC-EDA-873for mercury (Ⅱ)ions were investigated in aqueous system. The NC material exhibited relatively high adsorption capacity for mercury (Ⅱ) ions, which can be improved significantly byethylenediamine modification. The adsorption capacity of the NC-EDA-873materialstill maintained at a relatively high level. Kinetic experimental results indicated thatthe adsorption isotherms can be fitted well using Langmuir model. Based on variouscharacterization results, it can be proposed that the presence of abundant N-containingfunctional groups on the surface of NC materials is beneficial for the adsorption ofmercury ions. Basic species of the materials can interact with mercury ions directly,and thus significantly improving the adsorption capacity of carbon material.
     A series of porous carbon materials with different thermal-treatment temperature(NC-T) were prepared, and their catalytic properties were investigated in thetransesterificatoion of dimethyl carbonate (DMC) with diethyl carbonate (DEC). Withincrease of thermal-treatment, the amount of surface O-containing functional groups(including nitrogen oxides) decreased, and the types and contents of N-containingfunctional groups also changed somewhat. All NC materials were ateive catalysts forthe transesterification of DEC with DMC. It was found that NC-473show very highactivity, stability, and can be easily recycled without any special treatment on the usedcatalyst. On the basis of XPS results, it can be concluded that the presence ofabundant amio-functional groups on the surface of porous carbon NC-T materialshould play a critical role on the activation of the reactants in the transesterificationreaction.
     A series of nanoporous nitrogen-doped carbon (NNC) materials were prepared bysol-gel method, with hexamethylene tetramine (HMT) and citric acid as the carbonand nitrogen precursors. The structure and surface properties of these NNC materialswere characterized by different characterization methods. The materials of NNCmaterials possess high specific surface area, similar pore size distributions. Besidespossessing various oxygen-containing groups, these NNC materials also containdifferent types of nitrogen-containing groups, including pyridinic-N, pyrrolic-N andquaternary-N groups. The resulting NNC materials are highly active and selectiveheterogeneous catalysts for the transesterification of dimethyl oxalate (DMO) withphenol to produce methyl phenyl oxalate (MPO) and diphenyl oxalate (DPO), and canbe easily recycled after simple filtrening, washing with acetone and drying. Thepresence of suitable surface basic sites should be mainly responsible for the excellentcatalytic performance of NNC materials in the transesterification reaction.
引文
[1] INAGAKI M, KANG F, Carbon materials science and engineering-fromfundamentals to applications [M]. Beijing: Tsinghua University Press,2006:3-17.
    [2] RODRIGUEZ-REINOSO F. The role of carbon materials in heterogeneouscatalysis [J]. Carbon,1997,36:159-175.
    [3] JOO S H, CHOI S J, OH I, et al. Ordered nanoporous arrays of carbon supportinghigh dispersions of platinum nanoparticles [J]. Nature,2001,412:169-172.
    [4] WANG D, LI F, LIU M, et al.3D aperiodic hierarchical porous graphitic carbonmaterial for high-rate electrochemical capacitive energy storage [J]. Angew. Chem. Int.Ed.,2004,47:373-376.
    [5] SERP P, FIGUEIREDO J L. Carbon materials for catalysis [M]. John Wiley&Sons, Inc.,2009:117-218.
    [6] ZHANG J, LIU X, BLUME R, et al. Surface-modified carbon nanotubes catalyzeoxidative dehydrogenation of n-Butane [J]. Science,2008,322:73-77.
    [7] SU F B, ZHAO X S, WANG Y, et al. Synthesis of Graphitic Ordered MacroporousCarbon with a Three-Dimensional Interconnected Pore Structure for ElectrochemicalApplications [J]. J. Phys. Chem. B,2005,109:20200-20206.
    [8] SAHA D, DENG S G. Adsorption equilibrium and kineties of CO2,CH4,N2O,and NH3on ordered mesoporous carbon [J]. J Colloid Interf Sci2010,345(2):402-409.
    [9] HARTMANN M, VINU A, CHANDRASEKAR G. Adsorption of vitamin E onmesoporous carbon molecular sieves [J]. Chem Mater,2005,17(4):829-833.
    [10] KAMAT P V. Harvesting photons with carbon nanotubes [J]. Nanotoday,2006,1:20-27.
    [11] ZHOU H S, ZHU S M, HIBINO M, et al. Lithium storage in ordered mesoporouscarbon (CMK-3) with high reversible specific energy capacity and good cyclingPerformanee [J]. Adv Mater,2003,15(24):2107-2111.
    [12] VIX-GUTERL C, FRAEKOWIAK E, JUREWIEZ K, et al. Electrochemicalenergy storage in ordered porous carbon materials [J]. Carbon,2005,43(6):1293-1302.
    [13] XING W, QIAO S Z, DING R G, et al. Superior electric double layer capacitorsusing ordered mesoporous carbons [J]. Carbon,2006,44:216-224.
    [14] XIA K S, GAO Q M, JIANG J H, et al. Hierarchical porous carbons withcontrolled micropores and mesopores for supercapacitor electrode materials [J].Carbon2008,46:1718-1726.
    [15] NDAMANISHA J C, GUO L P. NonenZymatic glueose deteetion at orderedmesoporous carbon modified electrode [J]. Bioelectrochemistry2009,77(l):60-63.
    [16] ENDO M, KIM.Y.A, HAYASHI T, et al. Vapor-grown carbon fibers (VGCFs)basic properties and their battery applications [J]. Carbon,2001,39:1287-1297.
    [17] RAMASAMY E, LEE W J, LEE D Y, et al. Nanocarbon counterelectrode for dyesensitized solar cells [J]. Appl. Phys. Lett.,2007,90(17):173103-173105.
    [18] KONG J, FRANKLIN N, ZHOU C, et al. Nanotube molecular wires as chemicalsensors [J]. Science,2000,287:622
    [19] SHVEDOVA A A, CASTRONOVA V, KISIN E R, et al. Exposure to carbonnanotube material: as sessment of nanotube cytotoxicity using human keratinocytecells [J]. J Toxical Environ Health A,2003,66(20):1909
    [20] SUN X M, LI Y D. Hollow carbonaceous capsules from glucose solution [J]. J.Colloid Interface Sci.,2005,291:7-12.
    [21] EWELS C P, GLERUP M. Nitrogen Doping in Carbon Nanotubes [J]. J. Nanosci.Nanotechnol.,2005,5:1345-1363.
