利用粘红酵母转化反式肉桂酸生成L-苯丙氨酸的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
L-苯丙氨酸是具有生理活性的芳香族氨基酸,是人体和动物不能自身合成的必需氨基酸之一。苯丙氨酸广泛应用于食品加工、饲料添加剂、医药等行业中。L-苯丙氨酸与天冬氨酸缩合制成的二肽甲酯天冬甜肽目前已被多个国家获准销售。这种甜味剂的广阔市场使苯丙氨酸的需求量不断加大。天冬甜肽最近被证实具有提神醒脑及减肥等功效,更加促进了苯丙氨酸的市场需求。
     采用合成培养基,确定了粘红酵母产酶模式为滞后合成型,研究了苯丙氨酸解氨酶的产酶动力学,建立了产酶动力学的数学模型,方程式为:dE/dt=βX。研究了参数β的简便求法及意义。分析了影响产酶动力学参数的因素,发现诱导物添加时间、添加量等因素都影响产酶动力学方程的参数β。
     基于对粘红酵母PAL产酶动力学方程的分析,优化了影响方程参数的因素。菌体在第18小时达到最大出芽率。此时转接,菌体在产酶培养基中生长与产酶情况最好。通过单因子实验与正交实验优化得到的最佳天然培养基配方为(g/L);葡萄糖0.4,酵母膏8.0,玉米浆30.0,NaCl 5;KH_2PO_4 1。七水合硫酸镁、七水合硫酸亚铁、六水合硫酸锰等无机盐对于菌体生长与产酶皆无明显影响。0.10g/L钼酸钠能够促进粘红酵母的生长。1.0g/L K_2HPO_4对于促进菌体生长的效果优于1.0 g/L KH_2PO_4的效果。D-苯丙氨酸对于PAL的产生具有安慰诱导作用。菌龄为8h时添加诱导物,诱导物由终浓度为0.40g/L的L-Tyr与0.10g/L的DL-Phe组成。通过产酶条件优化,最终使得酶活力增加了75%,非生长偶联的比产酶速率提高了122%,生物量提高了5.4%,培养时间缩短了45%。
     通过单因素实验和正交实验优化了转化条件。转化液成分优化为5.6mol/L[NH_4~+]、14.5%[HCO_3~-]并调pH10.5(t-Ca浓度为0.1%)。选择0.05 g/L氯化十六烷基吡啶加入转化液中可以促进转化反应。
     研究了谷氨酸钠、海藻酸钠、聚乙二醇、甘油、锌粉、氮气对PAL稳定性的影响。通过单因子实验和正交实验,优化确定在底物反应液中添加1.0g/L锌粉和20.0g/L谷氨酸钠。最终,苯丙氨酸积累浓度提高到27.52~31.90g/L。
L-Phenylalanine (L-Phe), an essential aromatic amino acid, had found wide use in food processing, feed additive and pharmaceutical industry. Aspartame, an important sweetener produced from L-phenylalanine was sanctified to sell by many countries whose wide application greatly increased the demand of L-phenylalanine.
    Properties of yeast were tested in synthetic medium by a serial of experiments, during which the enzyme-producing mode was determined, finding that phenylalanine ammonia lyase (PAL) was a kind of enzyme produced in the lag-phase. Based upon this kind of lag-phase-producing-mode model, PAL-producing dynamics was studied and the non-structure mathematic model was set up. The equation of this PAL-producing mathematic dynamics model listed herewith:
    The easier approach to work out the parameter and the significance of P were discussed. Factors, such as the inducer adding time, the amount of inducer, were analyzed. In Yamada medium, a kind of synthetic medium used in this paper in which Rhodotorula glutinis was cultured and PAL was induced, 0.40g/L L-Tyr, the inducer, was added in lag-phase.
    Experiments heretofore had set up the theoretical basis for optimizing PAL-producing conditions. Based upon the PAL-producing dynamic equation, experiments about optimizing PAL-producing conditions were performed. Yeast was transferred when the budding rate of Rhodotorula glutinis came up to the largest amount in the 18th hour in seed medium considering the culture's highest enzymatic activity in complex inducing medium. By single-factor experiments and orthogonal experiments, complex inducing medium was optimized (g/L) as follow: glucose 0.4, yeast extract 8.0, corn steep liquor 30.0, NaCl 5, KH2PO4 1.
    Salts, including MgSO4 '7H2O, FeSO4 '7H2O, MnSO4 -6H2O had little effects on the growth of Rhodotorula glutinis in complex inducing medium. 1.0g/L.K2HPO4 had better effect on the growth of Rhodotorula glutinis than 1.0g/L.KH2PO4 did.
