强化碳酸化反应体系相平衡基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是二氧化碳气体(CO_2)排放大国,建立适合我国国情的低成本、低环境风险CO_2减排技术体系,是解决我国温室气体CO_2排放问题的迫切需求,也是世界范围内CO_2减排技术的科技前沿。利用含钙、镁的固体废弃物通过碳酸化反应固定CO_2,在实现了多点源排放CO_2就地加工封存的同时,又实现了固体废弃物的资源化利用,对发展可持续的环保经济具有重要意义。针对利用钢铁渣碳酸化固定CO_2联产碳酸盐产品新工艺应用前景广泛,理论深度不够,理论基础数据缺乏等现状。本文开展了如下研究:
     (1)基于强化碳酸化反应体系的主要平衡方程和多元电解质Pitzer模型,初步建立了多相复合溶剂新体系中各主要组分离子活度系数预测模型和碳酸化反应结晶转化率模型。测定了多相复合溶剂新体系中乙酸分配系数,并考察了初始乙酸、乙酸钙浓度以及体系温度对乙酸分配系数的影响。
     (2)根据相关文献报道,选取了较为精准的恒定容积法进行高压气液平衡体系中CO_2气体溶解度的计算。设计并搭建完成一套可用于测定高压多相气液相平衡体系中气体溶解度的实验装置,并对实验装置可靠性进行验证,其平均相对偏差为1.62%,可满足实验需求。
     (3)对CO_2在磷酸三丁酯中的溶解行为开展了详细研究,并初步研究了CO_2在含钙水溶液中溶解度。测定了温度303.5~363.8K、压力0.5~4.5MPa范围内,CO_2在磷酸三丁酯中的溶解度,并通过GC/MS及FT-IR分析表明,气体以分子形式溶解在TBP溶剂中,CO_2气体在TBP中溶解过程主要为物理吸收,CO_2在TBP中溶解行为与亨利定律基本符合。CO_2在氯化钙中溶解度符合亨利定律,为物理过程,随着氯化钙溶度的增加,CO_2溶解度逐渐增加。
Owing to the large number of CO_2emission in the world, development ofa low cost and low environmental risk technical system for CO_2mitigation isnot only the impending science and technology needs for reducing CO_2emission in China, but also the frontier science and technology of CO_2emission control technology all over the word. Using calcium/magnesiumcontained solid residua as raw materials; CO_2can be sequestrated by indirectmineral carbonation. It can be realized that not only the CO_2can be processedon-site into a solid, but also the solid residua can be utilized as resources,which has important significance on the development of circular economy inChina. Currently, the process of indirect CO_2mineral sequestration withsteel-making slag and carbonate production has a wide application prospect,but lack of theoretical data. The purpose of this paper is to solve theseproblems and the following studies have been done.
     (1) In strengthen carbonation reaction system, large number of acetic aciddistribution coefficients were measured, the ionic activity coefficient model ofthe main component and the crystallization conversion rate model ofcarbonation reaction was established.
     (2) According to the considerably related literature reports, the preciseconstant volume method was selected to calculate the CO_2solubility in thehigh-pressure multiphase gas-liquid equilibrium system. A set of preciseexperimental apparatus was builded to measure gas solubility data in thehigh-pressure multiphase gas-liquid equilibrium system and the experimentaldevice was proved to be reliable. The average deviation of the experimentaldevice is1.62%and it is enough to meet the experimental demands.
     (3) A detailed study on dissolution behavior of CO_2in tributyl-phosphatesolvent and a preliminary study on the solubility of CO_2in solution containingcalcium were implemented. The solubility of CO_2in tributyl phosphate (TBP)solvent was measured in a temperature range of303.15K-363.15K and gaspressure of CO_2up to4.5MPa. Results showed that the solubility of CO_2inTBP solvent increased with the augment of CO_2gas pressure and decreasedwith the growth of equilibrium temperature. GC/MS and FT-IR analysis resultindicated that the capture process by TBP solvent could be regarded asphysical absorption. The Henry coefficient which was obtained by fitting theexperimental data was well consistent with the Henry's law.
