用户名: 密码: 验证码:
重庆市温塘峡背斜地下热水水文地球化学特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生态环境与社会发展,是当今国际社会普遍关注的重大问题。在人类漫长的发展历程中,尤其是从工业革命以来,在改造自然和发展经济方面取得了辉煌的业绩。与此同时,由于工业化过程中的处置失当,尤其是不合理的开发利用自然资源,造成了全球性的环境污染和生态破坏,对人类的生存与发展构成了现实威胁。保护生态环境,实现可持续发展,已成为全世界紧迫而艰巨的任务。
     地下热水作为一种特殊的水资源,由于其能源价值、疗养价值和休闲娱乐带来的巨大经济价值,一直以来都受到人们的广泛关注,尤其在水资源短缺、能源危机四伏的21世纪,合理的开发利用好地下热水资源尤显重要,目前,地下热水作为旅游资源被广泛开发利用。
     重庆是我国西部经济发展中心,有名的温泉之都,地下热水资源非常丰富。随着社会经济的增长和旅游业发展的需要,重庆市地热温泉水的综合开发利用已呈现出一派方兴未艾的势头。近年来,“五方十泉”、“一圈百泉”和“两翼多泉”等系列温泉开发计划的实施,成功将重庆打造成为了“中国温泉之都”,温泉旅游资源已在重庆旅游业发展战略中占据了十分重要的位置。然而,重庆市温泉旅游业的快速发展对地下热水资源的可持续开发利用和科学的保护提出更高的要求。因此,对于重庆市地下热水资源的补给来源、储存条件等做系统的综合研究就更显必要。
     本研究选取重庆市温塘峡背斜出露的两处温泉作为研究对象,主要采用水化学方法和同位素手段对其地下热水的水化学特征、来源以及冷热水的混合机制等方面进行比较系统的探讨,得出以下主要结论:
     (1)研究区温泉水中主要阴阳离子分别为:SO42-、HCO3-和Ca2+、Mg2+,水化学类型为SO42_—Ca2+(Mg2+)型,水中的矿化度、总硬度和总碱度均非常高。研究还发现,其主要离子来源于热水在循环运移过程中对围岩矿物的溶解作用,且主要表现为对石膏矿物的溶解。温泉水中异常高的Sr2+主要与研究区锶的高背景值相关。
     (2)通过对研究区温泉水样进行流体-矿物平衡分析表明,该区地下热水未能达到溶解平衡,热水在向上运移至地表过程中有浅层冷水的混入。采用Fournier R.O提出的冷热水混合模型和硅-焓模型分别对混入冷水份额进行了计算,其结果比较一致的显示研究区温泉混合冷水份额比较大,北温泉的B1、B2和青木关的Q1约为76.80%,青木关的Q2、Q3约为87.43%。
     (3)氢、氧稳定同位素研究表明,研究区热水来源于大气降水补给,并计算出其补给高程为900m左右,其补给区可能位于温塘峡背斜北端的岩溶露头区。S042-中δ34S值(31.87‰-33.8‰)与四川盆地海相三叠系嘉陵江组二段硬石膏中634S值(32.5%o-35.6%o)相吻合,且水样中的87Sr/86Sr值(0.70803-0.70849)同样与嘉陵江组二段和四段蒸发岩(研究区锶矿的主要成矿层)中天青石矿物的87Sr/86Sr值(0.70724-0.70990)吻合,表明该区热储水层为三叠系下统嘉陵江组地层。
The ecological environment and social development is major issue of common concern in the international community today. In the course of the long development of human beings, especially since the industrial revolution, it has made brilliant achievements in transforming the nature and economic development. At the same time, because of the unreasonable exploitation and utilization of natural resources to result in global environmental pollution and ecological destruction, human survival and development is threatened. Protecting the ecological environment and realizing the sustainable development has become urgent and difficult task in the world.
     As a special water resources, thermal water, because of its energy value, recuperation value and enormous economic value, be widely noticed. Especially, in the21st century with shortage of water resources and the energy crisis, the reasonable exploitation and utilization of thermal water is particularly important. Now, the thermal water is widely exploited and utilized as the tourism resources.