    [22] TOLES C A, MARSHALL W E, JOHNS M M. Surface functional groups onacid-activated nutshell carbons [J]. Carbon,1999,37(8):1207-1214.
    [23] SHAO Y Y, SUI J H, YIN G P, et al. Nitrogen-doped carbon nanostructures andtheir composites as catalytic materials for proton exchange membrane fuel cell [J].Appl. Catal. B,2008,79:89.
    [24] TAMON H, OKAZAKI M. Influence of acidic surface oxides of activated carbonon gas adsorption characteristics [J]. Carbon,1996,34(6):741-746.
    [25] SUMPTER B G., MEUNIER V, ROMO-HERRERA J M, et al.Nitrogen-Mediated Carbon Nanotube Growth: Diameter Reduction, Metallicity,Bundle Dispersability, and Bamboo-like Structure Formation [J]. ACS Nano,2007,1:369-375.
    [26] SUN C L, WANG H W, HAYASHI M, et al. Atomic-Scale Deformation inN-Doped Carbon Nanotubes [J]. J. Am. Chem. Soc.,2006,128:8368-8369.
    [27] ZHANG Y H, CHEN Y B, ZHOU K G., et al. Improving gas sensing propertiesof graphene by introducing dopants and defects: a first-principles study [J]Nanotechnology,2009,18:185504.
    [28] WANG X R, LI X L, ZHANG L, et al. N-Doping of Graphene ThroughElectrothermal Reactions with Ammonia [J]. Science,2009,324:768-771.
    [29] MALDONADO S, MORIN S, STEVENSON K J. Structure, composition, andchemical reactivity of carbon nanotubes by selective nitrogen doping [J]. Carbon,2006,44:1429-1437.
    [30] GARCIA-GARCIA F R, ALVAREZ-RODRIGUEZ J, RODRIGUEZ-RAMOS I,et al. The use of carbon nanotubes with and without nitrogen doping as support forruthenium catalysts in the ammonia decomposition reaction [J]. Carbon,2010,48:267-276.
    [31] MALDONADO S, STEVENSON K J. Influence of Nitrogen Doping on OxygenReduction Electrocatalysis at Carbon Nanofiber Electrodes [J] J. Phys. Chem. B,2005,109:4707.
    [32] SUN C L, WANG H W, HAYASHI M, L. et al. Atomic-Scale Deformation inN-Doped Carbon Nanotubes [J]. J. Am. Chem. Soc.,2006,128:8368-8369.
    [33] PANCHAKARLA L S, SUBRAHMANYAM K S, SALA S K, et al. Synthesis,Structure, and Properties of Boron-and Nitrogen-Doped Graphene [J] Adv. Mater.,2009,21:4726-4730.
    [34] KURAK K A, ANDERSON A B. Nitrogen-Treated Graphite and OxygenElectroreduction on Pyridinic Edge Sites [J]. J.Phys.Chem.C,2009,113:6730-6734.
    [35] ARRIGO R, HAVECKER M, WRABETZ S, et al. Tuning the acid/basepoperties of nanocarbons by functionalization via amination [J]. J. Am. Chem. Soc.,2010,132:9616–9630.
    [36] PARAKNOWITSCH J P, THOMAS A, ANTONIETTI M. A detailed view onthe polycondensation of ionic liquid monomers towards nitrogen doped carbonmaterials [J] J. Mater. Chem.,2010,20:6746–6758.
    [37] LIU A Y, COHEN M L. Prediction of new low compressibility solids [J]. Science,1989,245:841-842.
    [38] TETER D M, HEMLEY R J. low-compressibility carbon nitrides [J]. Science,1996,271:53-55.
    [39] TERRONES M, JORIO A, ENDO M, et al. New direction in nanotube science[J]. Mater. Today,2004,7(10):30-45.
    [40] CZERW R, TERRONES M, CHARLIER J. C, et al. Identification of ElectronDonor States in N-Doped Carbon Nanotubes [J]. Nano Lett,2001,1(9):457-460.
    [41] KIM T W, PARK I S, RYOO R. A Synthetic Route to Ordered MesoporousCarbon Materials with Graphitic Pore Walls.[J]. Angew. Chem. Int. Ed.,2003,42:4375-4379.
    [42] XIA Y D, MOKAYA R. Synthesis of Ordered Mesoporous Carbon andNitrogen-Doped Carbon Mterials with Graphitic Pore Walls via a Simple ChemicalVapor Deposition Method [J]. Adv.Mater.,2004,16:1553-1558.
    [43] QIAO W M, SONG Y, HONG S H, et al. Development of Mesophase PitchDerived Mesoporous Carbons through a Commercially Nanosized Template [J].Langmuir,2006,22:3791-3797.
    [44] KOUVETAKIS J, BANDARI A, TODD M, et al. Novel Synthetic Routes toCarbon-Nitrogen Thin Films [J]. Chem. Mater.,1994,6:811-814.
    [45] Montigaud H, Tanguy B, Demazeau G, et al. C3N4: Dream or reality?Solvothermal synthesis as macroscopic samples of the C3N4graphitic form [J]. J.Mater. Sci.,2000,35:2547-2552.
    [46] LI X F, ZHANG J, SHEN L H, et al. Preparation and characterization ofgraphitic carbon nitride through pyrolysis of melamine [J]. Appl Phys A,2009,94:387–392
    [47] MONTIGAUD H, TANGUY B, DEMAZEAU G, et al. Solvothermal synthesis ofthe graphitic form of C3N4as macroscopic sample [J]. Diamond Relat. Mater.,1999,8:1707-1710.
    [48] ALVES I, DEMAZEAU G, TANGUY B, et al. On a New Model of the GraphiticForm of C3N4[J]. Solid State Commun.,1999,109:6972701.
    [49] GU Y L, CHEN L Y, SHI L, et al. Synthesis of C3N4and graphite by reactingcyanuric chloridewith calcium cyanamide [J]. Carbon,2003,41:2653-2689.
    [50] ZHANG Z H, LEINENWEBER K, BAUER M, et al.. High-Pressure BulkSynthesis of Crystalline C6N9H3HCl: A Novel C3N4Graphitic Derivative [J]. J. Am.Chem. Soc.,2001,123:7788-7796.
    [51] GUO Q X, XIE Y, WANG X J, et al.Characterization of well-crystallizedgraphitic carbon nitride nanocrystallites via a benzene-thermal route at lowtemperatures [J]. Chem. Phys. Lett.,2003,380:84-87.
