ClC-2对慢性颞叶癫痫大鼠海马CA1区α5亚基-GABA_AR介导紧张性抑制的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颞叶癫痫是一组以反复癫痫发作、学习记忆功能减退为主要临床表现的疾病。以往的研究表明,它与海马局部神经元退行性变、胶质增生、异常环路重构以及脑内兴奋--抑制作用失衡有关。在成年动物中枢神经系统中,GABA作为主要的抑制性神经递质,通过GABA-R起作用。其中,GABAAR主要通过介导Cl-内流引起细胞超极化而发挥抑制作用。根据GABAAR的分布和激活后的电生理特性,可以将GABAAR粗略地分成两大类:synaptic GABAAR(?>(?)extrasynaptic GABAAR,前者介导GABAergic的时相性抑制(phasic inhibition),后者介导GABAergic的紧张性抑制(tonic inhibition)。近年来,extrasynaptic GABAAR介导的紧张性抑制吸引了越来越多学者的关注。但无论是时相性还是紧张性抑制,均依赖于神经元内低氯状态。
     有研究表明,GABAAR激活后,氯离子内流和碳酸氢根离子外流是相藕联的,由于碳酸酐酶的作用可维持细胞内碳酸氢根离子的高浓度,所以,碳酸氢根离子可持续的顺浓度梯度大量外流,同时,氯离子亦大量内流,从而介导突触后抑制作用。如果氯离子在短时间内不能有效排出细胞外,以保持细胞内的低氯环境,反复激活GABAAR会引起细胞内氯离子超载,后者可增加氯离子内流的阻抗,使突触后抑制作用明显减弱。因此,向胞外转运氯离子的能力对于维持神经元正常的GABAergic抑制作用显得尤为重要,氯离子稳态的打破有可能参与了异常放电的形成,而并非仅仅是异常放电的结果。细胞内外氯离子的浓度梯度主要是由-组阳离子-氯离子同向转运体和氯通道共同调节。ClC-2是电压门控性氯通道中的一种,参与调节细胞内外氯离子浓度、维持细胞膜电位等。已有研究表明,在癫痫模型中,作为成熟神经元上主要的氯离子外向转运体KCC2明显下调。考虑到C1C-2本身的特性,即在膜内电位低于膜平衡电位时被激活,产生内向整流,电导大,且该通道的失活无明显时间依赖性。那么,在癫痫病理状态下,C1C-2有何改变?
     Rinke用C1C-2基因敲除小鼠证实,在细胞内高氯的状态下,C1C-2有一定的外向转运氯离子的作用,且承担了相当一部分的背景电导以维持膜电位的稳定,但野生型和基因敲除小鼠的mIPSP、sIPSP和PPR均没有显著性差异,说明ClC-2与GABAAR介导的时相性抑制无关。有研究表明,在成年动物海马CA区,GABAergic的紧张性抑制主要是由α5亚基-GABAAR介导。我们要研究的问题是:ClC-2是否与α5亚基-GABAAR介导紧张性抑制有关?即药物阻断α5亚基-GABAAR是否引起C1C-2电流的改变?在癫痫病理状态下,C1C-2电流有何改变?a5亚基-GABAAR介导的紧张性抑制本身有何改变?这种改变对大鼠慢性期SRS发作有何影响?在体阻断a5亚基-GABAAR能否改善大鼠海马的突触可塑性?
     第一部分匹罗卡品致痫大鼠的行为学特征及海马神经元损伤的表现
     目的:观察匹罗卡品致痫大鼠的行为学特征及海马CA1区神经元损伤的情况。
     方法:雄性SD大鼠(180-200g)随机分成对照组、致痫组,为了解大鼠致痫后不同时期的行为学特征、海马神经元的损伤情况以及目的蛋白表达的变化,根据致痫后自然病程的长短,将致痫组分为:急性期组(致痫后24小时)、潜伏期组(致痫后5天)、慢性期组(出现SRS后14天)和晚期组(出现SRS后30天)。致痫组给予匹罗卡品(340mg/kg,i.p.)致痫,致痫前30min给予阿托品(5mg/kg,i.p.)减轻外周胆碱能作用。如果首剂匹罗卡品注射一小时后仍没有点燃,可以追加一次匹罗卡品(170mg/kg,i.p.)。点燃的行为学表现以出现节律性点头、咀嚼、湿狗样抖动、继而直立、跌倒为判断标准。化学点燃后90min给予地西泮(10mg/kg, i.p.)终止发作,之后使用数字摄像机持续视频监测大鼠的行为学表现,并记录潜伏期、首次SRS发作的时间、慢性期SRS的发作频率及发作持续时间等。采用视频采集卡进行后期资料的采集和分析。对照组除了以生理盐水代替匹罗卡品外,其他处理与致痫组完全一致。
     应用免疫荧光标记NeuN来观察对照组和致痫后各组大鼠海马CA1区神经元的形态及数量,评估CA1区神经元的存活情况。免疫荧光染色结果的定量分析,采用连续冠状位冰冻切片(20pm),每隔3张脑片取1张,每只大鼠选取5张脑片进行CA1区NeuN阳性细胞的计数,通过计算得出每只大鼠CA1区NeuN阳性细胞的均数及各组大鼠CA1区NeuN阳性细胞的均数±标准误。实验结果均用均数±标准误表示,先用单因素方差分析(one-way ANOVA)处理数据,然后用Tukey法(Tukey's post hoc tests)检测组间差异。
     结果:致痫组大鼠在注射匹罗卡品后24±3min (n=51)被点燃,SE发作(status epilepticus)均达4-5级。注射地西泮并不能立刻终止发作,但可以减轻发作强度、增加存活率。除7只大鼠死亡外,其余致痫组大鼠均存活。在注射地西泮5-7小时后,大鼠SE发作逐渐缓解。随后,致痫组大鼠进入发作后状态,持续约2-3天,期间大鼠仍有自限性的4-5级痫样发作(持续时间:10±3min;平均发作频率:5±2次/天,n=38),需要人工喂食,以流质为主。接下来,致痫大鼠经过一段长约9±1天(n=38)的潜伏期,在这段时期内大鼠无自发性痫样发作,可以自主摄食,但进食量及活动量与对照组相比明显减少,体重不增。首次自主发作(The first spontaneous recurrent seizure, SRS)出现在致痫后第12±1天(n=28)。有4只大鼠因未出现SRS或SRS发作形式无明显丛集性而从实验中删除。其余大鼠均有稳定的SRS发作(平均发作持续时间:4±2min;平均发作频率:4±1次/天,n=28)匹罗卡品致痫模型主要表现为DG门区及CA3区锥体细胞的凋亡,而CA1区的锥体细胞相对被保留。与对照组相比,致痫后各组大鼠海马CA1区NeuN阳性细胞计数无显著统计学差异。
     小结:
     1、致痫组大鼠的首次自主发作(SRS)出现在致痫后第12±1天(Mean±SEM,n=28)。
     2、慢性期和晚期组致痫大鼠均有稳定的SRS丛集性发作,平均发作持续时间4±2min,平均发作频率4±1次/天(Mean±SEM, n=28)
     3、与对照组相比,致痫后不同时期组大鼠海马CA1区NeuN阳性细胞计数无显著统计学差异,即致痫后CA1区的锥体细胞相对被保留。
     第二部分ClC-2在大鼠海马的定位以及对照组和致痫后各组海马CA1区ClC-2蛋白的定量分析
     目的:观察ClC-2在大鼠海马CA1区的定位;比较对照组和致痫后各组大鼠海马CA1区ClC-2的表达量。
     方法:应用免疫荧光双染技术对ClC-2进行组织学定位,单染技术比较对照组和致痫后各组ClC-2的表达情况。参考第一部分制做动物模型,分别取对照组、急性期组、潜伏期组、慢性期组和晚期组大鼠进行麻醉(乌拉坦1.5g/Kg,i.p.),经心脏灌注(肝素化生理盐水250ml,后接4%多聚甲醛400ml)。解剖动物,取出大鼠脑组织,4%多聚甲醛后固定,然后转入30%蔗糖溶液中。标本脱水后进行连续冰冻切片,脑片收集于0.01M PBS溶液中,切片厚度均为20μm,脑片用0.01M PBS溶液漂洗后,室温下用封闭液封闭1小时,以结合非特异性结合位点。弃去封闭液后加入一抗4℃过夜。吸去一抗后用0.01M PBS溶液漂洗三次,加入二抗避光室温孵育2小时,0.01M PBS溶液漂洗,避光贴片,置于荧光显微镜下观察并拍照。Western Blot检测对照组和致痫后各组大鼠海马CA1区C1C-2的表达量。取对照组和致痫后各组大鼠,快速断头取脑,将脑组织置于冰上,显微镜下分离出海马CA1区的组织,放入样品缓冲液中,加入蛋白酶抑制剂和磷酸酶抑制剂,冰上匀浆、超声破碎,取上清液分装保存于-80℃。酶联免疫吸附法测定上清液中ClC-2的含量。蛋白免疫印迹实验结果的半定量分析,应用生物凝胶图像分析系统扫描,Genegenius凝胶图像分析系统摄取图片并获得条带灰度值,GeneTool软件进行浓度的定量分析,以(3-actin作为内参。先用单因素方差分析(one-way AN OVA)处理数据,再用Tukey法(Tukey's post hoc tests)比较对照组和致痫后各组的组间差异。
     结果:免疫荧光双染结果发现:C1C-2主要定位大鼠海马CA1区锥体细胞的胞体上,在锥体细胞的顶树突近端也有C1C-2相对较低的表达。ClC-2与星型胶质细胞、小胶质细胞之间没有共染。单染结果显示,致痫组大鼠海马CA1区的ClC-2IR增强,尤其是锥体细胞顶树突区的C1C-2IR信号明显增强,而锥体细胞胞体上的C1C-2IR无明显改变,这一现象在进入慢性期和晚期的癫痫大鼠脑片上尤为明显。
     Western Blot结果显示,致痫后急性期组大鼠CA1区的C1C-2蛋白表达量与对照组相比无显著差异,慢性期组和晚期组C1C-2蛋白表达量明显高于对照组。
     小结:
     1、对照组大鼠海马CA1区C1C-2与锥体细胞存在共染,在锥体细胞的胞体高表达,顶树突区近端也有相对较低水平的表达。
     2、致痫后,尤其是进入慢性期的大鼠,锥体细胞的顶树突区C1C-2IR明显增强,而锥体细胞的胞体上C1C-2IR无明显改变。
     3、与对照组相比,慢性期组和晚期组CA1区ClC-2的表达量明显上调。
     第三部分海马CA1区ClC-2功能性上调与α5亚基-GABAAR介导的紧张性抑制有关
     目的:研究慢性颞叶癫痫大鼠海马CA1区C1C-2表达上调是否具有功能;该区α5亚基-GABAAR介导的紧张性抑制有何改变;ClC-2与α5亚基-GABAAR介导的紧张性抑制是否有关。
     方法:选取对照组和慢性期组大鼠制作海马脑片,全细胞模式记录海马CA1区锥体细胞的C1C-2电流和α5亚基-GABAAR介导的紧张性抑制电流(Itonic),比较对照组和慢性期组C1C-2电流和Itoni。的变化;观察应用特异性α5亚基-GABAARs阻断剂(L-655,708)干预后C1C-2电流和Itoni。的改变。将大鼠快速断头取脑,脑组织浸入4℃切片液中,振动切片机冠状位切片(400μm),将脑片转置32℃的人工脑脊液中孵育1h后记录。切片液、人工脑脊液需事先通混合气(含95%氧气和5%二氧化碳)至少30min。记录槽内持续循环灌注细胞外液(5ml/min)。将脑片置于记录槽中,在红外相差显微镜下,全细胞模式记录CA1区锥体细胞的ClC-2电流(钳制电压:-10mV,测试电压:+40mV--120mV,跃级增量:-20mV),消除液接电位、吉欧封接、破膜、补偿电极电容和膜电容,稳定5min后开始记录,滤波2Hz,采样20Hz。观察对照组和慢性期组大鼠海马CA1区锥体细胞的ClC-2电流的差别。外液中加入L-655,708(100nM)后,记录ClC-2电流的变化。全细胞模式记录Itonic'钳制电压-60mV,在细胞外液加入TTX (200nM)、Kynurenic acid (3mM)和CGP-52432(5μM)分别阻断动作电位、兴奋性谷氨酸受体电流和GABABR,同时补充外源性GAB A (5μM)后,记录GABAAR介导的电流,基线记录平稳后,在细胞外液中加入适当浓度的L-655,708(100nM)选择性阻断介导紧张性抑制的α5亚基-GABAAR,电流平稳后再加入饱和浓度的SR-95531(100gM)完全阻断介导时相性和紧张性抑制的所有GABAAR。选取采样点:加药前100s(t1)、L-655,708加药后200s(t2)和SR-95531加药后100s(t3),采集并计算出加药前后t1、t2、t3电流的平均增量,即ΔIhold t3-tl和ΔIhold t3-t2, ΔIhold t3-t1代表GABAAR介导的总电流,ΔIhold t3-t2代表GABAAR介导的时相性抑制电流的成分。通过计算(|ΔIhold t3-t1-ΔIhold t3-t2|)可以得到α5亚基-GABAAR介导的紧张性性抑制电流Itonic。每组大鼠的ΔIholdt3--t1和t3-t2均以均数±标准误来表示。比较单个神经元加药前后的差异用KS法(Kolmogorov-Smirnov test);检测组间差异先用单因素方差分析(one-way ANOVA)处理数据,然后用Tukey法(Tukey's tests)。