     Chongqing is economic development center in the west of China, famous "Spy city". There are rich in the geothermal water resources in Chongqing. With social economic growth and the needs for the development of tourism, the thermal water have been massively exploited and utilized. Recently, a series of plans about the development of hot spring, including "ten hot springs'project of five direction" and "exploiting one hundred hot springs in surrounding the city " and "exploiting more hot springs in the flank of the city" and so on, were implemented and Chongqing have been " Chinese hot spring capital ". Now, it is obvious that hot spring resource possessed very important status in tourism development tactic of Chongqing. However, the rapid development of hot spring tourism will put forward higher request to continuance utilize and scientific protecting of the thermal water resource in Chongqing. So, it is important that the thermal water source and reservoir conditions are systematically researched in Chongqing.
     In this paper, we selected two hot spring points as the research object in Wentang Gorge Anticline. We used hydrochemical and isotopic analytical method to study the thermal water source and hydrochemical feature and the mixing condition of cold water and hot water. According to the data analysis, conclusions can be made as below:
     (l)The major ions of the thermal water are SO42-and HCO3-and Ca2+and Mg2+. The hydrochemical type is SO42--Ca2+(Mg2+). Total dissolved solids and total hardness and total alkalinity of the thermal water show greatly high value. Another conclusion shows that the major ions are from mineral dissolution of surrounding rock, particularly, from dissolving anhydrite. Moreover, that Sr2+content shows greatly high value may be related to the high content of the background value.
     (2)According to the fluid-mineral equilibrium analysis of the thermal water samples, we can judge the thermal water not to equilibrate. Maybe the thermal water have mixed underground water. We can use mixture model created by Fournier R.O. and silicon-enthalpy model to calculate the percentage mixed the underground water. The results show that the quantity mixed the underground water is very large. The share mixed the underground water is similar at B1and B2of Bei hot spring and Ql of Qing Muguan hot spring, about76.80%. The share is also similar at Q2and Q3of Qing Muguan hot spring, about87.43%.
     (3)The study of5D and δ18O shows that the thermal water source is atmosphere precipitation and the recharge elevation is about900m and the recharge area may be the karst outcrops area on the north of the anticline. The δ34S value (31.87%o~33.8%o) of the thermal water is consistent with the δ34S value (32.5%o-35.6%o) of the anhydrite at second phase of Jialingjiang formation in early Trias in Sichuan basin, and the87Sr/86Sr value (0.70803~0.70849) of the thermal water samples is also consistent with the87Sr/86Sr value (0.70724~0.70990) of the celestite at second phase and fourth phase of Jialingjiang formation (Major metallogenic belt of strontium in study area). Comprehensive judgment, the major aquifer is Jialingjiang formation in study area.
引文
1引自《重庆市1:50万构造纲要图说明书》
    1汪智军《青木关岩溶流域水-土系统碳氮同位素特征研究》
    [1]沈照理.水文地球化学基础[M].北京:地质出版社,1986.
    [2]汪集肠,马伟斌,龚宇烈,等.地热利用技术[M].北京:化学工业出版社,2005.
    [3]蔡义汉.地热直接利用[M].天津:天津大学出版社,2004.
    [4]刘时斌.地热资源及其开发利用和保护[M].北京:化学工业出版社.
    [5]Ellis A. J. and Mahon W. A. J. Natural hydrothermal systems and experimental hot water/rock interactions [J]. Geochim. Cosmochim. Acta.,1964:28,1323-1357.
    [6]Ellis A. J., Mahon W. A. J. Geochemistry and geothermal systems [M]. New York. Academic Press,1977,1-52.
    [7]Bowers T. S., Jackson K. J. and Helgeson H. C. Equilibrium activity diagrams:for coexisting minerals and aqueous solutions at pressures and temperatures to 5 kb and 600 ℃ [M]. New York. Springer-Verlag Press,1984,397 pp.
    [8]Fournier R. O. and Truesdell A. H. An empirical Na-K-Ca geothermometer for natural waters [J]. Geochim. Cosmochim. Acta.,1973:37,1255-1275.