    [52] GUO Q X, YANG Q, YI C Q, et al. Synthesis of carbon nitrides with graphite-like or onion-like lamellar structures via a solvent-free route at low temperatures [J].Carbon,2005,43:1386-1391.
    [53] GROENEWOLT M, ANTONIETTI M. Synthesis of g-C3N4Nanoparticles inMesoporous Silica Host Matrices [J]. Adv. Mater.,2005,17:1789-1792.
    [54] GOETTMANN F, FISCHER A, ANTONIETTI M, et al. Chemical Synthesis ofMesoporous Carbon Nitrides Using Hard Templates and Their Use as a Metal-FreeCatalyst for Friedel–Crafts Reaction of Benzene [J]. Angew. Chem. Int. Ed.,2006,45:4467.
    [55] PELS J R, KAPTEIJN F, MOULIJN J A, et al. Evolution of nitrogenfunctionalities in carbonaceous materials during pyrolysis [J]. Carbon,1995,33:1641–1653.
    [56] SEREDYCH M, HULICOVA-JURCAKOVA D, LU G Q, et al. Surfacefunctional groups of carbons and the effects of their chemical character, density andaccessibility to ions on electrochemical performance [J]. Carbon,2008,46:1475-1488.
    [57] CHEN W F, CANNON F S, RANGEL-MENDEZ J R. Ammonia-tailoring ofGAC to enhance perchlorate removal.I: Characterization of NH3thermally tailoredGACs [J]. Carbon,2005,43:573–580.
    [58] DELIYANNI E, BANDOSZ T J. Effect of Carbon Surface Modification withDimethylamine on Reactive Adsorption of NOx [J]. Langmuir,2011,27(5):1837–1843.
    [59] JIN H, ZHANG H M, ZHONG H X et al. Nitrogen-doped carbon xerogel: Anovel carbon-based electrocatalyst for oxygen reduction reaction in proton exchangemembrane (PEM) fuel cells [J]. Energy Environ.Sci.,2011,4:3389-3394.
    [60] SHAO G S, LIU L, MA T Y, et al. Exotemplating synthesis of nitrogen-dopedcarbon materials with hierarchically porous structure and their application forlysozyme adsorption [J]. Chemical Engineering Journal,2011,174:452-460.
    [61] QIU Y, GAO L. Chemical synthesis of turbostratic carbon nitride, containingC-N crystallites, at atmospheric pressure [J]. Chem. Commun.,2003,2378-2379.
    [62] SRINIVASU P, VINU A, HISHITA S, et al. Preparation and characterization ofnovel microporous carbon nitride with very high surface area via nanocastingtechnique [J]. Microporous Mesoporous Mater.,2008,108:340–344.
    [63] LU X F, WANG H J, ZHANG S Y, et al. Synthesis, characterization andelectrocatalytic properties of carbon nitride nanotubes for methanol electrooxidation[J]. Solid State Sciences,2009,11:428–432.
    [64] VINU A, SRINVASU P, SAWANT D P, et al. Three-Dimensional Cage TypeMesoporous CN-Based Hybrid Material with Very High Surface Area and PoreVolume [J]. Chem. Mater.,2007,19:4367-4372.
    [65] GIRAUDET S, ZHU Z H, YAO X D, et al. Ordered Mesoporous CarbonsEnriched with Nitrogen: Application to Hydrogen Storage [J]. J. Phys. Chem. C,2010,114:8639–8645.
    [66] BIAN S W, MA Z, SONG W G. Preparation and Characterization of CarbonNitride Nanotubes and Their Applications as Catalyst Supporter [J]. J. Phys. Chem.C,2009,113:8668–8672.
    [67] PARTHASARATHY R V, PHANI K L N, MARTIN C R. Template synthesis ofgraphitic nanotubules [J]. Adv. Mater.,1995,7:896-897.
    [68] JANG J, OH J H. A facile synthesis of polypyrrole nanotubes using a template-mediated vapor deposition polymerization and the conversion to carbon nanotubes [J].Chem. Commun.,2004,882–883.
    [69] MAIYALAGAN T, VISWANATHAN B. Template synthesis and characterizationof well-aligned nitrogen containing carbon nanotubes [J]. Materials Chemistry andPhysics,2005,93:291–295.
    [70] PARAKNOWITSCH J P, THOMAS A, ANTONIETTI M. A detailed view onthe polycondensation of ionic liquid monomers towards nitrogen doped carbonmaterials [J]. J. Mater. Chem.,2010,20:6746–6758.
    [71] HOU P X, ORIKASA H, YAMAZAKI T, et al. Synthesis of Nitrogen-Containing Microporous Carbon with a Highly Ordered Structure and Effect ofNitrogen Doping on H2O Adsorption [J]. Chem. Mater.,2005,17:5187-5193.
    [72] XIA Y D, MOKAYA R. Synthesis of Ordered Mesoporous Carbon andNitrogen-Doped Carbon Materials with Graphitic Pore Walls via a Simple ChemicalVapor Deposition Method [J]. Adv.Mater.,2004,16:1553-1558.
    [73] LEI Z B, BAI D, Zhao X S. Improving the electrocapacitive properties ofmesoporous CMK-5carbon with carbon nanotubes and nitrogen doping [J].Microporous Mesoporous Mater.,2012,147:86–93.
    [74] PELS J R. Nitrous oxide in coal combustion [D]. Delft: Delft Univ. ofTechnology,1995.
    [75] PELS J R, KAPTEIJN F, MOULIJN J A, et al. Evolution of nitrogenfunctionalities in carbonaceous materials during pyrolysis [J]. Carbon,1995,33:1641–1653.
    [76] GOETTMANN F, FISCHER A, ANTONIETTI M, et al. Metal-free catalysis ofsustainable Friedel–Crafts reactions: direct activation of benzene by carbon nitrides toavoid the use of metal chlorides and halogenated compounds [J]. Chem. Commun.,2006,4530-4532.
    [77] GOETTMANN F, THOMAS A, ANTONIETTI. Metal-Free Activation of CO2by Mesoporous Graphitic Carbon Nitride [J]. Angew. Chem. Int. Ed.,2007,46:2717–2720.
    [78] FREIRE R M, de MORAIS BATISTA A H, de SOUZA FIHO A G, et al. HighCatalytic Activity of Nitrogen-Containing Carbon from Molecular Sieves in FineChemistry [J]. Catal Lett.,2009,131:135-141.