     手术置入侧脑室给药管(外径0.7mm、内径0.36mm的套管),位置:前囟后0.5mm旁开1.2mm深4mm。用牙托粉固定套管,术后7天匹罗卡品致痫,致痫大鼠进入潜伏期开始侧脑室给予L-655,708,每天两次(9am-9pm),每次侧脑室注射量为5μl,持续给药至SRS出现后14天。实验分为给药组和空白对照组。根据L-655,708浓度的不同,给药组又分为μM、4μM、8μM和16μM组,观察该药对大鼠行为学的影响。记录给药各组首次SRS发作的时间、慢性期SRS发作频率和发作持续时间,与空白组进行比较。
     结果:癫痫慢性期组的ClC-2电流较对照组增大了53.2%(对照组:453.1±47.4pA,n=9;癫痫组:694.5±56.2pA,n=12;P<0.05)。外液中加入100nML-655,708后ClC-2电流减小了26.9%(空白组:702.3±63.1pA,n=10;给药组:513.6±50.2pA,n=15;P<0.05)。癫痫组α5亚基-GABAAR介导的紧张性抑制电流(Itonic)明显大于对照组(对照组:132.1±17.9pA,n=12;癫痫组:207.4±13.6pA,n=15;P<0.05)。 L-655,,708可显著抑制癫痫组ITonic(-30.3±7.9%,n=11,P<0.05),但对于对照组Itonic则无明显影响(-21.6±9.2%,n=7,P>0.05)。侧脑室给予致痫大鼠不同浓度的L-655,7088并观察大鼠行为学表现,8gM和16μM组大鼠首次SRS出现的时间早于空白组(给药组9±1天,n=7,空白组:12±1天,n=7;P<0.05),但慢性期SRS发作频率和发作持续时间未见显著组间差异。
     小结:
     1、癫痫组C1C-2电流较对照组明显增大,说明在病理状态下海马CA1区C1C-2表达上调是有功能的。
     2、癫痫组海马CA1区a5亚基-GABAAR介导的紧张性抑制电流(Itonic)显著大于对照组;L-655,708可显著抑制癫痫组Itonic'但对于对照组Itonic则无明显抑制作用。说明对照大鼠脑组织中是以时相性抑制为主,紧张性抑制做为一种背景电流;而在癫痫大鼠脑组织中α5亚基-GABAAR介导的紧张性抑制电流明显增强,可能是对病理状态下时相性抑制减弱的一种代偿现象。
     3、离体脑片上应用L-655,708可翻转癫痫组增大的C1C-2电流。说明病理状态下,C1C-2功能性上调与α5亚基-GABAAR介导的Itonic代偿性增强有关。
     4、在体动物侧脑室注射L-655,708可使致痫大鼠首次SRS提早出现,但对慢性期SRS发作频率和发作持续时间无明显影响。说明Itonic增强可以延长SE发作后的潜伏期,延缓SRS的出现,即α5亚基-GABAAR介导的紧张性抑制与SRS的形成有关,与慢性期SRS反复发作无关。
     第四部分α5亚基-GABAAR介导的紧张性抑制对慢性颞叶癫痫大鼠海马突触可塑性的影响
     目的:研究癫痫组(慢性期)大鼠海马CA1区突触可塑性有何改变;应用α5亚基-GABAAR特异性阻断剂对慢性颞叶癫痫大鼠海马LTP/LTD的诱导有何影响。
     方法:本部分实验应用在体记录大鼠海马CA1区场电位的技术。以20%乌拉坦(7.5m1/kg i.p.)麻醉动物,将大鼠头部固定于脑立体定位仪上,以H202清除皮下组织和筋膜,充分暴露颅骨中缝和前囟。在颅骨上标记刺激电极(前囟后4.2mm,中线左侧旁开3.8mm,深3200-3500μm)、记录电极(前囟后3.4mm,中线左侧旁开2.5mm,深2200-2500μm)和侧脑室给药管(前囟后0.5mm,中线右侧旁开1.0mm,深4000μm)的位置,用电钻在标记点上钻孔,借助微电极操作仪将电极和给药管缓慢送入目标位置。用牙托粉将不锈钢给药管固定,自然晾干。连续单方波刺激海马Schaffer collateral pathway的同时,在CA1区辐射层记录Schaffer→CA1的兴奋性突触后场电位(field excitatory post-synaptic potentials, fEPSPs)。高频刺激(100Hz,每串50个刺激,每串间隔15s,4串)诱导海马LTP;低频刺激(1Hz,900个刺激,15min)诱导海马LTD。给予条件刺激之前,应用测试刺激至少稳定记录30min做为baseline;侧脑室给药后需继续记录至少30min再诱导LTP/LTD,以观察药物本身对电位是否有影响。给药时先用微量注射器缓慢推注5μ1(L-655,708或vehicle),时间控制在2min左右,再用输液微泵维持至实验结束(推速:0.5μl/h)。该实验以海马CA1区fEPSPs的幅度作为提取参数,每10个连续的测试刺激做一次平均,以加药前或条件刺激前海马fEPSPs幅度的均值做为对照,所得数据由LTP、SPSS10.0软件进行统计分析,比较加药前、后的差异用Wilcoxon signed ranks检验,组间比较用Kruskal-Wallis test检验。Western Blot检测对照组和癫痫组(慢性期)大鼠海马CA1区NR1、NR2A、NR2B、 GluR1、GluR2和GluR3的表达量。在体实验结束后,分别取对照组和癫痫组大鼠脑组织,显微镜下分离,放入样品缓冲液中,加入蛋白酶抑制剂和磷酸酶抑制剂,冰上匀浆、超声破碎,取上清液分装保存于-80℃。酶联免疫吸附法测定上清液中上述目的蛋白的含量。蛋白免疫印迹实验结果的半定量分析,应用生物凝胶图像分析系统扫描,Genegenius凝胶图像分析系统摄取图片并获得条带灰度值,GeneTool软件进行浓度的定量分析,以(3-actin作为内参。先用单因素方差分析(one-way ANOVA)处理数据,然后用Tukey法(Tukey's post hoc tests)比较对照组和癫痫组的组间差异。
     结果:高频刺激(high-frequency stimulation, HFS)诱导癫痫组海马CA1区fEFSPs的幅度显著低于对照组(癫痫组:128.5±9.43%,n=5;对照组:150.9±7.57%,n=5,P<0.05);低频刺激(low-frequency stimulation, LFS)诱导癫痫组海马CA1区fEFSPs幅度显著高于对照组(癫痫组:117.2±6.22%,n=5;对照组:68.3±7.31%,n=5,P<0.05)。L-655,708对高频刺激诱导海马LTP的fEFSPs幅度无明显影响(给药组:132.4±7.01%,n=5;空白组:130.3±7.36%,n=4,P>0.05);L-655,708可部分抑制低频刺激诱导海马LTD的fEFSPs幅度(给药组:91.6±6.57%,n=5;空白组:113.7±6.91%,n=4,P<0.05)。应用V(?)estern Blot技术检测对照组和癫痫组大鼠海马CA1区NR1、NR2A、NR2B、 GluR1、GluR2和GluR3的表达量。癫痫组NR1和NR2A(?)的表达量明显高于对照组;而NR2B的表达量显著减低。癫痫组GluR2的表达量明显低于对照组,同时GluR1和GluR3显著增高,癫痫组GluR2/GluR1+GluR3比值显著低于对照组。
     小结:
     1、高频刺激诱导癫痫组海马CA1区LTP的fEFSPs幅度显著低于对照组;低频刺激诱导癫痫组海马CA1区fEFSPs幅度则明显高于对照组,并翻转形成LTP。说明癫痫组大鼠强化记忆的功能明显减退,同时纠错和删除记忆的功能也有所削弱。
     2、L-655,708对高频刺激诱导海马LTP的fEFSPs幅度无明显影响;可部分抑制低频刺激诱导海马LTD的fEFSPs幅度。说明L-655,708可以改善癫痫大鼠的纠错和删除记忆功能,避免LTP过饱和,从而维持相邻突触LTP的诱导阈值。
     结论
     正常大鼠中,C1C-2主要定位于海马CA1区锥体细胞的胞体上,在锥体细胞顶树突的近端也有相对较低水平的表达。致痫后,尤其是进入慢性期的大鼠,海马CA1区C1C-2的表达量明显上调,且具有功能性,以锥体细胞顶树突区的C1C-2上调显著。
     慢性颞叶癫痫大鼠海马CA1区α5亚基-GABAAR介导的紧张性抑制电流(Itonic)显著增大;在离体脑片上应用L-655,708可显著抑制Itonic并翻转增大的C1C-2电流。致痫后,持续侧脑室给予L-655,708可使癫痫大鼠首次SRS提早出现,但对慢性期SRS发作频率和发作持续时间无明显影响;在体应用L-655,708可改善癫痫大鼠海马CA1区LTD的诱导。
Temporal lobe epilepsy, characterized by spontaneous recurrent seizures, learning and memory impairments is associated with neurodegeneration, abnormal reorganization of the circuitry, and loss of functional inhibition in hippocampus. In adult hippocampus, the GABAergic cells mediate the major inhibitory function of the principal neurons, promoting the Cl-entry through the GABAA receptor, whether through phasic (synaptic) or tonic (extrasynaptic) conductance. Aside from classical synaptic component, tonic GABAergic inhibition mediated by extrasynaptic GABAA receptor received increasing attention over the past years. There is growing evidence that tonic inhibition plays an important role in epilepsy, memory and cognition.