    D-phenylalanine had the gratuitous effect on the inducing of PAL. After yeast was cultured in complex inducing medium for 8h, 0.40g/L L-Tyr and 0. lOg/L DL-Phe were added to complex inducing medium. By optimizing the PAL-producing condition, the non-growth-coupled specific PAL-producing rate was increased by 122 %, and the biomass was increased by 4.5%.
    In this paper, trans-cinnamic acid was conversed by resting yeast cell in
    
    
    conversion-solution. The conversion solution composition was optimized which was: 5.6mol/L [NH4+], 14.5% [HCO3~] . (The concentration of trans-cinnamic acid was 1.0% and pH was 10.5). Mycostatin had little or negative effect on PAL-producing. Cetylpyridinium chloride can increase the bioconversion rate.
    By single-factor experiments, the effects on the stability of PAL of sodium glutamate, sodium alginate, polyethylene glycol, glycerin, zinc powder, nitrogen gas were studied. By orthogonal experiment and divergence analysis, 1 .Og/L zinc powder and 20g/L sodium glutamate added to conversion-solution, the concentration of L-Phenylalanine was increased by from 18.7g/L to 27.52~31.90g/L, finding that those two effectors, zinc powder and sodium glutamate, had significant effects on the stability of PAL.
引文
[1]、欧阳平凯主编.[M]生物化工产品手册,北京:化学化工出版社,1998年,氨基酸类
    [2]、汪家铭.L-苯丙氨酸开发前景诱人,[J]四川化工与腐蚀控制,2000,01
    [3]、郑建仙.阿斯巴甜及其在21世纪食品工业中的开发潜力,[J]食品与机械,2000,03,24~26
    [4]、吴广文等,L-苯丙氨酸制备的研究进展,[J]湖北化工,2001年第1期7~9页
    [5]、杨敏;杨顺楷.微生物苯丙氨酸解氨酶(PAL)/肉桂酸途径生物转化制L-苯丙氨酸酶源菌种选育,[J]应用与环境生物学报,1999,5 (6):643-650
    [6]、李清彪,何炳林.由肉桂酸生物合成L-苯丙氨酸,[J]化学进展,1996,8(1):49-56.
    [7]、冯容保.氨基酸的工业生产,[J]发酵科技通讯,2000,29 (1):11-14
    [8]、郭勇主编,[M]生物制药技术,北京:中国轻工业出版社,2000年,225页
    [9]、荒木和美等.酶法生产L-苯丙氨酸,[J]有机合成化学,1988,46 (2):36-47
    [10]、潘光亮,黄慧等.利用甲壳素固定大肠杆菌细胞转化苯丙酮酸形成L-苯丙氨酸的研究,[J]工业微生物,1995年,第25卷,第4期,6~9
    [11]、Anzawa H et.al.J.Gen Appl.Microbiol.1991, 37: 71~83
    [12]、方佩静等,产碱菌119转化苯丙酮酸形成L-苯丙氨酸的研究 微生物学报[J].1993,33 (6):418~426
    [13]、徐虹,欧阳平凯,周卫斌 大肠杆菌EP8-10转化苯丙酮酸生成L-苯丙氨酸的研究 [J]微生物学报,1999年6月272~276页
    [14]、Koukol J, Eric EC. Metabolism of aromatic compounds in higher plants Ⅳ. purification and properties of the phenylalanine deaminase of Honteum vulgan, [J]J. Biol. Chem. 1961,23 (6): 2692-2698
    [15]、Ogata K, Uchiyama K, Yamada H. Microbial formation of cinnamic acid from phenylalanine, [J]Agr. Biol. Chem,1966,30(3): 311-312
    [16]、Ogata K, Uchiyama K, Yamada H.. Metabolism of aromatic amino acids in
    
    microorganisms.I. Formation of cinnamic acid from phenylalanine, [J]Agr. Biol. Chem., 1967,31(2): 200-206
    [17]、周德庆等编.[M]微生物学实验手册 上海科学技术出版社 1986,81-82,205-228
    [18]、Havir EA, Hanson KK. L-phenylalanine ammonia-lyase. Ⅱ.Mechanism and kinetic properties of the enzyme from potato tubers. [J]Biochemistry, 1968, 7(5):1904-1914