    [79] DOMMELE S van, de JONG K P, BITTER J H. Nitrogen-containing carbonnanotubes as solid base catalysts [J]. Chem. Commun.,2006,4859-4861.
    [80] SU F Z, MATHEW S C, LIPNER G, et al. mpg-C3N4-Catalyzed SelectiveOxidation of Alcohols Using O2and Visible Light [J]. J. Am. Chem. Soc.,2010,132:16299–16301.
    [81] BOJDYS M J, MULLER J O, ANTONIETTI M, et al. Ionothermal Synthesis ofCrystalline, Condensed, Graphitic Carbon Nitride [J]. Chem. Eur. J.,2008,14:8177-8182.
    [82] WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymericphotocatalyst for hydrogen production from water under visible light [J]. Nat. Mater.,2009,8:76–80.
    [83] LI F B, QIAN Q L, YAN F, et al. Nitrogen-doped porous carbon microspherulesas supports for preparing monodisperse nickel nanoparticles [J]. Carbon,2006,44:128–132.
    [84] WU G, LI D Y, DAI C S, et al. Well-Dispersed High-Loading Pt NanoparticlesSupported by Shell-Core Nanostructured Carbon for Methanol Electrooxidation [J].Langmuir,2008,24:3566-3575.
    [85] JIA R R, CHEN J Z, ZHAO J H, et al. Synthesis of highly nitrogen-doped hollowcarbon nanoparticles and their excellent electrocatalytic properties in dye-sensitizedsolar cells [J]. J. Mater. Chem.,2010,20:10829–10834.
    [86] LIU Q, CUI Z M, MA Z, et al. Highly Active and Stable Material for CatalyticHydrodechlorination Using Ammonia-Treated Carbon Nanofibers as Pd Supports [J].J. Phys. Chem. C,2008,112:1199-1203.
    [87] JAOUEN F, MARCOTTE S, DODELET J P, et al. Oxygen reduction catalystsfor polymer electrolyte fuel cells from the pyrolysis of iron acetate adsorbed onvarious carbon supports [J]. Journal of Physical Chemistry B,2003,107(6):1376-1386.
    [88] LI Z H, Chang X J, Zou X J,et al. Chemically-modified activated carbon withethylenediamine for selective solid-phase extraction and preconcentration of metalions [J]. Anal. Chim. Acta,2009,632:272–277.
    [89]祝建中,杨嘉, DENG B L.有序介孔炭合成、改性及其对汞离子的附性能[J].新型炭材料,2008,23:221-227.
    [90] ADIB F, BAGREEV A, BANDOSE T. Adsorption/oxidation of hydrogen sulfideon nitrogen-containing activated carbons [J]. Langmuir,2000,16:1980–1986.
    [91] KANEKO K, KOTORI T, SHIMIZU K, et al. Changes in the molecularadsorption properties of pitch-based activated carbon fibers by air oxidation [J]. ChemSoc Faraday Trans,1992,88:1305–1309.
    [92] BAGREEV A, MENENDEZ J A, DUKHNO I, et al. Bituminous coal-basedactivated carbons modified with nitrogen as adsorbents of hydrogen sulfide [J].Carbon,2004,42:469–476.
    [93] ABE M, KAWASHIMA K, KOZAWA K, et al. Amination of activated carbonand adsorption characteristics of its aminated surface [J]. Langmuir,2006,16:5059–5063.
    [94] BASHKOVA S, BAGREEV A, BANDOSZ T J. Adsorption/oxidation of CH3SHon activated carbons containing nitrogen [J]. Langmuir,2003,19:6115-6121.
    [95] MANGUN C L, BENAK K R, Economy J, et al. Surface chemistry, pore sizesand adsorption properties of activated carbon fibers and precursors treated withammonia [J]. Carbon,2001,39:1809–1820.
    [96] ADIB F, BAGREEV A, BANDOSZ T J. Adsorption/Oxidation of HydrogenSulfide on Nitrogen-Containing Activated Carbons [J]. Langmuir,2000,16:1980-1986.
    [97] BAGREEV A, BASHKOVA S, BANDOSZ T J. Adsorption of SO2on ActivatedCarbons: The Effect of Nitrogen Functionality and Pore Sizes [J]. Langmuir2002,18,1257-1264.
    [98] PEVIDA C, PLAZA M G, ARIAS B, et al. Surface modification of activatedcarbons for CO2capture [J]. Appl. Surf. Sci.,2008,254:7165–7172.
    [99] LI Q, YANG J P, FENG D, et al. Facile Synthesis of Porous Carbon NitrideSpheres with Hierarchical Three-Dimensional Mesostructures for CO2Capture [J].Nano Res.,2010,3(9):632–642.
    [100] SHAO G S, LIU L, Ma T Y, et al. Exotemplating synthesis of nitrogen-dopedcarbon materials with hierarchically porous structure and their application forlysozyme adsorption [J]. Chem. Eng. J.,2001,174:452–460.
    [101] HOU P X, ORIKASA H, YAMAZAKI T, et al. Synthesis of Nitrogen-Containing Microporous Carbon with a Highly Ordered Structure and Effect ofNitrogen Doping on H2O Adsorption [J]. Chem. Mater.,2005,17:5187-5193.
    [102] WANG L F, YANG R T. Hydrogen Storage Properties of N-DopedMicroporous Carbon [J]. J. Phys. Chem. C,2009,113:21883–21888.
    [103] GHOSH K, KUMAR M, MARUYAMA T, et al. Tailoring the field emissionproperty of nitrogen-doped carbon nanotubes by controlling the graphitic/pyridinicsubstitution [J]. Carbon,2010,48:191-200.
    [104] MAHURIN S M, LEE J S, WANG X Q, et al. Ammonia-activated mesoporouscarbon membranes for gas separations [J]. J. Membr. Sci.,2011,368:41–47.
    [105] CARRERO-SáNCHEZ J C, ELíAS A L, MANCILLA R, et al.Biocompatibility and Toxicological Studies of Carbon Nanotubes Doped withNitrogen [J]. Nano Lett.,2006,6:1609-1616.
    [106] ZHU Z H, HATORI H, WANG S B, et al. Insights into Hydrogen AtomAdsorption on and the Electrochemical Properties of Nitrogen-Substituted CarbonMaterials [J]. J. Phys. Chem. B,2005,109:16744-16749.
    [107] WGANG L F, YANG R T. Hydrogen Storage Properties of N-DopedMicroporous Carbon [J]. J. Phys. Chem. C,2009,113:21883-21888.