     Since GABAA receptor-mediated inhibition depends on the maintenance of intracellular Cl" concentration at low levels in mature neurons, a shift in Ecl is likely to participate in the generation and not merely a consequence of TLE. As we known, chloride homeostasis is regulated by cation-chloride cotransporters and chloride channels. The transmembrane distribution of chloride determines the direction of the chloride flux gated by GABAA receptor-mediated response in neurons. ClC-2is a member of the supergene family of voltage-gated chloride channels. It is proved to be inwardly rectifying, and plays an important role in setting the intracellular chloride concentration in neurons expressing inhibitory GABAA receptors (GABAARs).
     Several observations have shown that repetitive activation of GABAARs leads to a high intracellular chloride load that is generated by a GABAAR-mediated Cl-influx driven by HCO3-efflux via GABAARs, which dose not fade because of rapid replenishment of HCO3-by intracellular carbonic anhydrase (CA) activity. Furthermore, as a main chloride extruder in mature neurons, KCC2has been reported to be downregulated in experimental TLE models. Therefore, the chloride extrusion capacity seems to play a key role in setting the susceptibility of neurons to epileptiform activity. Since the conductance of ClC-2is large and does not display time-dependent inactivation, it is well suited for stabilize ECl. However, whether ClC-2contributes to epilepsy or not is controversial. The studies in human established the link between mutations in ClC-2and epilepsy, while ClC-2KO mice did not lead to higher seizure susceptibility. In addition, Rinke and coworkers used KO mice to demonstrate that ClC-2helps to extrude chloride from neurons under condition of high chloride load and contributes substantially to the background conductance. However, the amplitude and frequency of mIPSC, sIPSC, and PPR (a measure for presynaptic release) show no difference between WT and KO mice. Therefore, the possibility that ClC-2is involved in phasic inhibition by changing the number of postsynaptic GABAARs, inhibitory synapse number, and probability of release could be excluded.
     It posed the question whether ClC-2is related to tonic inhibition mediated by extrasynaptic GABAARs. As is known, a5subunit-containing GABAARs have a restricted distribution in dendritic areas of hippocampal CA1and CA3regions, and play a predominant role in tonic inhibition of CA1pyramidal cells. Here we investigated whether the ClC-2expression is altered in CA1pyramidal cells in pilocarpine-treated rats, and whether a5subunit-containing GABAARs could affect ClC-2currents by pharmacological intervention.
     Part Ⅰ Behavioural features and the pattern of neuronal loss in the hippocampus of pilocarpine-treated rats
     Objective:To observe the behavioural features of pilocarpine-induced rats and neuronal loss in the CA1pyramidal cell layer in pilocarpine-treated rats.
     Methods:Male Sprague-Dawley rats weighing180-200g were used. Status epilepticus (SE) was induced by pilocarpine hydrochloride (340mg/kg, i.p.). To lessen peripheral cholinergic effects, atropine methylbromide (5mg/kg, i.p.) was administered30min before pilocarpine. If seizure activity was not initiated within1hour after the initial pilocarpine hydrochloride dose, an additional dose of170mg/kg was given. The onset of SE was defined as the appearance of stage5seizures, followed by continuous and convulsive behaviorally detectable seizure activity. Diazepam (10mg/kg, i.p.) was injected90min after its onset. Rats were hand fed after SE until they were able to drink and eat on their own (2~3d). After SE, rats were killed at different time-point, representative of the different phases of the natural history of the disease:24h immediately followed by the SE (acute phase),5d after SE (latency),14d after the first occurrence of spontaneous recurrent seizure (SRS, chronic epilepsy).30d after the first occurrence of SRS (late chronic epilepsy). Rats were continuously video monitored for the appearance of SRSs, only rats that displayed multiple spontaneous stage3-4seizures in the subsequent month were included into the14d and30d groups. Control rats (con) were treated identically except that saline was substituted for pilocarpine.
     Immunofluorescence was adopted to confirm the pattern of neuronal loss in this model. Primary antibody was mouse anti-neuronal nuclei (NeuN, neuron marker,1:500, Millipore). All the sections were treated by a mixture of FITC-conjugated secondary antibodies (1:400, Jackson ImmunoResearch). The quantification of the immunofluorescence staining in CA1area was performed by counting the number of NeuN positive cells per section. In each rat, every fourth section was picked from a series of consecutive hippocampus sections (20μm), and five sections were counted for each rat. An average number of neurons were obtained for each rat across five sections, and then the Mean±SEM across rats was determined. Statistical analysis was performed with SPSS10.0(SPSS Inc, USA). All data was presented as Mean±SEM. Differences in changes of values over times or drugs were tested using one-way ANOVA followed by individual post hoc comparisons (Tukey's post hoc tests).
     Results:Convulsive status epilepticus (SE) were observed24±3min (Mean±SEM, n=51) after pilocarpine injection, which was intervened after90min by a low dose of diazepam. It did not stop the SE, but decreased its severity and mortality (7SE rats were dead). SE spontaneously alleviated5~7h after diazepam administration, and then rats entered postictal status, lasting2~3days, with self-limiting and generalized seizures (duration:10±3min; mean frequency:5±2seizures per day, n=38), before undergoing a latent period in which they were apparently normal. The first spontaneous recurrent seizure (SRS) occurred at12±1days after SE (n=32). Rats that did not display any SRS in one month after SE were deleted (n=4), while the others kept experiencing SRSs (duration:4±2min; mean frequency:4±1seizures per day, n=28). According to Racine's classification criteria, partial seizures (stage3-4) were more frequent compared to secondarily generalized seizures (stage5-6), and tended to recur in a cluster way.
     Pilocarpine-treated rats displayed marked neuronal loss in the hilus of DG and CA3pyramidal cell layer. However, CA1pyramidal cell layer was well preserved. Compared with control group, the number of NeuN+cells in the CA1pyramidal cell layers in pilocarpine-treated rats did not decreased significantly at different phases.
     Summary:
     1. The first spontaneous recurrent seizure (SRS) occurred at12±1days after SE.
     2. Rats kept experiencing SRSs with a mean frequency of4±1seizures per day and a mean duration of4±2min in the subsequent month.
     3. No significant neuronal loss in the CA1pyramidal cell layer in pilocarpine-treated rats.
     Part Ⅱ The location of CIC-2IR and the quantification of ClC-2protein level in the CA1pyramidal cells layer in pilocarpine-treated rat
     Objective:To investigate the location of ClC-2IR in hippocampus and the change of protein level of ClC-2in CA1region in pilocarpine-induced rats.
     Methods:Double immunofluorescence staining was performed to localize ClC-2in hippocampus. Rats from epileptic and control groups were anesthetized with urethane (1.5g/Kg, i.p.) and transcardially perfused with heparinized saline, followed by4%paraformaldehyde (PFA) in0.1M phosphate buffer, PH7.4. The intact brains were removed and post-fixed for3h in the same fixative, then transferred into30%sucrose solution. Transverse brain sections (20μm) were cut using a cryostat. All sections were blocked with3%donkey serum in0.3%Triton X-100for1h at room temperature and incubated with primary antibodies over one night at4℃, then the sections were incubated for2h at room temperature with secondary antibodies. The stained sections were examined with a fluorescence microscope and images were captured with a CCD spot camera.
     Western blot was performed to confirm the expression of ClC-2after SE in protein level. Rats were decapitated, brains were immediately removed and frozen on dry ice, then stored at-80℃until processing. The CA1regions were microdissected on dry ice. The tissue samples were homogenated and sonicated in15mmol/L Tris buffer, then centrifuged at13,000g for15min at4℃to isolate the supernatant containing protein samples. The samples were separated by gel electrophoresis (SDS-PAGE) and transferred onto a PVDF membrane. The membrane was blocked for1h at room temperature in blocking buffer and then incubated with anti-ClC-2antibody (1:200, Alomone Labs) overnight at4℃, followed by incubation in anti-rabbit secondary antibody (1:1000, Cell Signaling Technology). The immune bands were visualized by enhanced chemiluminescence (ECL, Amersham, USA) and film exposure (Kodak, Rochester, NY). The membrane was stripped with stripping buffer for30min at50℃and re-probed with anti-α-actin (1:1000, Santa Cruz), followed by incubation in anti-mouse secondary antibody at a dilution of1:4000(Cell Signaling Technology) as an endogenous control protein to ensure equal loading. Densitometric analysis of bands on the film was conducted with a computer-assisted imaging analysis system, and normalized to β-actin immunoreactivity.