引文
[1]靖宇,韦力,王运东.吸附法捕集二氧化碳吸附剂的研究进展[J].化工进展,2011,30:133-138
    [2]中国科学院.2008科学发展报告[R].北京:科学出版社,2008
    [3]曾纪发.发展低碳经济须澄清几大误区[J].中国财政,2009,20:66-67
    [4]包炜军,李会泉,张懿.矿物碳酸化固定CO2研究进展[J].化工学报,2007,58(1):1-9
    [5]王少立.直面《京都议定书》《京都议定书》的过去、现在和将来[J].国际石油经济,2005,13(2):14-16
    [6] Metz B, Davidson O, Coninck H. IPCC special report on carbon dioxide capture and storage[OL].http://www.ipcc.ch.
    [7]以创新助电炉炼钢业发展[OL]. http://www.sxCoal.com/News/2009/02/01/306404/article.html
    [8]张懿,李会泉.温室气体CO2的大规模固定与利用[R].香山科学会议第279次学术讨论会,2006.79-89
    [9]周集体,王竞,杨凤林.微生物固定CO2的研究进展[J].环境科学进展,1999,7(1):1-9
    [10]石英杰,吴昊,王丽娟,宋鹤. CO2固定化及资源化的技术进展[J].中国环保产业,2006,1:40-42
    [11]吴昊泽.固体废弃物碳酸化研究综述[J].粉煤灰,2011,23(1):33-35
    [12] Wu J C S, Sheen J D, Chen S Y, Fan Y C. Feasibility of CO2fixation via artificial rockweathering[J]. Ind. Eng. Chem. Res.,2001,40(18):3902-3905
    [13] Huijgen W J J, Comans R N J. Carbon dioxide sequestration by mineral carbonation: literaturereview update2003-2004[R]. Netherlands: ECN School Fossiel,2005
    [14] Goldberg P, Chen Z Y, O'Connor W K, Walters R P, Zoick K. CO2mineral sequestration studiesin US[J]. J. Energy&Environ. Res.,2001,1(1):117-126
    [15] Lackner K S. A guide to CO2sequestration[J]. Science,2003,300(5626):1677-1678
    [16] Goff F, Lackner K S. Carbon dioxide sequestering using ultramafic rocks[J]. Environ.Geosciences,1998,5(3):89-101
    [17] Lackner K S. Carbonate chemistry for sequestering fossil carbon[J]. Ann. Rev. Energy Environ.,2002,27:193-232
    [18]徐俊.二氧化碳矿化机制的实验研究[D].武汉:华中科技大学,2006
    [19]刘梅.钢渣及其矿物碳酸化机理的研究[D].济南:济南大学,2010
    [20] Guthrie G D, Carey J W, Bergfeld D, Byler D, Chipera S, Ziock H J, Lackner K S. Geochemicalaspects of the carbonation of magnesium silicates in an aqueous medium[R]. Proceedings of theFirst NETL Conference on Carbon Sequestration, Washington, DC,2001
    [21]吴昊泽.利用钢渣和造纸污泥吸收工业废气制备建材制品[D].济南:济南大学,2011
    [22] Tai C Y, Chen W R, Shih S M. Factors affecting wollastonite carbonation under CO2supercriticalconditions[J]. AIChE J.,2006,52(1):292-299
    [23] Carey J W, Rosen E P, Bergfeld D, Chipera S J, Counce D A, Snow M G, Ziock H J, Guthrie G D.Experimental studies of the serpentine carbonation reaction[R]. Proceedings of the28thInternational Technical Conference on Coal Utilization&Fuel Systems ClearWater, FL, USA,2003
    [24] O’Connor W K, Dahlin D C, Rush G E, Gerdemann S J, Penner L R, Nilsen D N. Aqueousmineral carbonation: mineral availability, pretreatment, reaction parametrics and processstudies[R]. Albany Research Centre, DOE/ARC-TR-04-002, Albany, OR, USA,2004
    [25] Huijgen W J J, Witkamp G J, Comans R N J. Mechanisms of aqueous wollastonite carbonation asa possible CO2sequestration process[J]. Chem. Eng. Sci.,2006,61(13):4242-4251
    [26] Park A H, Jadhav R, Fan L S. CO2mineral sequestration: chemically enhanced aqueouscarbonation of serpentine[J]. Can. J. Chem. Eng.,2003,81(3-4):885-890
    [27] Park A H, Fan L S. CO2mineral sequestration: physically activated dissolution of serpentine andpH swing process[J]. Chem. Eng. Sci.,2004,59(22-23):5241-5247
    [28] Maroto-valer M M, Fauth D J, Kuchta M E, Zhang Y, Andrésen M J. Activation of magnesiumrich minerals as carbonation feedstock materials for CO2sequestration[J]. Fuel Process Technol.,2005,86(14-15):1627-1645
    [29]赵传文,陈晓平,赵长遂.钾基CO2吸收剂的碳酸化反应特性[J].化工学报.2008,59(9):2328-2333