    [108] GHOSH K, KUMAR M, MARUYAMA T, et al. Tailoring the field emissionproperty of nitrogen-doped carbon nanotubes by controlling the graphitic/pyridinicsubstitution [J]. Carbon,2010,48:191-200.
    [109] CARRERO-SANCHEZ J C, ELIAS A L, MANCILLA R, et al.Biocompatibility and Toxicological Studies of Carbon Nanotubes Doped withNitrogen [J]. Nano Lett.,2006,6:1609-1616.
    [110] GONG K P, DU F, XIA Z H, et al. Nitrogen-Doped Carbon Nanotube Arrayswith High Electrocatalytic Activity for Oxygen Reduction [J]. Science,2009,323:760-764.
    [111] TANG Y F, ALLEN B L, KAUFFMAN D R, et al. Electrocatalytic Activity ofNitrogen-Doped Carbon Nanotube Cups [J]. J. Am. Chem. Soc.,2009,131:13200-13201.
    [112]屈强好.碳酸二乙酯联产碳酸甲乙酯技术开发及产业化[J].化工中间体,2004,4:29-31.
    [113] WU X, WANG Z, LI X, et al. Effect of lithium difluoro(oxalato)borate andheptamethyldisilazane with different concentrations on cycling performance ofLiMn2O4[J]. J Power Sources,2012,204:133-138.
    [114] BURNS J C, SINHA N N, COYLE D J, et al. The Impact of Varying theConcentration of Vinylene Carbonate Electrolyte Additive in Wound Li-Ion Cells [J].J Electrochem Soc,2012,159(2): A85-A90.
    [115] WANG J, ZHAO H, LIU X, et al. Electrochemical properties of SnO2/carboncomposite materials as anode material for lithium-ion batteries [J]. Electrochim Acta,2011,56(18):6441-6447.
    [116]郭炳馄,徐徽,王先友,等.锂离子电池[M].长沙:中南大学出版社,2000:291.
    [117] BHANAGE B M, FUJITA S I, IKUSHIMA Y, et al. Synthesis of dimethylcarbonate and glycols from carbon dioxide, epoxides and methanol usingheterogeneous Mg containing smectite catalysts: effect of reaction variables onactivity and selectivity performance [J]. Green Chem,2003,5(1):71-75.
    [118] LI Y, ZHAO X Q, WANG Y J. Synthesis of dimethyl carbonate from methanol,propylene oxide and carbon dioxide over KOH/4A molecular sieve catalyst [J]. Appl.Catal., A,2005,279(1-2):205-208.
    [119]王庆印,王越,姚洁,等.碳酸二甲酯酯交换反应研究进展[J].天然气化工,2005,30(2):59-64.
    [120] RAAB V, MERZ M, SUNDERMEYER J. Ligand effects in the coppercatalyzed aerobic oxidative carbonylation of methanol to dimethyl carbonate (DMC)[J]. J Mol Catal A: Chem,2001,175(1–2):51-63.
    [121] GAN H, PALAZZO M, TAKEUCHI E S, Method of synthesizing unsymmetricorganic carbonates and preparing nonaqueous electrolytes for alkali ionelectrochemical cells [P]. US5962720,1999.
    [122] LUO H P, XIAO W D, A reactive distillation process for a cascade andazeotropic reaction system: carbonylation of ethanol with dimethyl carbonate [J].Chem. Eng. Sci.,2001,56(2):403-410.
    [123]卓广澜,沈振陆,姜玄珍.均相催化合成碳酸甲乙酯[J].催化学报,2004,25(3):171-172.
    [124]沈振陆,赵卫娟,卓广澜,等.一种制备碳酸甲乙酯的方法[P]. CN1394847,2003.
    [125] SHEN Z L, JIANG X Z, ZHAO W J, A new catalytic transesterification for thesynthesis of ethyl methyl carbonate [J]. Catal. Lett.,2003,91:63-67.
    [126]陈英,韩金玉,刘艳平.固体碱催化剂上碳酸甲乙酯的洁净合成[J].天津大学学报,2007,40(3):285-288.
    [127] ZHAO G. M., SHI J.H., LIU G., et al. Efficient porous carbon-supported MgOcatalysts for the transesterification of dimethyl carbonate with diethyl carbonate [J]. JMol Catal A: Chem,2010,327:32-37.
    [128] DOSSIN T F, REYNIERS M F, MARIN G B. Kinetics of heterogeneouslyMgO-catalyzed transesterification [J]. Appl. Catal. B: Environ.,2006,61:35-45.
    [129] SHAIKH ABBAS-ALLI G., SIVARAM S, Organic Carbonates [J]. Chem. Rev.,1996,96:951-976.
    [130] OHSHIDA T, HARADA H, OHGI H, et al., Method for Preparing AromaticCarbonate [P]. EP760359,1997-03-05.
    [131] Terunobu Y, Takoshi Y. Preparation of diaryl carbonates and/or alkyl arylcarbonates by using Lanthanide oxides [P], JP Patent0959223,1997-03-04.
    [132]梅付名,李光兴,莫婉玲.碳酸二苯酯的合成工艺进展[J].现代化工,1999,19(5):13-15.
    [133] Yoshiyuki H. Diphenyl carbonate [P], JP Patent61172852,1986-08-04.
    [134] TATSUYA N. transesterification catalysts and preparation of diaryl carbonatesusing them [P]. JP, Patent,0407035,1992-01-10.
    [135]郭宏利,王胜平,马新宾,等.草酸二甲酯与苯酚酯交换合成碳酸二苯酯,石油化工,2003,32:104-107.
    [136] GONG J L, MA X B, YANG X, et al. A bimetallic molybdenum (VI) andstannum (IV) catalyst for the transesterification of dimethyl oxalate with phenol [J].Catal. Commun.,2004,5:179-184.
    [137] GONG J L, MA X B, WANG S. P, et al., Transesterification of dimethyloxalate with phenol over MoO3/SiO2catalysts [J]. J. Mol. Catal. A: Chem.,2004,207:215-220.
    [138] MA X B, GUO H L, WANG S P, et al. Transesterification of dimethyl oxalatewith phenol over TS-1catalyst [J]. Fuel Process Technol.2003,83:275-286.
    [139] WANG S P, MA X B, GUO H L, et al. Characterization and catalytic activity ofTiO2/SiO2for transesterification of dimethyl oxalate with phenol [J]. J. Mol. Catal. A:Chem.,2004,214:273-279.