     Results:In control rats, ClC-2immunoreactivity (ClC-2IR) was present with high levels of labeling in the cell membrane and perinuclear cytoplasm of pyramidal cells (PCs), and relatively low levels of labeling in the proximal apical dendrites of PCs in CA1regions. Double immunofluorescence staining showed that ClC-2only co-localized with NeuN, neither with GFAP nor with Ibal. In pilocarpine-treated rats, an increased ClC-2IR was present, especially in CA1PCs dendrites (strata radiatum). Meanwhile, ClC-2IR maintained high levels in the pyramidal cell layer.
     Immunoblot was performed to quantify this change, ClC-2protein level was significantly higher than that in control group.
     Summary:
     1. ClC-2IR was present with high levels of labeling in the cell membrane and perinuclear cytoplasm of pyramidal cells (PCs), and relatively low levels of labeling in the proximal apical dendrites of PCs in CA1region.
     2. ClC-2upregulated in CA1pyramidal cells (PCs) in the chronic post-SE rats.
     3. The obvious enhancement of ClC-2IR during the chronic period is in the apical dendrites of PCs in CA1region.
     Part Ⅲ CIC-2alteration is involved in tonic inhibition mediated by a5subunit-containing GABAARs in CA1region
     Objective:To investigate whether the upregulation of ClC-2in CA1PCs is functional and whether ClC-2is involved in tonic inhibition mediated by a5subunit-containing GABAARs. Reducing the tonic inhibition would aggravate or improve the generation and propagation of SRS in post-SE rats.
     Methods:Whole-cell voltage-clamp recordings in hippocampal slices prepared from epileptic and control rats. Following decapitation, brains were quickly submerged in ice-cold sucrose-ACSF. Transverse slices (400μm) were cut with a Vibratome. Before recording, slices were incubated for30min at32℃in ACSF. Then slices were transferred to the recording chamber and continuously perfused (5ml/min) with recirculating extracellular solution (oxygenated with95%O2-5%CO2). Visualized patch-clamp recordings from the CA1pyramidal neurons were performed by IR-DIC videomicroscopy with an Axopatch200B amplifier, filtered at2kHz and digitized at20kHz. C1C-2currents were evoked at test potentials between+40and-20mV (increment:-20mV; holding potential:-10mV).Itonic were recorded as the change in mean holding currents (ΔIhold) after applying SR-95531(100μM) while voltage clamped at-60mV. The Ihold was sampled and averaged in recordings as follows:100s before (t1) and200s after L-655,708application (t2), and100s after SR-95531application (t3). Mean ΔIhold before and after drugs application were calculated for each neuron. Before and after values for an individual neuron were compared using the Kolmogorov-Smirnov (KS) test. Differences between groups were analyzed with one-way ANOVA followed by individual post hoc comparisons (Tukey's post hoc tests).
     A stainless-steel cannula (22gauge,0.7mm outer diameter) was implanted above the right lateral ventricle (0.5mm posterior to the bregma,1.2mm lateral to midline and4mm below the surface of the dura). The cannula was secured by dental cement. A stainless-steel obturator was inserted into the cannula to prevent clogging and infection. Rats were allowed to recover for7days before inducing SE. Intracerebroventricular (i.c.v.) injection was made from the latency till14d after the first occurrence of SRS via an internal cannula (28gauge,0.36mm outer diameter).
     Results:C1C-2currents increased by53.2%(control,453.1±47.4pA, n=9; post-SE,694.5±56.2pA, n=12; P<0.05) in polocarpine-treated rats, consistent with the upregulation of C1C-2. And a decrease in L-655,708treatment slices by-26.9%was observed (vehicle,702.3±63.1pA, n=10; L-655,708,513.6±50.2pA, n=15; P<0.05). A significant increase in GABAAR-mediated tonic inhibition (Itonic) in CA1PCs, compared to neurons from control (control:132.1±17.9pA, n=12; post-SE:207.4±13.6pA, n=15; P<0.05). L-655,708(100nM) decreased Itonic in control neurons by-21.6±9.2%(n=7), but produced a significantly greater decrease in post-SE neurons (-30.3±7.9%, n=11).
     L-655,708treatment starting from the latency till14d after the first occurrence of SRS in vivo resulted in an earlier manifest of the first occurrence of SRS at9±1days after SE in the8μM and16μM L-655,708groups (n=7each group, P<0.05), but did not show significant effect on the duration and mean frequency of SRSs.
     Summary:
     1. C1C-2currents increased in CA1PCs in pilocarpine-treated rats.
     2. A significant increase in GABAAR-mediated tonic inhibition (Itonic) in CA1PCs, compared to neurons from control. It is probably due to the compensatory increased tonic inhibition for replenishing the decreased synaptic GABAergic innervation at dendrites in TLE model.
     3. L-655,708attenuated the increased Itonic in vitro and produces an earlier manifest of the first occurrence of SRS in vivo in pilocarpine-treated rats. We suggest that the chronically raised tonic inhibition mediated by a5subunit-containing GABAARs is associated with the generation of SRS.
     4. L-655,708reversed the increase in C1C-2currents in vitro. We suggest that C1C-2modification in CA1PCs is probably to assist the chloride extrusion and maintain the inwardly directed driving force for chloride ions, which is a prerequisite for hyperpolarizing inhibition of extrasynaptic GABAARs.
     Part Ⅳ L-655,708attenuates the increased LTD, but produces no significant change in decreased LTP in post-SE rats in vivo.
     Objective:To observe what the change of synaptic plasticity of post-SE rats in CA1area, and whether a5subunit-containing GABAARs could affect amplitude of field potentials by pharmacological intervention.
     Methods:Experiments were performed on male Sprague-Dawley rats. Urethane (1.5g/kg, ip) was used to induce and maintain anesthesia. Additional doses (0.5g/kg) were given if needed. Surgical level of anesthesia was verified by the stable mean arterial blood pressure during noxious stimulation. The trachea was cannulated, and the animal breathed spontaneously. The left femoral vein and artery were cannulated for intravenous injection and continuous monitoring of blood pressure respectively. Colorectal temperature was kept constant (37-38℃) by means of a feedback-controlled heating blanket. Rats were placed in a stereotaxic frame for all recordings. A small craniotomy (1mm×1.5mm) was performed, and then the dura and arachnoid were carefully removed. A stainless steel guide cannula was implanted in the right lateral ventricle (1mm lateral to midline,0.5mm posterior to bregma and4mm below the surface of dura), an internal cannula was used for intracerebroventricular injections (i.c.v.). The craniotomy hole was sealed with dental cement after implantation procedure. Field excitatory postsynaptic potentials (fEPSPs) were recorded in the stratum radiatum of the dorsal hippocampus in response to stimulation of the ipsilateral Scaffer collateral-commissural pathway. The recording site was located3.4mm posterior to bregma and2.5mm lateral to midline, and the stimulating site was located4.2mm posterior to bregma and3.8mm lateral to midline. The final depth of both electrodes was adjusted to optimize the electrically evoked fEPSPs. The intensity of test stimuli (0.033Hz,0.1ms duration) was adjusted to evoke a fEPSP that was50%of maximum. Conditioning high frequency stimulation (HFS:100Hz,50stimuli per train,4trains at interval of15s) was induced LTP, and LTD was induced by low frequency stimulation (LFS:1Hz,900stimuli15min). Baseline was recorded for>30min prior to injection of drug/vehicle to ensure a steady response. All values were expressed as mean±SEM. The magnitude of LTP/LTD was measured as the percentage of the baseline fEPSP amplitude during30min periods, just prior to HFS/LFS. Before and after values for an individual rat were compared using the Wilcoxon signed ranks test. Differences between groups were analyzed with Kruskal-Wallis test.
     Western blot was performed to compare the protein levels of NR1, NR2A, NR2B, GluRl, GluR2and GluR3in CA1area in post-SE rats with that in control ones. Rats were decapitated, brains were immediately removed and frozen on dry ice, then stored at-80℃until processing. The CA1regions were microdissected on dry ice. The tissue samples were homogenated and sonicated in Tris buffer, then centrifuged to isolate the supernatant containing protein samples. The samples were separated by gel electrophoresis (SDS-PAGE) and transferred onto a PVDF membrane. The membrane was blocked for1h at room temperature in blocking buffer and then incubated with primary antibody overnight at4℃, followed by incubation in secondary antibody. The immune bands were visualized by enhanced chemiluminescence (ECL, Amersham, USA) and film exposure (Kodak, Rochester, NY). The membrane was stripped with stripping buffer for30min at50℃and re-probed with anti-β-actin, followed by incubation in secondary antibody as an endogenous control protein to ensure equal loading. Densitometric analysis of bands on the film was conducted with a computer-assisted imaging analysis system, and normalized to P-actin immunoreactivity.
     Results:The amplitude of fEPSPs induced by HFS decreased by14.84%(control:150.9±7.57%, n=5; post-SE:128.5±9.43%, n=5; P<0.05) in post-SE rats, and an increase in the amplitude of fEPSPs induced by LFS was detected (control:68.3±7.31%, n=5; post-SE:117.2±6.22%, n=5; P<0.05) compared to rats from control. L-655,708attenuates the increased LTD (vehicle:113.7±6.91%, n=4; L-655,708:91.6±6.57%, n=5; P<0.05), but produces no significant change in decreased LTP in post-SE rats in vivo (vehicle:130.3±7.36%, n=4; L-655,708:132.4±7.01%,n=5;P>0.05). Immunoblot was performed to quantify the protein levels of NR1, NR2A, NR2B, GluR1, GluR2and GluR3in CA1area. NR2B and GluR2downregulated in CA1pyramidal cells (PCs) in the chronic post-SE rats, and other ones were higher than that in control group.
     Summary:
     1. The amplitude of fEPSPs induced by HFS decreased significantly in post-SE rats, and an increase in the amplitude of fEPSPs induced by LFS was detected compared to rats from control.
     2. L-655,708attenuates the increased LTD, but produces no significant change in decreased LTP in post-SE rats in vivo.
     Conclusion
     The major findings of this study are that ClC-2upregulated functionally in CA1pyramidal cells (PCs) in the chronic post-SE rats, with a corresponding increase in tonic GABAergic inhibition, and that dampening this tonic inhibition by L-655,708reverses the increase in ClC-2currents in CA1PCs in vitro and in amplitude of fEPSPs induced by LFS in vivo.
引文
[1]Jentsch TJ, Friedrich T, Schriever A, Yamada H. The CLC chloride channel family. Pflugers Arch 1999; 437(6):783-95.
    [2]George AL, Jr., Bianchi L, Link EM, Vanoye CG. From stones to bones:the biology of ClC chloride channels. Curr Biol 2001; 11(15):R620-R628.