    [19]、Evans CT, Conard D,Hanna K, Stabilization of phenylalanine ammonia-lyase catalyst during bioconversion of trans-cenamic acid to L-phenylalanine. [J]Appl. Microbiol. Biotechnol.,1987,25(5):399-405
    [20]、Leroy L.Creasy. Phenylalanine ammonia lyase-inactivating system in sunflower leaves, [J]Phytochemistry, 1976,. Vol 15,pp673-675
    [21]、贾士儒.[M]生物反应工程原理,天津:南开大学出版社,1990,37~41
    [22]、熊宗贵 [M]发酵工艺原理,北京:中国医药科技出版社,2000年,170~172
    [23]、郭勇主编.[M]酶工程,北京:中国轻工业出版社,1994,46~50
    [24]、戚以政,汪叔雄,[M]生化反应动力学与反应器,北京:化学工业出版社,1999年,6~7
    [25]、Serpil Takac et. al. Bioconversion of trans-cinnamic acid to L-phenylalanine by L-phenylalanine ammonia-lyase of Rhodotorula glutinus:Parameters and kinetics [J]Enzyme and Microbial Technology 17:445~452,1995
    [26]、毛忠贵,[M]生物工业下游技术,北京:中国轻工业出版社,1999,1
    [27]、周华等 利用离子交换树脂从高盐体系中提取L-苯丙氨酸 [J]南京化工大学学报,1999,03,69~71
    [28]、徐虹,藤农等.离子交换法提取L-苯丙氨酸的研究 [J]离子交换与吸附,1999,15 (1):81~85
    [29]、Nutrasweet/US4847-409:14.12.88-US-284042(11.07.89)14.12.88 as 284042.89-255793/35 (UKpatent)
    [30]、朱自强 化工进展 1996年第4期29~34
    [31]、Mian Li, Zi-Qiang Zhu, and Le-He Mei, Biotechnol Prog. 1997,13,105~108
    [32]、I-Ming Chu, Shiao-Li Chang et.al. Biotechnology Techniques Vol 4 NO. 2
    [33]、翁连进等.反向微胶团萃取氨基酸的进展 [J]化工进展,1998年第3期14~16
    
    
    [34]、韩伟等.从发酵液中提取浓缩苯丙氨酸的新工艺 [J]现代化工,1998年7月,27~29
    [35]、韩伟等.液膜法提取发酵液中苯丙氨酸的静电破乳 [J]高校化学工程学报,1997年4月361~365
    [36]、Motonari Adachi et.al. Extraction of Amino Acids to Microemulsion[J] J. Phys. Chem. 1991, 95, 7925-7931
    [37]、阵永波等.高效液相色谱法快速直接测定酪氨酸、苯丙氨酸和色氨酸,[J]氨基酸和生物资源,2000,22 (1):55~58
    [38]、[德]R.M.坎普等,[M]蛋白质结构分析:制备、鉴定与微量测序,北京:科学出版社,2000年161~179
    [39]、Rum H, Rasmussen OF. Expression in E. coli of the gene encoding phenylalanine ammonia-lyase from Rhodosporidium torufoides. [J]Appl. Microbiol. Biotechnol., 1992,36(6): 745-748
    [40]、Faulkner JDB, Anson JG, Minton NP. High-level expression of the phenylalanine ammonia-lyase-encoding gene from Rhodosporidium torulaides in Saccaromyces cerevisiae and Escherichia coli using a bifunctional expression system. [J]Gene, 1994, 143(1): 13-20
    [41]、刘敬忠、向华、胡维等.苯丙氨酸脱氨酶cDNA在大肠杆菌中的克隆与表达,[J]生物工程学报,1998:14 (4)
    [42]、胡维、刘敬忠、向华等,苯丙氨酸脱氨酶cDNA在大肠杆菌中的克隆与表达及酶法合成L-苯丙氨酸,[J]微生物学杂志,2000年9月第20卷第3期
    [43]、储瑞蔼,钱锐等,利用固定化酵母细胞转化反式肉桂酸生产L-苯丙氨酸.[J]生物工程学报,1997,13(7):70-75
    [44]、苏海翔,高丽英.用不同固定化方法固定苯丙氨酸解氨酶效果的比较.[J]甘肃科学学报,1998,10 (1):13-16
    [45]、邓旭,卢英华,李清彪.固定化细胞合成L—苯丙氨酸的酶活及稳定性.[J]厦门大学学报(自然科学版),1997,36 (4),430-435
    [46]、Shigeki Yamada(山田), Koichi Nabe et al. Production of L-Phenylalanine from trans-Cinnamic acid with Rhodotorula glutinis Containing L-Phenylalanine Ammonia-Layase Activity [J]Apply And Environmental Microbiology,Nov. 1981,p773-778
    [47]、杨顺楷,L-苯丙氨酸酶法生产新工艺,[J]精细与与专用化学品,2001年第2期,17~19
    
    
    [48]、黄建坡等,酶法生产L-苯丙氨酸解氨酶转化条件研究,[J]氨基酸与生物资源,2001,23(2):41~43
    [49]、吴广文等,L-苯丙氨酸制备的研究进展,[J]湖北化工,2001年第1期7~9页
    [50]、周华,何若平,欧阳平凯.L-苯丙氨酸的产业化开发 [J]适用技术市场,2001年第4期,15~16