    [140] WANG, S P, MA X B, GONG J L, et al. Transesterification of DimethylOxalate with Phenol under SnO2/SiO2Catalysts [J]. Ind. Eng. Chem. Res.,2004,43:4027-4030.
    [141] Gong J L, Ma X B, Yang X, et al. A bimetallic molybdenum (VI) and Stannum(IV) catalyst for the transesterification of dimethyl oxalate with phenol [J]. Catal.Commun.,2004,5:179-184.
    [142] ZHAO G. M, ZHU X M, Wang Z L, et al TRANSESTERIFICATION OFDIMETHYL OXALATE WITH PHENOL OVER Ti-CONTAINING PHOSPHATECATALYSTS [J]. React.Kinet.Catal.Lett.,2007,91:77.
    [143] LIU G., LIU Y., YANG G., et al. Preparation of Titania-Silica Mixed Oxides bya Sol-Gel Route in the Presence of Citric Acid [J]. J. Phys. Chem. C.,2009,113:9345-9351.
    [144] LIU Y, ZHAO G. M, LIU G., Cyclopentadienyl-functionalized mesoporousMCM-41catalysts for the transesterification of dimethyl oxalate with phenol [J].Catal. Commun.,2008,9:2022-2025.
    [145] LIU Y, ZHAO G M, ZHU W C, et al. Comparative Study on the CatalyticProperties of Amino-Functionalized Silica Materials for the Transesterification ofDimethyl Oxalate with Phenol [J]. J. Braz. Chem. Soc.,2010,21:2254.
    [1]刑爱华,张敏卿,何志敏,分析化学,2005,33(8):1147-1150.
    [2] XING A H, ZHANG M Q. Chromatographia,2005,61(7-8):423-426.
    [1] SCHROEDER W H, MUNTHE J. Atmospheric mercury-an overview,[J] Atmos.Environ.,1998,32(5):809–822.
    [2]帅俊松,王琳.浅论重金属污染对人体健康的影响及对策[J].环境与开发,2001,16(4):62.
    [3]黄美荣,王琳,易辉,等.废水中汞离子去除方法的研究进展[J].化工环保,2007,27:135.
    [4] MATLOCK M M, HOWERTON B S, ATWOOD D A. Irreversible precipitation ofmercury and lead [J]. J. Hazard.Mater.,2001,84:73-82.
    [5] OEHMEN A, FRADINHO J, SERRA S, et al. The effect of carbon source on thebiological reduction of ionic mercury [J]. J. Hazard. Mater.,2009,165:1040-11048.
    [6] MIRETZKY P, FERNANDEZ C. Hg(II) removal from water by chitosan andchitosan derivatives: A review [J]. J. Hazard. Mater.,2009,167:10-23.
    [7] OUBAGARANADIN J U K, SATHYAMURTHY N, MURTHY Z V P E,Evaluation of Fuller’s earth for the adsorption of mercury from aqueous solutions: Acomparative study with activated carbon [J]. J. Hazard. Mater.2007,142:165-174.
    [8] KADIRVELU K, KAVIPRIYA M, KARTHIKA C, et al. Mercury (II) adsorptionby activated carbon made from sago waste [J]. Carbon2004,42:745-752.
    [9] CHOI M, JANG J. Heavy metal ion adsorption onto polypyrrole-impregnatedporous carbon [J]. J. Colloid Interface Sci.2008,325,287-289.
    [10] RAMADAN H, GHANEM A, EL-RASSY H,. Mercury removal from aqueoussolutions using silica, polyacrylamide and hybrid silica-polyacrylamide aerogels [J].Chem. Eng. J.,2010,159,107-115.
    [11] GAO R, ZHENG H, CHANG X J, et al. Chemically modified activated carbonwith1-acylthiosemicarbazide for selective solid-phase extraction andpreconcentration of trace Cu(II), Hg(II) and Pb(II) from water samples [J]. J. Hazard.Mater.,2009,172:324-329.
    [12] VASSILEVA P, TZVETKOVA P, LAKOV L. et al. Thiouracil modified activatedcarbon as a sorbent for some precious and heavy metal ions [J]. Porous Mater.2008,15:593-599.
    [13] RANGANATHAN K. Adsorption of Hg(II) ions from aqueous chloride solutionsusing powdered activated carbons [J]. Carbon,2003,41:1087-1092.
    [14] KYOTANI T. Control of pore structure in carbon [J]. Carbon,2000,38:269-286.
    [15] JOO S H, CHOI S J, OH I, et al. Ordered nanoporous arrays of carbon supportinghigh dispersions of platinum nanoparticles [J]. Nature,2001,412:169.
    [16] WANG D W, LI F, LIU M.3D Aperiodic Hierarchical Porous Graphitic CarbonMaterial for High-Rate Electrochemical Capacitive Energy Storage Angew [J]. Chem.Int. Edit.,2008,47:373-376.
    [17] LEE J, YOON S, HYEON T, et al. Synthesis of a new mesoporous carbon and itsapplication to electrochemical double-layer capacitors [J]. Chem.Commun.,1999,2177-2178.
    [18] MENG Y, GU D, ZHANG F Q, et al. Ordered Mesoporous Polymers andHomologous Carbon Frameworks: Amphiphilic Surfactant Templating and DirectTransformation [J]. Angew. Chem. Int. Edit.,2005,44:7053-7059.
    [19] ZHU J Z, DENG B L, YANG J, et al. Modifying activated carbon with hybridligands for enhancing aqueous mercury removal [J]. Carbon,2009,47:2014-2015.
    [20] ZHU J Z, YANG J, DENG B L. Enhanced mercury ion adsorption byamine-modified activated carbon [J]. J. Hazard. Mater.,2009,166:866-872.
    [21] LIU G., LIU Y, WANG Z V, et al. Direct synthesis of porous carbon viacarbonizing precursors of aluminum phosphate containing citric acid [J]. MicroporousMesoporous Mat.,2008,116:439-444.
    [22] LIU G., LIU Y, ZHANG X Y, et al. Characterization and catalytic performance ofporous carbon prepared using in situ-formed aluminophosphate framework astemplate [J]. J. Colloid Interface Sci.,2010,342:467-473.
    [23] LIU G., ZHANG X Y, XU Y, et al. Nanoporous Carbon Supported MnOxCatalysts for Oxidation of Benzyl Alcohol [J]. Chin. J. Catal.,2010,31:1025-1030.