    [3]Okada Y, Maeno E. Apoptosis, cell volume regulation and volume-regulatory chloride channels. Comp Biochem Physiol A Mol Integr Physiol 2001; 130(3):377-83.
    [4]Frings S, Reuter D, Kleene SJ. Neuronal Ca2+ -activated Cl-channels--homing in on an elusive channel species. Prog Neurobiol 2000; 60(3):247-89.
    [5]Jentsch TJ, Stein V, Weinreich F, Zdebik AA. Molecular structure and physiological function of chloride channels. Physiol Rev 2002; 82(2): 503-68.
    [6]Kidd JF, Thorn P. Intracellular Ca2+ and Cl- channel activation in secretory cells. Annu Rev Physiol 2000; 62:493-513.
    [7]Franke C, Iaizzo PA, Hatt H, Spittelmeister W, Ricker K, Lehmann-Horn F. Altered Na+ channel activity and reduced Cl- conductance cause hyperexcitability in recessive generalized myotonia (Becker). Muscle Nerve 1991; 14(8):762-70.
    [8]Igarashi T, Gunther W, Sekine T, Inatomi J, Shiraga H, Takahashi S et al. Functional characterization of renal chloride channel, CLCN5, mutations associated with Dent'sJapan disease. Kidney Int 1998; 54(6):1850-6.
    [9]Simon DB, Bindra RS, Mansfield TA, Nelson-Williams C, Mendonca E, Stone R et al. Mutations in the chloride channel gene, CLCNKB, cause Banter's syndrome type Ⅲ. Nat Genet 1997; 17(2):171-8.
    [10]Jentsch TJ, Steinmeyer K, Schwarz G. Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature 1990; 348(6301):510-4.
    [11]Jentsch TJ, Neagoe I, Scheel O. CLC chloride channels and transporters. Curr Opin Neurobiol 2005; 15(3):319-25.
    [12]Schmidt-Rose T, Jentsch TJ. Transmembrane topology of a CLC chloride channel. Proc Natl Acad Sci U S A 1997; 94(14):7633-8.
    [13]Steinmeyer K, Ortland C, Jentsch TJ. Primary structure and functional expression of a developmentally regulated skeletal muscle chloride channel. Nature 1991; 354(6351):301-4.
    [14]Kumar KR, Ng K, Vandebona H, Davis MR, Sue CM. A novel CLCN1 mutation (G1652A) causing a mild phenotype of thomsen disease. Muscle Nerve 2010; 41(3):412-5.
    [15]Pusch M. Myotonia caused by mutations in the muscle chloride channel gene CLCN1. Hum Mutat 2002; 19(4):423-34.
    [16]Janssen AG, Scholl U, Domeyer C, Nothmann D, Leinenweber A, Fahlke C. Disease-causing dysfunctions of barttin in Bartter syndrome type IV. J Am Soc Nephrol 2009; 20(1):145-53.
    [17]Lloyd SE, Pearce SH, Fisher SE, Steinmeyer K, Schwappach B, Scheinman SJ et al. A common molecular basis for three inherited kidney stone diseases. Nature 1996; 379(6564):445-9.
    [18]Smith AJ, Reed AA, Loh NY, Thakker RV, Lippiat JD. Characterization of Dent's disease mutations of CLC-5 reveals a correlation between functional and cell biological consequences and protein structure. Am J Physiol Renal Physiol 2009; 296(2):F390-F397.
    [19]Poet M, Komak U, Schweizer M, Zdebik AA, Scheel O, Hoelter S et al. Lysosomal storage disease upon disruption of the neuronal chloride transport protein ClC-6. Proc Natl Acad Sci U S A 2006; 103(37):13854-9.
    [20]Henriksen K, Gram J, Neutzsky-Wulff AV, Jensen VK, Dziegiel MH, Bollerslev J, Karsdal MA. Characterization of acid flux in osteoclasts from patients harboring a G215R mutation in ClC-7. Biochem Biophys Res Commun 2009; 378(4):804-9.
    [21]Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 2001; 104(2):205-15.
    [22]Tyzio R, Minlebaev M, Rheims S, Ivanov A, Jorquera I, Holmes GL et al. Postnatal changes in somatic gamma-aminobutyric acid signalling in the rat hippocampus. Eur J Neurosci 2008; 27(10):2515-28.
    [23]Pusch M, Jentsch TJ. Molecular physiology of voltage-gated chloride channels. Physiol Rev 1994; 74(4):813-27.
    [24]Thiemann A, Grunder S, Pusch M, Jentsch TJ. A chloride channel widely expressed in epithelial and non-epithelial cells. Nature 1992; 356(6364): 57-60.
    [25]Clayton GH, Staley KJ, Wilcox CL, Owens GC, Smith RL. Developmental expression of ClC-2 in the rat nervous system. Brain Res Dev Brain Res 1998; 108(1-2):307-18.
    [26]Grunder S, Thiemann A, Pusch M, Jentsch TJ. Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature 1992; 360(6406):759-62.
    [27]Ben Ari Y. Excitatory actions of gaba during development:the nature of the nurture. Nat Rev Neurosci 2002; 3(9):728-39.
    [28]Furukawa T, Ogura T, Katayama Y, Hiraoka M. Characteristics of rabbit CIC-2 current expressed in Xenopus oocytes and its contribution to volume regulation. Am J Physiol 1998; 274(2 Pt 1):C500-C512.
    [29]Staley K, Smith R, Schaack J, Wilcox C, Jentsch TJ. Alteration of GABAA receptor function following gene transfer of the CLC-2 chloride channel. Neuron 1996; 17(3):543-51.
    [30]Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K et al. The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 1999; 397(6716):251-5.
    [31]Ehrlich I, Lohrke S, Friauf E. Shift from depolarizing to hyperpolarizing glycine action in rat auditory neurones is due to age-dependent Cl-regulation. J Physiol 1999; 520 Pt 1:121-37.
    [32]Tyzio R, Cossart R, Khalilov I, Minlebaev M, Hubner CA, Represa A et al. Maternal oxytocin triggers a transient inhibitory switch in GABA signaling in the fetal brain during delivery. Science 2006; 314(5806):1788-92.
    [33]Khirug S, Yamada J, Afzalov R, Voipio J, Khiroug L, Kaila K. GABAergic depolarization of the axon initial segment in cortical principal neurons is caused by the Na-K-2Cl cotransporter NKCCl. J Neurosci 2008; 28(18): 4635-9.
    [34]Sander T, Schulz H, Saar K, Gennaro E, Riggio MC, Bianchi A et al. Genome search for susceptibility loci of common idiopathic generalised epilepsies. Hum Mol Genet 2000; 9(10):1465-72.
    [35]Haug K, Warnstedt M, Alekov AK, Sander T, Ramirez A, Poser B et al. Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nat Genet 2003; 33(4): 527-32.
    [36]Saint-Martin C, Gauvain G, Teodorescu G, Gourfinkel-An I, Fedirko E, Weber YG et al. Two novel CLCN2 mutations accelerating chloride channel deactivation are associated with idiopathic generalized epilepsy. Hum Mutat 2009; 30(3):397-405.
    [37]Blanz J, Schweizer M, Auberson M, Maier H, Muenscher A, Hubner CA, Jentsch TJ. Leukoencephalopathy upon disruption of the chloride channel ClC-2. J Neurosci 2007; 27(24):6581-9.
    [38]Bosl MR, Stein V, Hubner C, Zdebik AA, Jordt SE, Mukhopadhyay AK et al. Male germ cells and photoreceptors, both dependent on close cell-cell interactions, degenerate upon ClC-2 Cl(-) channel disruption. EMBO J 2001; 20(6):1289-99.
    [39]Nehrke K, Arreola J, Nguyen HV, Pilato J, Richardson L, Okunade G et al. Loss of hyperpolarization-activated Cl(-) current in salivary acinar cells from Clcn2 knockout mice. J Biol Chem 2002; 277(26):23604-11.
    [40]Simon J, Wakimoto H, Fujita N, Lalande M, Barnard EA. Analysis of the set of GABA(A) receptor genes in the human genome. J Biol Chem 2004; 279(40):41422-35.
    [41]Glykys J, Mody I. Hippocampal network hyperactivity after selective reduction of tonic inhibition in GABA A receptor alpha5 subunit-deficient mice. J Neurophysiol 2006; 95(5):2796-807.
    [42]Walker MC, Semyanov A. Regulation of excitability by extrasynaptic GABA(A) receptors. Results Probl Cell Differ 2008; 44:29-48.
    [43]Ramos B, Lopez-Tellez JF, Vela J, Baglietto-Vargas D, del Rio JC, Ruano D et al. Expression of alpha 5 GABAA receptor subunit in developing rat hippocampus. Brain Res Dev Brain Res 2004; 151(1-2):87-98.
    [44]Balakrishnan V, Becker M, Lohrke S, Nothwang HG, Guresir E, Friauf E. Expression and function of chloride transporters during development of inhibitory neurotransmission in the auditory brainstem. J Neurosci 2003; 23(10):4134-45.
    [45]Achilles K, Okabe A, Ikeda M, Shimizu-Okabe C, Yamada J, Fukuda A et al. Kinetic properties of Cl uptake mediated by Na+-dependent K+-2C1 cotransport in immature rat neocortical neurons. J Neurosci 2007; 27(32): 8616-27.
    [46]Rinke I, Artmann J, Stein V. ClC-2 voltage-gated channels constitute part of the background conductance and assist chloride extrusion. J Neurosci 2010; 30(13):4776-86.
    [47]Hermann BP, Seidenberg M, Dow C, Jones J, Rutecki P, Bhattacharya A, Bell B. Cognitive prognosis in chronic temporal lobe epilepsy. Ann Neurol 2006; 60(1):80-7.
    [48]Hannesson DK, Mohapel P, Corcoran ME. Dorsal hippocampal kindling selectively impairs spatial learning/short-term memory. Hippocampus 2001; 11(3):275-86.
    [49]Eichenbaum H, Yonelinas AP, Ranganath C. The medial temporal lobe and recognition memory. Annu Rev Neurosci 2007; 30:123-52.
    [50]Nadel L, Moscovitch M. Memory consolidation, retrograde amnesia and the hippocampal complex. Curr Opin Neurobiol 1997; 7(2):217-27.
    [51]Neves G, Cooke SF, Bliss TV. Synaptic plasticity, memory and the hippocampus:a neural network approach to causality. Nat Rev Neurosci 2008; 9(1):65-75.
    [52]Squire LR. The hippocampus and spatial memory. Trends Neurosci 1993; 16(2):56-7.
    [53]Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 1973; 232(2):331-56.