    [30] Gerdemann S J, Dahlin D C, O'Connor W K. Carbon dioxide sequestration by aqueous mineralcarbonation of magnesium silicate minerals[R]. Proceedings of the6th International Conferenceon Greenhouse Gas Control Technologies, Kyoto, Japan,2002
    [31] O'Connor W K, Dahlin D C, Nilsen D N, Gerdemann S J, Rush G E, Walters R P, Turner P C.Continuing studies on direct aqueous mineral carbonation for CO2sequestration[R]. Proceedingsof the27th International Technical Conference on Coal Utilization, ClearWater, FL, USA,2002
    [32] Huijgen W J J, Witkamp G J, Comans R N J. Mineral CO2sequestration by steel slagcarbonation[J]. Environ. Sci.&Technol.,2005,39(24):9676-9682
    [33] Lackner K S, Butt D P, Wendt C H. Progress on binding CO2in mineral substrates[J]. EnergyConvers. Manage.,1997,38: S259-S264
    [34] Lackner K S, Butt D, Wendt C. Magnesite disposal of carbon dioxide[R]. Proceedings of the2ndInternational Technical Conference on Coal Utilization and Fuel System, ClearWater, Florida,USA,1997
    [35] Zevenhoven R, Kohlmann J. CO2sequestration by magnesium silicate mineral carbonation infinland[R]. Proceedings of the R'02Recovery, Recycling, Re-integration, Geneva, Switzerland,2002
    [36] O'Connor W K, Dahlin D C, Nilsen D N, Walters R P, Turner P C. Carbon dioxide sequestrationby direct mineral carbonation with carbonic acid[R]. Proceedings of the25th InternationalTechnical Conference on Coal Utilization and Fuel Systems, ClearWater, Florida, USA,2000
    [37] O'Connor W K, Dahlin D C, Nilsen D N, Rush G E, Walters R P, Turner P C. CO2storage insolid form: a study of direct mineral carbonation[R]. Proceedings of the5th InternationalConference on Greenhouse Gas Technologies, Cairns, Australia,2000
    [38] McKelvy M J, Chizmeshya A V G, Diefenbacher J, Wolf G, Bearat H. Investigations of the CO2sequestration reaction mechanisms that govern serpentine mineral carbonation[R]. Proceedingsof the28th International Technical Conference on Coal Utilization&Fuel Systems, ClearWater,Florida, USA,2003
    [39] O’Connor W K, Dahlin D C, Gerdemann S J, Rush G E, Penner L R. Energy and economicconsiderations for ex-situ aqueous mineral carbonation[R]. Proceedings of the29th InternationalTechnical Conference on Coal Utilization&Fuel Systems, ClearWater, Florida, USA,2004
    [40] Lackner K S, Butt D P, Wendt C H, Ziock H J. Mineral carbonates as carbon dioxide sinks[R].Proceedings of the Advanced Coal-Based Power&Environmental Systems98Conference,Morgantown, West Virginia, USA,1998
    [41] Wendt C H, Butt D P, Lackner K S, Ziock H J. Thermodynamic calculations for aciddecomposition of serpentine and olivine in MgCl2meltsⅠ[P]. Los Alamos National Laboratory,Los Alamos, New Mexico,1998, LA-UR-98-4528
    [42] Wendt C H, Butt D P, Lackner K S, Ziock H J. Thermodynamic calculations for aciddecomposition of serpentine and olivine in MgCl2meltsⅡ[P]. Los Alamos National Laboratory,Los Alamos, New Mexico,1998, LA-UR-98-4529
    [43] Wendt C H, Butt D P, Lackner K S, Ziock H J. Thermodynamic considerations of using chloridesto accelerate the carbonate formation from magnesium silicates[P]. Los Alamos NationalLaboratory, Los Alamos, New Mexico,1998, LA-UR-98-3612
    [44] Kakizawa M, Yamasaki A, Yanagisawa Y. A new CO2disposal process using artificial rockweathering of calcium silicate accelerated by acetic acid[J]. Energy,2001,26(4):341-354.