    [24] ZHAO G M, SHI J H, LIU G., et al. Efficient porous carbon-supported MgOcatalysts for the transesterification of dimethyl carbonate with diethyl carbonate [J]. J.Mol. Catal. A-Chem.,2010,327:32-37.
    [25] ZU Y H, LIU G., WANG Z L, et al. CaO Supported on Porous Carbon as HighlyEfficient Heterogeneous Catalysts for Transesterification of Triacetin with Methanol[J]. Energy Fuels,2010,24:3810-3816.
    [26] SING K S, W, EVERETT D H, HAUL R A. W, et al. Reporting PhysisorptionData for Gas/Solid Systems with Special Reference to the Determination of SurfaceArea and Porosity [J]. Pure Appl. Chem.,1985,57:603.
    [27] ZHAO D Y, HUO Q S, FENG J L,et al. Nonionic Triblock and Star DiblockCopolymer and Oligomeric Surfactant Syntheses of Highly Ordered, HydrothermallyStable, Mesoporous Silica Structures [J]. J. Am. Chem. Soc.,1998,120:6024-6036.
    [28] HUO Q S, MARGOLESE D I, CIESLA U, et al. Generalized synthesis ofperiodic surfactant/inorganic composite materials [J]. Nature,1994,368:317-321.
    [29] PANG, J B; LI X.; WANG D.H. Silica-Templated Continuous MesoporousCarbon Films by a Spin-Coating Technique [J].Adv. Mater.,2004,16:884.
    [30] TANEV P T; CHIBWE M, PINNAVAIA T J. Titanium-containing mesoporousmolecular sieves for catalytic oxidation of aromatic compounds [J]. Nature1994,368:321.
    [31] XIA Y D, MOKAYA R. Synthesis of Ordered Mesoporous Carbon andNitrogen-Doped Carbon Materials with Graphitic Pore Walls via a Simple ChemicalVapor Deposition Method [J]. Adv. Mater.,2004,16:1553-1558.
    [32] JUREWICZ K, BABEL K, PIETRZAK R, et al. Capacitance properties ofmulti-walled carbon nanotubes modified by activation and ammoxidation [J]. Carbon,2006,44:2368-2375.
    [33] SUBRAMANIAN N P, LI X, NALLATHAMBI V. Nitrogen-modifiedcarbon-based catalysts for oxygen reduction reaction in polymer electrolytemembrane fuel cells [J]. J. Power Sources,2009,188:38-44.
    [34] WEN Y H, CHENG J, XU Y, et al. Studies on Nitrogen-doped Nano-carbons andTheir Non-Pt Composites as Electrocatalysts [J]. Progress in Chemistry,2010,22(08):1550-1555.
    [35] ARRIGO R, HAVECKER M, WRABETZ S, et al. Tuning the acid/basepoperties of nanocarbons by functionalization via amination [J]. J. Am. Chem. Soc.,2010,132,9616–9630
    [36] NAMASIVAYAM C, PERIASAMY K. Bicarbonate-treated peanut hull carbonfor mercury(II) removal from aqueous solution [J]. Water Res,1993,27:1663-1668.
    [1] GAN H, PALAZZO M J, TAKEUCHI E S. Method of synthesizing unsymmetricorganic carbonates and preparing nonaqueous electrolytes for alkali ionelectrochemical cells [P], US5962720,1999.
    [2] OKUNO H, KOSHINA H, MORITA A. Non aqueous secondary electrochemicalbattery [P], US5521027,1996.
    [3] INABA M, HASEGAWA K, SUZUKI T. Production of asymmetric chaincarbonate compound [P]. JP,10237026,1998.
    [4] HASEGAWA K. Inaba M, Production of asymmetric dialkyl carbonate [P]. JP,2000281630,2000.
    [5]沈振陆,赵卫娟,卓广澜,等.一种制备碳酸甲乙酯的方法[P]. CN1394847,2003.
    [6]沈振陆.碳酸二甲酯参与的绿色催化反应研究[D].浙江大学,2004.
    [7]卓广澜,沈振陆,姜玄珍.均相催化合成碳酸甲乙酯[J].催化学报2004,25(3):171-172.
    [8] PALANI A, GOKULAKRISHNAN N, PALANICHAMY M, et al.Transesterification of dimethyl carbonate with diethyl carbonate over Al-Zn-MCM-41and Al-MCM-41molecular sieves [J]. Appl. Catal. A: Gen.,2006,304:152–158.
    [9] SHEN Z L, JIANG X Z, ZHAO W J. A new catalytic transesterification for thesynthesis of ethyl methyl carbonate [J]. Catal. Let.,2003,91:63-67.
    [10]陈英,韩金玉,刘艳平.固体碱催化剂上碳酸甲乙酯的洁净合成[J].天津大学学报,2007,40(3):285-288.
    [11] ZHAO G M, SHI J H, LIU G, et al. Efficient porous carbon-supported MgOcatalysts for the transesterification of dimethyl carbonate with diethyl carbonate [J]. JMol Catal A: Chem,2010,327(1-2):32-37.
    [12] JIN X, BALASUBRAMANIAN V V, SELVAN S T, et al. Highly orderedmesoporous carbon ntride nanoparticles with high nitrogen content: A metal-freebasic catalyst. Angew [J]. Chem. Int. Ed.,2009,48:7884-7887.
    [13] KAN-NARI N, OKAMURA S, FUJITA S, et al. Nitrogen-doped carbonmaterials prepared by ammoxidation as solid base catalysts for Knoevenagelcondensation and transesterification reactions [J]. Adv. Syn.Catal.,2010,352:1476.
    [14] MANGUN C L, BENAK K R, ECONOMY J, et al. Surface chemistry, poresizes and adsorption properties of activated carbon fibers and precursors treated withammonia [J]. Carbon,2001,39:1809.
    [15] CHEN W, CANNON F S, RANGEL-MENDEZ J R. Ammonia-tailoring of GACto enhance perchlorate removal. I: characterization of NH3thermally tailored GACs[J]. Carbon,2005,43:573.
    [16] VINU A, SRINIVASU P, SAWANT D P, et al, Three-Dimensional Cage TypeMesoporous CN-Based Hybrid Material with Very High Surface Area and PoreVolume [J]. Chem. Mater.,2007,19:4367.
    [17] BUDAEVA A D, ZOLTOEV E V. Porous structure and sorption properties ofnitrogen-containing activated carbon [J]. Fuel,2010,89:2623.