    [54]Dudek SM, Bear MF. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci U S A 1992; 89(10):4363-7.
    [55]Chambers MS, Atack JR, Broughton HB, Collinson N, Cook S, Dawson GR et al. Identification of a novel, selective GABA(A) alpha5 receptor inverse agonist which enhances cognition. J Med Chem 2003; 46(11):2227-40.
    [56]Collinson N, Kuenzi FM, Jarolimek W, Maubach KA, Cothliff R, Sur C et al. Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the alpha 5 subunit of the GABAA receptor. J Neurosci 2002; 22(13):5572-80.
    [1]El Hassar L, Esclapez M, Bernard C. Hyperexcitability of the CA1 hippocampal region during epileptogenesis. Epilepsia 2007; 48 Suppl 5: 131-9.
    [2]Ulbert I, Magloczky Z, Eross L, Czirjak S, Vajda J, Bognar L et al. In vivo laminar electrophysiology co-registered with histology in the hippocampus of patients with temporal lobe epilepsy. Exp Neurol 2004; 187(2):310-8.
    [3]Jankowsky JL, Patterson PH. Differential regulation of cytokine expression following pilocarpine-induced seizure. Exp Neurol 1999; 159(2):333-46.
    [4]Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 1997; 17(10):3727-38.
    [5]Turski L, Ikonomidou C, Turski WA, Bortolotto ZA, Cavalheiro EA. Review: cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine:a novel experimental model of intractable epilepsy. Synapse 1989; 3(2):154-71.
    [6]Turski WA, Cavalheiro EA, Schwarz M, Czuczwar SJ, Kleinrok Z, Turski L. Limbic seizures produced by pilocarpine in rats:behavioural, electroencephalographic and neuropathological study. Behav Brain Res 1983; 9(3):315-35.
    [7]Mello LE, Cavalheiro EA, Tan AM, Pretorius JK, Babb TL, Finch DM. Granule cell dispersion in relation to mossy fiber sprouting, hippocampal cell loss, silent period and seizure frequency in the pilocarpine model of epilepsy. Epilepsy Res Suppl 1992; 9:51-9.
    [8]Mello LE, Cavalheiro EA, Tan AM, Kupfer WR, Pretorius JK, Babb TL, Finch DM. Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy:cell loss and mossy fiber sprouting. Epilepsia 1993; 34(6): 985-95.
    [9]Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 1972; 32(3):281-94.
    [10]Xu JT, Xin WJ, Zang Y, Wu CY, Liu XG. The role of tumor necrosis factor-alpha in the neuropathic pain induced by Lumbar 5 ventral root transection in rat. Pain 2006; 123(3):306-21.
    [11]Mazzuferi M, Palma E, Martinello K, Maiolino F, Roseti C, Fucile S et al. Enhancement of GABA(A)-current run-down in the hippocampus occurs at the first spontaneous seizure in a model of temporal lobe epilepsy. Proc Natl Acad Sci U S A 2010; 107(7):3180-5.
    [12]Blumcke I, Becker AJ, Klein C, Scheiwe C, Lie AA, Beck H et al. Temporal lobe epilepsy associated up-regulation of metabotropic glutamate receptors: correlated changes in mGluR1 mRNA and protein expression in experimental animals and human patients. J Neuropathol Exp Neurol 2000; 59(1):1-10.
    [13]Pin JP, Duvoisin R. The metabotropic glutamate receptors:structure and functions. Neuropharmacology 1995; 34(1):1-26.
    [14]Coulter DA. Chronic epileptogenic cellular alterations in the limbic system after status epilepticus. Epilepsia 1999; 40 Suppl 1:S23-S33.
    [15]Goffin K, Nissinen J, Van LK, Pitkanen A. Cyclicity of spontaneous recurrent seizures in pilocarpine model of temporal lobe epilepsy in rat. Exp Neurol 2007; 205(2):501-5.
    [16]Curia G, Longo D, Biagini G, Jones RS, Avoli M. The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods 2008; 172(2):143-57.
    [17]Houser CR, Esclapez M. Vulnerability and plasticity of the GAB A system in the pilocarpine model of spontaneous recurrent seizures. Epilepsy Res 1996; 26(1):207-18.
    [18]Esclapez M, Hirsch JC, Ben Ari Y, Bernard C. Newly formed excitatory pathways provide a substrate for hyperexcitability in experimental temporal lobe epilepsy. J Comp Neurol 1999; 408(4):449-60.
    [1]Ben Ari Y. Excitatory actions of gaba during development:the nature of the nurture. Nat Rev Neurosci 2002; 3(9):728-39.
    [2]Delpire E. Cation-Chloride Cotransporters in Neuronal Communication. News Physiol Sci 2000; 15:309-12.
    [3]Furukawa T, Ogura T, Katayama Y, Hiraoka M. Characteristics of rabbit ClC-2 current expressed in Xenopus oocytes and its contribution to volume regulation. Am J Physiol 1998; 274(2 Pt 1):C500-C512.
    [4]George AL, Jr., Bianchi L, Link EM, Vanoye CG. From stones to bones:the biology of ClC chloride channels. Curr Biol 2001; 11(15):R620-R628.
    [5]Staley K, Smith R, Schaack J, Wilcox C, Jentsch TJ. Alteration of GABAA receptor function following gene transfer of the CLC-2 chloride channel. Neuron 1996; 17(3):543-51.
    [6]Fiumelli H, Cancedda L, Poo MM. Modulation of GABAergic transmission by activity via postsynaptic Ca2+-dependent regulation of KCC2 function. Neuron 2005; 48(5):773-86.
    [7]Pathak HR, Weissinger F, Terunuma M, Carlson GC, Hsu FC, Moss SJ, Coulter DA. Disrupted dentate granule cell chloride regulation enhances synaptic excitability during development of temporal lobe epilepsy. J Neurosci 2007; 27(51):14012-22.
    [8]Ruusuvuori E, Li H, Huttu K, Palva JM, Smirnov S, Rivera C et al. Carbonic anhydrase isoform Ⅶ acts as a molecular switch in the development of synchronous gamma-frequency firing of hippocampal CA1 pyramidal cells. J Neurosci 2004; 24(11):2699-707.
    [9]Jedlicka P, Deller T, Gutkin BS, Backus KH. Activity-dependent intracellular chloride accumulation and diffusion controls GABA(A) receptor-mediated synaptic transmission. Hippocampus 2010.
    [10]Smith RL, Clayton GH, Wilcox CL, Escudero KW, Staley KJ. Differential expression of an inwardly rectifying chloride conductance in rat brain neurons:a potential mechanism for cell-specific modulation of postsynaptic inhibition. J Neurosci 1995; 15(5 Pt 2):4057-67.
    [11]Huber S, Schroppel B, Kretzler M, Schlondorff D, Horster M. Single cell RT-PCR analysis of ClC-2 mRNA expression in ureteric bud tip. Am J Physiol 1998; 274(5 Pt 2):F951-F957.
    [12]Murray CB, Morales MM, Flotte TR, McGrath-Morrow SA, Guggino WB, Zeitlin PL. CIC-2:a developmentally dependent chloride channel expressed in the fetal lung and downregulated after birth. Am J Respir Cell Mol Biol 1995; 12(6):597-604.
    [13]Blanz J, Schweizer M, Auberson M, Maier H, Muenscher A, Hubner CA, Jentsch TJ. Leukoencephalopathy upon disruption of the chloride channel CIC-2. J Neurosci 2007; 27(24):6581-9.
    [14]Bosl MR, Stein V, Hubner C, Zdebik AA, Jordt SE, Mukhopadhyay AK et al. Male germ cells and photoreceptors, both dependent on close cell-cell interactions, degenerate upon CIC-2 Cl(-) channel disruption. EMBO J 2001; 20(6):1289-99.
    [15]Haug K, Warnstedt M, Alekov AK, Sander T, Ramirez A, Poser B et al. Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nat Genet 2003; 33(4): 527-32.
    [16]Niemeyer MI, Yusef YR, Cornejo I, Flores CA, Sepulveda FV, Cid LP. Functional evaluation of human CIC-2 chloride channel mutations associated with idiopathic generalized epilepsies. Physiol Genomics 2004; 19(1):74-83.
    [17]Sander T, Schulz H, Saar K, Gennaro E, Riggio MC, Bianchi A et al. Genome search for susceptibility loci of common idiopathic generalised epilepsies. Hum Mol Genet 2000; 9(10):1465-72.
    [18]Khalilov I, Holmes GL, Ben Ari Y. In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures. Nat Neurosci 2003; 6(10):1079-85.
    [19]Inglefield JR, Schwartz-Bloom RD. Activation of excitatory amino acid receptors in the rat hippocampal slice increases intracellular Cl-and cell volume. J Neurochem 1998; 71(4):1396-404.
    [20]Gao TM, Pulsinelli WA, Xu ZC. Changes in membrane properties of CA1 pyramidal neurons after transient forebrain ischemia in vivo. Neuroscience 1999; 90(3):771-80.
    [21]Freund TF, Buzsaki G. Interneurons of the hippocampus. Hippocampus 1996; 6(4):347-470.
    [22]Miles R, Toth K, Gulyas AI, Hajos N, Freund TF. Differences between somatic and dendritic inhibition in the hippocampus. Neuron 1996; 16(4): 815-23.
    [1]Walker MC, Semyanov A. Regulation of excitability by extrasynaptic GABA(A) receptors. Results Probl Cell Differ 2008; 44:29-48.
    [2]Brunig I, Scotti E, Sidler C, Fritschy JM. Intact sorting, targeting, and clustering of gamma-aminobutyric acid A receptor subtypes in hippocampal neurons in vitro. J Comp Neurol 2002; 443(1):43-55.
    [3]Caraiscos VB, Elliott EM, You T, Cheng VY, Belelli D, Newell JG et al. Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by alpha5 subunit-containing gamma-aminobutyric acid type A receptors. Proc Natl Acad Sci U S A 2004; 101(10):3662-7.
    [4]Rinke I, Artmann J, Stein V. ClC-2 voltage-gated channels constitute part of the background conductance and assist chloride extrusion. J Neurosci 2010; 30(13):4776-86.
    [5]Prenosil GA, Schneider Gasser EM, Rudolph U, Keist R, Fritschy JM, Vogt KE. Specific subtypes of GABAA receptors mediate phasic and tonic forms of inhibition in hippocampal pyramidal neurons. J Neurophysiol 2006; 96(2): 846-57.