    [45] Teir S, Eloneva S, Zevenhoven R. Production of precipitated calcium carbonate from calciumsilicates and carbon dioxide[J]. Energy Convers. Manage.2005,46(18-19):2954-2979
    [46] Yamasaki A, Fujii M, Kakizawa M, Yanagisawa Y. Reduction process of CO2emissions bytreating with waste concrete via an artifical weathering process[R]. Proceedings of the6thInternational Conference on Greenhouse Gas Control Technologies, Kyoto, Japan,2002
    [47] Blencoe J G, Palmer D A, Beard J S. Carbonation of calcium silicates for long-term CO2sequestration[P]. Patent WO,2004094043,2004-11-04
    [48] Zevenhoven R, Kavaliauskaite I. Mineral carbonation for long-term CO2storgy: an exergyanalysis[J]. Int. J. Thermodyn.,2004,7(1):24-31
    [49]张林菊.碳化养护钢渣制备建筑材料[D].济南:济南大学.2009
    [50] Zevenhoven R, Teir S, Eloneva S. Heat optimisation of a two-stage gas-solid mineral carbonationprocess for long-term CO2storage[J]. Energy,2008,33:1461-1467
    [51] Fagerlund J, Teir S, Nduagu E, Zevenhoven R. Carbonation of magnesium silicate mineral usinga pressurized gas-solid process[R]. Poster Presentation at GHGT-9, WAshington (DC),November16-20,2008
    [52] Fagerlund J, Nduagu E, Rom o I, Zevenhoven R. A stepwise process for carbon dioxidesequestration using magnesium silicates[R].10th International Conference on Carbon DioxideUtilization, May17-21, Tianjin, China,2009
    [53] Bonenfant D, Kharoune L, Sau S, Hausler R, Niquette P, Mimeault M, Kharoune M. CO2sequestration potential of steel slags at ambient pressure and temperature[J]. Ind. Eng. Chem.Res.,2008,47:7610-7616
    [54]赵华磊,吴昊泽,常钧,程新.碳酸化时间对钢渣碳酸化的影响[J].济南大学学报(自然科学版)[J].2010,24(3):221-224
    [55] Stolaroff J K, Lowry G V, Keith D W. Using CaO-and MgO-rich industrial waste streams forcarbon sequestration[J]. Energy Convers. Manage.,2005,46(5):687-699
    [56] Lekakh S N, Raw lins C H, Robertson D G C, Richards V L, Peaslee K D. Kinetics of aqueousleaching and carbonization of steel-making slag[J]. Metall. Mater. Trans. B,2008,39:125-134
    [57] Lekakh S N, Robertson D G C, Raw lins C H, Richards V L, Peaslee K D. Investigation of atwo-stage aqueous reactor design carbon dioxide sequestration using steel-making slag[J]. Metall.Mater. Trans. B,2008,39:484-492
    [58] Kodama S, Nishimoto T, Yamamoto N, Yogo K, Yamadaa K. Development of a new pH-swingCO2mineralization process with a recyclable reaction solution[J]. Energy,2008,33(5):776-784
    [59] Eloneva S, Teir S, Salminen J, Fogelholm C J, Zevenhoven R. Fixation of CO2by carbonatingcalcium derived from blast furnace slag[J]. Energy,2008,33(9):1461-1467