    [18] LU X F, WANG H J, ZHANG S Y, et al. Synthesis, characterization andelectrocatalytic properties of carbon nitride nanotubes for methanol electrooxidation[J] Solid State Sci.,2009,11:428.
    [19] ZIMMERMAN J L, WILLIAMS R, KHABASHESKU V N, et al. Synthesis ofSpherical Carbon Nitride Nanostructures [J]. Nano Lett.,2001,1:731-734.
    [20] ARRIGO R, HAVECKER M, WRABETZ S, et al. Tuning the acid/basepoperties of nanocarbons by functionalization via amination [J]. J. Am. Chem. Soc.,2010,132:9616–9630
    [1] LIU Y, MA X B, WANG S P, et al. The nature of surface acidity and reactivity ofMoO3/SiO2and MoO3/TiO2–SiO2for transesterification of dimethyl oxalate withphenol: A comparative investigation [J]. Appl.Catal. B: Environ.,2007,77:125-134.
    [2] YANG X, MA X B, WANG S P, et al. Transesterification of Dimethyl Oxalatewith Phenol Over TiO2/SiO2: Catalyst Screening and Reaction Optimization [J].AlChE J.,2008,54:3260
    [3] SHI Y, WANG S P, MA X B. Microwave preparation of Ti-containingmesoporous materials. Applicationas catalysts for transesterification [J]. Chem. Eng. J.2011,166:744-750.
    [4] CHEN C X, PENG J S, LI B, et al. The catalytic activity of CuNi-containinghydrotalcites in the transesterification of dimethyl oxalate with phenol [J]. J PorousMater,2009,16:233-238.
    [5] ZHAO G M, ZHU X M, WANG Z L, et al. TRANSESTERIFICATION OFDIMETHYL OXALATE WITH PHENOL OVER Ti-CONTAINING PHOSPHATECATALYSTS [J]. React.Kinet.Catal.Lett.,2007,91:77
    [6] LIU G, LIU Y, YANG G, et al. Preparation of Titania-Silica Mixed Oxides by aSol-Gel Route in the Presence of CitricAcid [J]. J. Phys. Chem. C.,2009,113:9345-9351
    [7] WANG S P, MA X B, GUO H L, et al. Characterization and catalytic activity ofTiO2/SiO2for transesterification of dimethyl oxalate with phenol [J]. J Mol Catal A.,2004,214:273-279.
    [8] LIU G, LI X G, GANESAN P, et al. Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon [J].Appl. Catal. B: Environ.,2009,93:156-165.
    [9] JIANG J H, GAO Q M, ZHENG Z J, et al. Enhanced room temperature hydrogenstorage capacity of hollow nitrogen-containing carbon spheres [J]. Int. J. HydrogenEnergy,2010,35:210-216.
    [10] SHELIMOV B K, MOSKOVITS M, Composite Nanostructures Based onTemplate-Grown Boron Nitride Nanotubules [J]. Chem. Mater.,2000,12:250-254.
    [11] WANG Y, ZHANG J S, WANG X C, et al Boron-and Fluorine-ContainingMesoporous Carbon Nitride Polymers:Metal-Free Catalysts for CyclohexaneOxidation [J]. Angew. Chem. Int. Ed.,2010,49:1-5.
    [12] FUJIGAYA T, UCHINOUMI T, KANEKOB K, et al. Design and synthesis ofnitrogen-containing calcined polymer/carbon nanotube hybrids that act as a platinum-free oxygen reduction fuel cell catalyst [J]. Chem.Commun.,2011,47:6843-6845.
    [13] SHIN W H, YANG S H, CHOI Y J, et al. Charge polarization-dependent activityof catalyst nanoparticles on carbon nitride nanotubes for hydrogen generation [J]. J.Mater. Chem.,2009,19:4505-4509.
    [14] FREIRE R M, de MORAIS BATISTA A H, de SOUZA FILHO A G, et al. HighCatalytic Activity of Nitrogen-Containing Carbon from Molecular Sieves in FineChemistry [J]. Catal.Lett.,2009,131:135-145.
    [15] AYALA P, ARENAL R, RUMMELI M, The doping of carbon nanotubes withnitrogen and their potential applications [J]. Carbon,2010,48:575-586.
    [16] CARATI A, FERRARIS G, GUIDOTTI M, et al. Preparation andcharacterization of mesoporous silica–alumina and silica–titania with a narrow poresize distribution [J]. Catalysis Today,2003,77:315–323.
    [17] LU A H, LI W C, SALABAS E L, et al. Low Temperature Catalytic Pyrolysisfor the Synthesis of HighSurface Area, Nanostructured Graphitic Carbon [J]. Chem.Mater.,2006,18:2086–2094.
    [18] YANG H, YAN Y, LIU Y, et al. A Simple Melt Impregnation Method toSynthesize Ordered Mesoporous Carbon and Carbon Nanofiber Bundles withGraphitized Structure from Pitches [J]. J.Phys. Chem. B,2004,108:17320–17328.
    [19] SU F, ZHAO X S, WANG Y, et al. Synthesis of Graphitic OrderedMacroporous Carbon with a Three-Dimensional Interconnected Pore Structure forElectrochemical Applications [J]. J. Phys. Chem. B,2005,109:20200–20206.
    [20] HAYDARA S, MORENO-CASTILLA C, FERRO-GARíA M A, et alRegularities in the temperature-programmed desorption spectra of CO and CO fromactivated carbons [J]. Carbon,2000,38:1297–1308
    [21] LI P, ZHAO T J, ZHOU J H,et al. Characterization of carbon nanofibercomposites synthesized by shaping process [J]. Carbon,2005,43:2701–2710
    [22] LAI C L, LEE H M, HU C H. Theoretical study on the mechanism ofN-heterocyclic carbene catalyzed transesterification reactions [J]. Tetrahedron Lett.,2005,46:6265-6270.
    [23] MOVASSAGHI M, SCHMIDT M A. N-Heterocyclic Carbene-CatalyzedAmidation of Unactivated Esters with Amino Alcohols [J]. Org. Lett.,2005,7:2453-2456.
    [25] CHUMA A, HORN H W, SWOPE W C, et al. The Reaction Mechanism for theOrganocatalytic Ring-Opening Polymerization of L-Lactide Using a Guanidine-Based Catalyst: Hydrogen-Bonded or Covalently Bound?[J]. J. Am. Chem. Soc.,2008,130:6749-6754.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700