    [51]、何若平,周华,韦萍.苯丙氨酸的生产及市场分析,[J]化工科技市场,2000年第12期7~8
    [52]、李友荣、马辉文编著 [M]发酵生理学 长沙:湖南科学技术出版社,1989,17~18
    [53]、McGuire JC. Phenylalanine ammonia lyase-pruducing microbial cells. [P]US patent, 1986,4598047
    [54]、杨顺楷,李果龙,赵健生.酵母全细胞苯丙氨酸解氨酶(PAL)活性的紫外分光光度测定法.[J]天然产物研究与开发,1990,2 (1):59-62
    [55]、Method for the production of phenylalanine ammonia-lyase by fermentation http://www.uspto.org/(US Patent) 4,584,273
    [56]、Stabilization of phenylalanine ammonia-lyase in a bioreactor using reducing agents http://www.uspto.org/(US Patent) 4,574,117
    [57]、Phenylalanine ammonia lyase-producing strains http://www.uspto.org/(US Patent)4,757,015
    [58]、杜连祥等编.[M]工业微生物学实验技术.天津:天津科技出版社,1992年259页,
    [59]、潘家秀等编.[M]蛋白质化学研究技术:北京:科学出版社,1962,16-29
    [60]、沈萍等,[M]微生物学,北京:高等教育出版社,2000年
    [61]、Gilbert,Harry J.,Tully M. Synthesis and degradation of phenylalanine ammonialyase of Rhodotorula toruloides. [J]J. Bacteriol., 1982, 150(2): 498-505
    [62]、沈同等,[M]生物化学,北京:高等教育出版社,1991,450~452
    [63]、马逢时,何良才等编.[M]应用概率统计.北京:高等教育出版社,1989,139,240-288
    [64]、赵玉星.利用粘红酵母转化反式肉桂酸生成L-苯丙氨酸的研究,[D]天津:天津轻工业学院硕士学位论文,2000年
    
    
    [65]、周德庆.[M]微生物教程,北京:高等教育出版社:1993,117
    [66]、左美林,朱武军,高仰哲.粘红酵母产L-苯丙氨酸解氨酶发酵培养基的优化.[J]氨基酸与生物资源,2000,22(1):5-7
    [67]、范代嫡.[M]菌体培养与蛋白质工程,北京:化学工业出版社,2000年9月.
    [68]、俞俊棠.[M]生物工艺学,上海:华东化工学院出版社,1991年
    [69]、Omdorff SA, Costanfine N, Stewart D, Durham DR. Strain improvement of Rhodotorula graminis for production of a novel L-phenylalanine ammonia-lyase. [J]Appl. Environ Microbiol., 1988, 54(4): 996-1002
    [70]、褚志义.[M]生物合成药物学,北京:化学工业出版社,2000年256页,262页
    [71]、Evans CT, Hanna K, Conrad D, Peterson W. Production of L-phenylalanine ammonia-lyase: isolation and evaluation of yeast strains suitable for commercial production ofL-phenylalanine. [J]Appl. Microbiol. Biotechnol., 1987,25(5):406-414
    [72]、李清彪,陶雪,由英才.[M]中国博士后首届学术大会论文集(下册),北京:国防工业出版社,1983,p1504
    [73]、李清彪,李薇,卢英华.反应条件下苯丙氨酸解氨酶的活力稳定性,[J]生物工程学报1996,12(3):340~344
    [74]、徐虹,欧阳平凯.深红酵母转化反式肉桂酸生成L-苯丙氨酸的研究.[J]工业微生物,2000,30(2):30-33
    [75]、杨敏;杨顺楷.化学诱变结合结构类似物法选育高苯丙氨酸解氨酶菌种,[J]应用与环境生物学报,1999,05[ISSN号]1006687X[CN号]511482Q
    [76]、Hogins,D.S.Yeast phenylalanine ammonia-lyase: purification properties and the identification of catalytically essential dehydroalanine, J. Biol. Chem. (1971年),246:2977~2985
    [77]、Vollmer, Patricia J., Schruben, Jeffrey J. Stabilization of L-Phenylalanine ammonia-lyase in a bioreactor using reducing agents. [P] US Patent, 1986 4,574,117
    [78]、王克明,姜竹茂,王秋雨 流加发酵提高产胡萝卜素红酵母产量的研究 生物技术1998,8(2):35~37
    [79]、Charles A. et al cDNA and genomic cloning of phenylalanine ammonia-lyase genes reveal genomic intron deletions Nucleic Acids Research 1988,Vol16,No.23 11382
    [80]、王晓华,几种固定化苯丙氨酸解氨酶方法的比较 [J]广州医学院学报2000
    
    年12月,第28卷第4期,47~50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700