    [60] Eloneva S, Teir S, Salminen J, Fogelholm C J, Zevenhoven R. Steel converter slag as a rawmaterial for precipitation of pure calcium carbonate[J]. Ind. Eng. Chem. Res.,2008,47(18):7104-7111
    [61] King C J. Acetic acid extraction. in handbook of solvent extraction[M]. Lo T C, Baird M H I,Hanson C. Eds. Wiley-interscience, New York,1983.567-573
    [62] Kertes A S, King C J. Extraction chemistry of fermentation product carboxylic acids[J].Biotechnol. Bioeng.,1986,28(2):269-282
    [63]许林妹,华韬. TBP络合萃取醋酸稀溶液的特性.江南大学学报(自然科学版)[J],2004,3(3):299-302
    [64]王运东,李玉鑫,李振宇等.三烷基氧膦(TRPO)萃取有机羧酸的研究[J].高校化学工程学报,2001,15(2):174-178
    [65] Roos M, Bart H J. Extraction of acetic acid with tri-n-octylamine: physical properties and phaseequilibria[J]. J. Chem. Eng. Data,2001,46(5):1198-1202
    [66]张春燕,郭文革,刘亚玲.采用萃取反萃取技术回收废水中的醋酸[J].石油化工环境保护,2004,27(3):30-33
    [67]秦炜,马志君,戴猷元. Aliquat336萃取醋酸的平衡特性[J].化工学报,2002,53(9):957-961
    [68]戴猷元,秦炜,张瑾等.有机物络合萃取技术[M].北京:化学工业出版社,2007,7-98
    [69]戴猷元.新型萃取分离技术的发展及应用[M].北京:化学工业出版社,2007,3-82
    [70] Cai W, Zhu S, Piao X. Extraction equilibria of formic and acetic acids from aqueous solution byphosphate-containing extractants[J]. J. Chem. Eng. Data,2001,46(6):1472-1475
    [71] Fahim M A, Qader A, Hughes M A. Extraction equilibria of acetic and propionic acids fromdilute aqueous solution by several solvents[J]. Sep. Sci. Technol,1992,27(13):1809-1821
    [72] Fein J B. Experiment study of aluminum-, calcium-, and magnesium-acetate complexing at80oC[J]. Geochim. Cosmochim. Acta.,1991,55(4):955-964
    [73] Mendez L P,Wood R H. Conductance study of association in aqueous CaCl2, Ca(CH3COO)2, andCa(CH3COO)2nCH3COOH from348to523K at10MPa[J]. J. Phys. Chem. B.,2005,109(29):14243-14250
    [74]艾宁,李保红,陈建,等. CO2在碳酸二甲酯中溶解度的测定[J].化学工程,2005,33(3):51-54
    [75] Wu X H, Du X J, Zheng D X. Measurement of vapor-liquid equilibrium for theDME+Diisopropyl ether binary system and correlation for the DME+CO2+Diisopropyl ethersystem [J]. Int. J. Thermophys,2010,31:308-315
    [76]杜晓杰.丁醚及其复合吸收集中CO2溶解度的测定与模型化[D].北京:北京化工大学,2010,34
    [77] Tsivintzelis I, Missopolinou D, Kalogiannis K C. Phase compositions and saturated densities forthe binary systems of carbon dioxide with ethanol and dichloromethane [J]. Fluid PhaseEquilibria,2004,224:89-96
    [78] Fischer K, Wilken M. Experimental determination of oxygen and nitrogen solubility in organicsolvents up to10MPa at temperatures between298K and398K [J]. Chem. Thermodynamics,2001,33:1285-1308
    [79]包炜军,李会泉,张懿.强化碳酸化固定CO2反应过程分析与机理探讨[J].化工学报,2009,60(9):2332-2338
    [80]桂霞.燃烧前二氧化碳捕集耦合新工艺的研究[D].北京:清华大学,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700