    [6]Yeung JY, Canning KJ, Zhu G, Pennefather P, MacDonald JF, Orser BA. Tonically activated GABAA receptors in hippocampal neurons are high-affinity, low-conductance sensors for extracellular GABA. Mol Pharmacol 2003; 63(1):2-8.
    [7]Stell BM, Mody I. Receptors with different affinities mediate phasic and tonic GABA(A) conductances in hippocampal neurons. J Neurosci 2002; 22(10):RC223.
    [8]Hu NW, Klyubin I, Anwy R, Rowan MJ. GluN2B subunit-containing NMDA receptor antagonists prevent Abeta-mediated synaptic plasticity disruption in vivo. Proc Natl Acad Sci U S A 2009; 106(48):20504-9.
    [9]Tyzio R, Minlebaev M, Rheims S, Ivanov A, Jorquera I, Holmes GL et al. Postnatal changes in somatic gamma-aminobutyric acid signalling in the rat hippocampus. Eur J Neurosci 2008; 27(10):2515-28.
    [10]Staley K, Smith R, Schaack J, Wilcox C, Jentsch TJ. Alteration of GABAA receptor function following gene transfer of the CLC-2 chloride channel. Neuron 1996; 17(3):543-51.
    [11]Jordt SE, Jentsch TJ. Molecular dissection of gating in the ClC-2 chloride channel. EMBO J 1997; 16(7):1582-92.
    [12]Zuniga L, Niemeyer MI, Varela D, Catalan M, Cid LP, Sepulveda FV. The voltage-dependent ClC-2 chloride channel has a dual gating mechanism. J Physiol 2004; 555(Pt 3):671-82.
    [13]Glykys J, Mody I. Hippocampal network hyperactivity after selective reduction of tonic inhibition in GABA A receptor alpha5 subunit-deficient mice. J Neurophysiol 2006; 95(5):2796-807.
    [14]Houser CR, Esclapez M. Downregulation of the alpha5 subunit of the GABA(A) receptor in the pilocarpine model of temporal lobe epilepsy. Hippocampus 2003; 13(5):633-45.
    [15]Zhang N, Wei W, Mody I, Houser CR. Altered localization of GABA(A) receptor subunits on dentate granule cell dendrites influences tonic and phasic inhibition in a mouse model of epilepsy. J Neurosci 2007; 27(28): 7520-31.
    [16]Scimemi A, Semyanov A, Sperk G, Kullmann DM, Walker MC. Multiple and plastic receptors mediate tonic GABAA receptor currents in the hippocampus. J Neurosci 2005; 25(43):10016-24.
    [17]Cossart R, Dinocourt C, Hirsch JC, Merchan-Perez A, De Felipe J, Ben Ari Y et al. Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy. Nat Neurosci 2001; 4(1):52-62.
    [18]Ramos B, Lopez-Tellez JF, Vela J, Baglietto-Vargas D, del Rio JC, Ruano D et al. Expression of alpha 5 GABAA receptor subunit in developing rat hippocampus. Brain Res Dev Brain Res 2004; 151(1-2):87-98.
    [19]Miles R, Toth K, Gulyas Al, Hajos N, Freund TF. Differences between somatic and dendritic inhibition in the hippocampus. Neuron 1996; 16(4): 815-23.
    [20]Quirk K, Blurton P, Fletcher S, Leeson P, Tang F, Mellilo D et al. [3H]L-655,708, a novel ligand selective for the benzodiazepine site of GABAA receptors which contain the alpha 5 subunit. Neuropharmacology 1996; 35(9-10):1331-5.
    [1]Hannesson DK, Mohapel P, Corcoran ME. Dorsal hippocampal kindling selectively impairs spatial learning/short-term memory. Hippocampus 2001; 11(3):275-86.
    [2]Hermann BP, Seidenberg M, Dow C, Jones J, Rutecki P, Bhattacharya A, Bell B. Cognitive prognosis in chronic temporal lobe epilepsy. Ann Neurol 2006; 60(1):80-7.
    [3]Bliss TV, Collingridge GL. A synaptic model of memory:long-term potentiation in the hippocampus. Nature 1993; 361(6407):31-9.
    [4]Dudek SM, Bear MF. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci U S A 1992; 89(10):4363-7.
    [5]Martin SJ, Grimwood PD, Morris RG. Synaptic plasticity and memory:an evaluation of the hypothesis. Annu Rev Neurosci 2000; 23:649-711.
    [6]Nadel L, Moscovitch M. Memory consolidation, retrograde amnesia and the hippocampal complex. Curr Opin Neurobiol 1997; 7(2):217-27.
    [7]Squire LR. The hippocampus and spatial memory. Trends Neurosci 1993; 16(2):56-7.
    [8]Neves G, Cooke SF, Bliss TV. Synaptic plasticity, memory and the hippocampus:a neural network approach to causality. Nat Rev Neurosci 2008; 9(1):65-75.
    [9]Chambers MS, Atack JR, Broughton HB, Collinson N, Cook S, Dawson GR et al. Identification of a novel, selective GABA(A) alpha5 receptor inverse agonist which enhances cognition. J Med Chem 2003; 46(11):2227-40.
    [10]Collinson N, Kuenzi FM, Jarolimek W, Maubach KA, Cothliff R, Sur C et al. Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the alpha 5 subunit of the GABAA receptor. J Neurosci 2002; 22(13):5572-80.
    [11]Crestani F. Keist R, Fritschy JM, Benke D, Vogt K, Prut L et al. Trace fear conditioning involves hippocampal alpha5 GABA(A) receptors. Proc Natl Acad Sci U S A 2002; 99(13):8980-5.
    [12]Xu L, Anwyl R, Rowan MJ. Behavioural stress facilitates the induction of long-term depression in the hippocampus. Nature 1997; 387(6632):497-500.
    [13]Leung LW. Orthodromic activation of hippocampal CA1 region of the rat. Brain Res 1979; 176(1):49-63.
    [14]Hu NW, Smith IM, Walsh DM, Rowan MJ. Soluble amyloid-beta peptides potently disrupt hippocampal synaptic plasticity in the absence of cerebrovascular dysfunction in vivo. Brain 2008; 131 (Pt 9):2414-24.
    [15]Mulkey RM, Malenka RC. Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 1992; 9(5):967-75.
    [16]Collingridge GL, Bliss TV. Memories of NMDA receptors and LTP. Trends Neurosci 1995; 18(2):54-6.
    [17]Wu Y, Kawakami R, Shinohara Y, Fukaya M, Sakimura K, Mishina M et al. Target-cell-specific left-right asymmetry of NMDA receptor content in schaffer collateral synapses in epsilon1/NR2A knock-out mice. J Neurosci 2005; 25(40):9213-26.
    [18]Platenik J, Kuramoto N, Yoneda Y. Molecular mechanisms associated with long-term consolidation of the NMDA signals. Life Sci 2000; 67(4):335-64.
    [19]Esteban JA, Shi SH, Wilson C, Nuriya M, Huganir RL, Malinow R. PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat Neurosci 2003; 6(2):136-43.
    [20]Man HY, Wang Q, Lu WY, Ju W, Ahmadian G, Liu L et al. Activation of PI3-kinase is required for AMPA receptor insertion during LTP of mEPSCs in cultured hippocampal neurons. Neuron 2003; 38(4):611-24.
    [21]Man HY, Wang Q, Lu WY, Ju W, Ahmadian G, Liu L et al. Activation of PI3-kinase is required for AMPA receptor insertion during LTP of mEPSCs in cultured hippocampal neurons. Neuron 2003; 38(4):611-24.
    [22]Merrill MA, Chen Y, Strack S, Hell JW. Activity-driven postsynaptic translocation of CaMKⅡ. Trends Pharmacol Sci 2005; 26(12):645-53.
    [23]Derkach V, Barria A, Soderling TR. Ca2+/calmodulin-kinase Ⅱ enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc Natl Acad Sci U S A 1999; 96(6):3269-74.
    [24]Sheng M, Kim MJ. Postsynaptic signaling and plasticity mechanisms. Science 2002; 298(5594):776-80.
    [25]Mulkey RM, Endo S, Shenolikar S, Malenka RC. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 1994; 369(6480):486-8.
    [26]Mulkey RM, Malenka RC. Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 1992; 9(5):967-75.
    [27]Mulkey RM, Herron CE, Malenka RC. An essential role for protein phosphatases in hippocampal long-term depression. Science 1993; 261(5124):1051-5.
    [28]Lee HK, Kameyama K, Huganir RL, Bear MF. NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 1998; 21(5):1151-62.
    [29]Carroll RC, Beattie EC, von ZM, Malenka RC. Role of AMPA receptor endocytosis in synaptic plasticity. Nat Rev Neurosci 2001; 2(5):315-24.
    [30]Ehlers MD. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 2000; 28(2):511-25.
    [31]Laurie DJ, Bartke I, Schoepfer R, Naujoks K, Seeburg PH. Regional, developmental and interspecies expression of the four NMDAR2 subunits, examined using monoclonal antibodies. Brain Res Mol Brain Res 1997; 51(1-2):23-32.
    [32]Kohr G. NMDA receptor function:subunit composition versus spatial distribution. Cell Tissue Res 2006; 326(2):439-46.
    [33]Benke D, Wenzel A, Scheuer L, Fritschy JM, Mohler H. Immunobiochemical characterization of the NMDA-receptor subunit NR1 in the developing and adult rat brain. J Recept Signal Transduct Res 1995; 15(1-4):393-411.
    [34]Wenthold RJ, Petralia RS, Blahos J, II, Niedzielski AS. Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J Neurosci 1996; 16(6):1982-9.
    [35]Shimizu E, Tang YP, Rampon C, Tsien JZ. NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science 2000; 290(5494):1170-4.
    [36]Lynch DR, Anegawa NJ, Verdoorn T, Pritchett DB. N-methyl-D-aspartate receptors:different subunit requirements for binding of glutamate antagonists, glycine antagonists, and channel-blocking agents. Mol Pharmacol 1994; 45(3):540-5.
    [37]Laube B, Hirai H, Sturgess M, Betz H, Kuhse J. Molecular determinants of agonist discrimination by NMDA receptor subunits:analysis of the glutamate binding site on the NR2B subunit. Neuron 1997; 18(3):493-503.
    [38]Liu L, Wong TP, Pozza MF, Lingenhoehl K, Wang Y, Sheng M et al. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 2004; 304(5673):1021-4.
    [39]Massey PV, Johnson BE, Moult PR, Auberson YP, Brown MW, Molnar E et al. Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J Neurosci 2004; 24(36):7821-8.
    [40]Kim MJ, Dunah AW, Wang YT, Sheng M. Differential roles of NR2A- and NR2B- containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking. Neuron 2005; 46(5):745-60.
    [41]Gouaux E. Structure and function of AMPA receptors. J Physiol 2004; 554(Pt 2):249-53.
    [42]Harvey SC, Koster A, Yu H, Skolnick P, Baumbarger P, Nisenbaum ES. AMPA receptor function is altered in GLUR2-deficient mice. J Mol Neurosci 2001; 17(1):35-43.
    [43]Sans N, Vissel B, Petralia RS, Wang YX, Chang K, Royle GA et al. Aberrant formation of glutamate receptor complexes in hippocampal neurons of mice lacking the GluR2 AMPA receptor subunit. J Neurosci 2003; 23(28): 9367-73.
    [44]Adesnik H, Nicoll RA. Conservation of glutamate receptor 2-containing AMPA receptors during long-term potentiation. J Neurosci 2007; 27(17): 4598-602.
    [45]Kwak S, Weiss JH. Calcium-permeable AMPA channels in neurodegenerative disease and ischemia. Curr Opin Neurobiol 2006; 16(3): 281-7.
    [46]Pellegrini-Giampietro DE, Gorter JA, Bennett MV, Zukin RS. The GluR2 (GluR-B) hypothesis:Ca(2+)-permeable AMPA receptors in neurological disorders. Trends Neurosci 1997; 20(10):464-70.
    [47]Weiss JH, Sensi SL. Ca2+-Zn2+ permeable AMPA or kainate receptors: possible key factors in selective neurodegeneration. Trends Neurosci 2000; 23(8):365-71.
    [48]Lee SH, Liu L, Wang YT, Sheng M. Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD. Neuron 2002; 36(4):661-74.
    [49]Borgdorff AJ, Choquet D. Regulation of AMPA receptor lateral movements. Nature 2002; 417(6889):649-53.
    [50]Voronin LL, Cherubini E.'Deaf, mute and whispering' silent synapses:their role in synaptic plasticity. J Physiol 2004; 557(Pt 1):3-12.
    [51]Bredt DS, Nicoll RA. AMPA receptor trafficking at excitatory synapses. Neuron 2003; 40(2):361-79.
    [1]Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 1973; 232(2):331-56.
    [2]Hebb DO. Physiological learning theory. J Abnorm Child Psychol 1976; 4(4): 309-14.
    [3]Dudek SM, Bear MF. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci U S A 1992; 89(10):4363-7.
    [4]Kirkwood A, Bear MF. Homosynaptic long-term depression in the visual cortex. J Neurosci 1994; 14(5 Pt 2):3404-12.
    [5]Pin JP, Duvoisin R. The metabotropic glutamate receptors:structure and functions. Neuropharmacology 1995; 34(1):1-26.
    [6]Bashir ZI, Bortolotto ZA, Davies CH, Berretta N, Irving AJ, Seal AJ et al. Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature 1993; 363(6427):347-50.
    [7]Platenik J, Kuramoto N, Yoneda Y. Molecular mechanisms associated with long-term consolidation of the NMD A signals. Life Sci 2000; 67(4):335-64.
    [8]Derkach V, Barria A, Soderling TR. Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc Natl Acad Sci U S A 1999; 96(6):3269-74.
    [9]Man HY, Wang Q, Lu WY, Ju W, Ahmadian G, Liu L et al. Activation of PI3-kinase is required for AMPA receptor insertion during LTP of mEPSCs in cultured hippocampal neurons. Neuron 2003; 38(4):611-24.
    [10]Xiao MY, Wasling P, Hanse E, Gustafsson B. Creation of AMPA-silent synapses in the neonatal hippocampus. Nat Neurosci 2004; 7(3):236-43.
    [11]Voronin LL, Cherubini E.'Deaf, mute and whispering' silent synapses:their role in synaptic plasticity. J Physiol 2004; 557(Pt 1):3-12.
    [12]Liao D, Hessler NA, Malinow R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 1995; 375(6530):400-4.
    [13]Voronin LL, Cherubini E. "Presynaptic silence" may be golden. Neuropharmacology 2003; 45(4):439-49.
    [14]Shi SH, Hayashi Y, Petralia RS, Zaman SH, Wenthold RJ, Svoboda K, Malinow R. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 1999; 284(5421):1811-6.
    [15]Lamprecht R, LeDoux J. Structural plasticity and memory. Nat Rev Neurosci 2004; 5(1):45-54.
    [16]Abe K, Chisaka O, Van RF, Takeichi M. Stability of dendritic spines and synaptic contacts is controlled by alpha N-catenin. Nat Neurosci 2004; 7(4): 357-63.
    [17]Tischmeyer W, Kaczmarek L, Strauss M, Jork R, Matthies H. Accumulation of c-fos mRNA in rat hippocampus during acquisition of a brightness discrimination. Behav Neural Biol 1990; 54(2):165-71.
    [18]Dragunow M, Abraham WC, Goulding M, Mason SE, Robertson HA, Faull RL. Long-term potentiation and the induction of c-fos mRNA and proteins in the dentate gyrus of unanesthetized rats. Neurosci Lett 1989; 101(3): 274-80.
    [19]Wisden W, Errington ML, Williams S, Dunnett SB, Waters C, Hitchcock D et al. Differential expression of immediate early genes in the hippocampus and spinal cord. Neuron 1990; 4(4):603-14.
    [20]Wei F, Xu ZC, Qu Z, Milbrandt J, Zhuo M. Role of EGR1 in hippocampal synaptic enhancement induced by tetanic stimulation and amputation. J Cell Biol 2000; 149(7):1325-34.
    [21]Guzowski JF, Lyford GL, Stevenson GD, Houston FP, McGaugh JL, Worley PF, Barnes CA. Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J Neurosci 2000; 20(11):3993-4001.
    [22]Stevens CF. Quantal release of neurotransmitter and long-term potentiation. Cell 1993; 72 Suppl:55-63.
    [23]Williams JH, Errington ML, Lynch MA, Bliss TV. Arachidonic acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus. Nature 1989; 341(6244):739-42.
    [24]Zhuo M, Laitinen JT, Li XC, Hawkins RD. On the respective roles of nitric oxide and carbon monoxide in long-term potentiation in the hippocampus. Learn Mem 1999; 6(1):63-76.
    [25]Medina JH, Izquierdo I. Retrograde messengers, long-term potentiation and memory. Brain Res Brain Res Rev 1995; 21(2):185-94.
    [26]Hawkins RD, Zhuo M, Arancio O. Nitric oxide and carbon monoxide as possible retrograde messengers in hippocampal long-term potentiation. J Neurobiol 1994; 25(6):652-65.
    [27]Heusler P, Boehmer G. Platelet-activating factor contributes to the induction of long-term potentiation in the rat somatosensory cortex in vitro. Brain Res 2007; 1135(1):85-91.
    [28]Kornecki E, Wieraszko A, Chan J, Ehrlich YH. Platelet activating factor (PAF) in memory formation:role as a retrograde messenger in long-term potentiation. J Lipid Mediat Cell Signal 1996; 14(1-3):115-26.
    [29]Diogenes MJ, Costenla AR, Lopes LV, Jeronimo-Santos A, Sousa VC, Fontinha BM et al. Enhancement of LTP in aged rats is dependent on endogenous BDNF. Neuropsychopharmacology 2011; 36(9):1823-36.
    [30]Santi S, Cappello S, Riccio M, Bergami M, Aicardi G, Schenk U et al. Hippocampal neurons recycle BDNF for activity-dependent secretion and LTP maintenance. EMBO J 2006:25(18):4372-80.
    [31]Mulkey RM, Malenka RC. Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 1992; 9(5):967-75.
    [32]Kobayashi K, Manabe T, Takahashi T. Presynaptic long-term depression at the hippocampal mossy fiber-CA3 synapse. Science 1996; 273(5275): 648-50.
    [33]Mulkey RM, Endo S, Shenolikar S, Malenka RC. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 1994; 369(6480):486-8.
    [34]Mulkey RM, Herron CE, Malenka RC. An essential role for protein phosphatases in hippocampal long-term depression. Science 1993; 261(5124):1051-5.
    [35]Lee HK, Kameyama K, Huganir RL, Bear MF. NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 1998; 21(5):1151-62.
    [36]Carroll RC, Beattie EC, von ZM, Malenka RC. Role of AMPA receptor endocytosis in synaptic plasticity. Nat Rev Neurosci 2001; 2(5):315-24.
    [37]Ehlers MD. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 2000; 28(2):511-25.
    [38]Kameyama K, Lee HK, Bear MF, Huganir RL. Involvement of a postsynaptic protein kinase A substrate in the expression of homosynaptic long-term depression. Neuron 1998; 21(5):1163-75.
    [39]Lee HK, Barbarosie M, Kameyama K, Bear MF, Huganir RL. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 2000; 405(6789):955-9.
    [40]Malinow R, Malenka RC. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 2002; 25:103-26.
    [41]Heynen AJ, Quinlan EM, Bae DC, Bear MF. Bidirectional, activity-dependent regulation of glutamate receptors in the adult hippocampus in vivo. Neuron 2000; 28(2):527-36.
    [42]Luscher C, Xia H, Beattie EC, Carroll RC, von ZM, Malenka RC, Nicoll RA. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 1999; 24(3):649-58.
    [43]Carroll RC, Beattie EC, Xia H, Luscher C, Altschuler Y, Nicoll RA et al. Dynamin-dependent endocytosis of ionotropic glutamate receptors. Proc Natl Acad Sci U S A 1999; 96(24):14112-7.
    [44]Mauna JC, Miyamae T, Pulli B, Thiels E. Protein phosphatases 1 and 2A are both required for long-term depression and associated dephosphorylation of cAMP response element binding protein in hippocampal area CA1 in vivo. Hippocampus 2011; 21(10):1093-104.
    [45]Lisman J. The CaM kinase II hypothesis for the storage of synaptic memory. Trends Neurosci 1994; 17(10):406-12.
    [46]Cormier RJ, Greenwood AC, Connor JA. Bidirectional synaptic plasticity correlated with the magnitude of dendritic calcium transients above a threshold. J Neurophysiol 2001; 85(1):399-406.
    [47]Bear MF, Malenka RC. Synaptic plasticity:LTP and LTD. Curr Opin Neurobiol 1994; 4(3):389-99.
    [48]Liu L, Wong TP, Pozza MF, Lingenhoehl K, Wang Y, Sheng M et al. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 2004; 304(5673):1021-4.
    [49]Massey PV, Johnson BE, Moult PR. Auberson YP, Brown MW, Molnar E et al. Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J Neurosci 2004; 24(36):7821-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700