    [9]Fournier R. O. Silica in thermal waters:laboratory and field investigations [C]. Proceedings of the International Symposium on Hydrogeochemistry and Biogeochemistry, Tokyo,1973: 122-139.
    [10]Fournier R. O. A revised equation for the Na/K geothermometer [J]. Geotherm. Res. Counc. Trans.,1979:5,1-16.
    [11]Fournier R. O. and Potter R. W. Magnesium correction to the Na-K-Ca chemical geothermometer [J]. Geochim. Cosmochim. Acta.,1979:43,1543-1550.
    [12]Fournier R. O. and Potter R. W. II. A revised and expanded silica (quartz) geothermometer [J]. Geothermal Resources Council Bulletin,1982:11,3-12.
    [13]Giggenbach W. F. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators [J]. Geochim. Cosmochim. Acta.,1988:52,2749-2765.
    [14]Giggenbach W. F. and Goguel R. L. Collection and analysis of geothermal and volcanic water and gas discharge. In:Chemistry Report No.2401, Department of Scientific and Industrial Research, New Zealand,1989.
    [15]Giggenbach W. F. Chemical composition of volcanic gases. In:Monitoring and Mitigation of Volcano Hazards (R. Scarpa and R.I. Tilling, Eds.) [M]. New York. Springer-Verlag Press,1996: 221-256.
    [16]于津生,张鸿斌,虞福基,等.西藏东部大气降水氧同位素组成特征[J].地球化学,1980(2).
    [17]郑淑蕙,张知非,倪葆龄,等.西藏地热水的氢氧同位素研究[J].北京大学学报(自然科学 版),1982(1).
    [18]陈墨香.新编中国温泉图及其说明[J].地质科学,1992,(1).
    [19]陈墨香,汪集旸.中国地热研究的回顾和展望[J].1994,37:320-338.
    [20]陈墨香,汪集旸,邓孝.中国地热学研究之进展[J].1995,20(4):367-372.
    [21]陈墨香,汪集旸,邓孝.中国地热系统类型图及其简要说明[J].地质科学,1996,31(2):114-121.
    [22]耿莉萍.中国地热资源的地理分布与勘探[J].地质与勘探,1998,34(1):50-54.
    [23]汪集旸,熊亮萍,庞忠和.中高低温对流型地热系统[M].北京:科学出版社,1993.
    [24]陈墨香,汪集旸,邓孝.中国地热资源——形成特点和潜力评估[M].北京:科学出版社,1994.
    [25]王蔚,张景荣,胡桂兴,等.湘西北地区现代温泉地球化学[J].中国科学(B辑),1995,25(4):427-433.
    [26]万登堡.腾冲热海温泉群化学特征与形成机理研究[J].1998,21(4):388-396.
    [27]刘再华,袁道先,何师意,等.地热CO2-水-碳酸盐岩系统的地球化学特征及其CO2来源—以四川黄龙沟、康定和云南中甸下给为例[J].中国科学(D辑),2000,17(2):209-214.
    [28]周训,陈明佑,李慈君.深层地下热水运移的三维数值模拟[M].北京:地质出版社,2001.
    [29]薛传东,刘星,杨浩,等.昆明市地热田越流含水系统中地下热水的数值模拟[J].地球科学进展,2003,18(6):899-903.
    [30]尚守忠.北京地热开发利用中环境问题及其防治的探讨[J].北京地质,1990,(2):29-37.
    [31]谢桂寅.北京地热资源的开发利用及管理[J].北京地质,1992,(2):29-33.
    [32]申建梅.地热资源管理与可持续发展[J].地球学报,2000,21(2):140-141.
    [33]李莲花,张建斌.地热水资源开发引起的环境问题分析[J].地下水,2004,(9):194-195.
    [34]陶勇,陈亚研.地热水的开发利用对环境和健康的影响[J].中国环境科学,1994,(2):37-39.
    [35]Cortecci G., Dindlli E. and Bolognesi L. et al. Chemical and isotopic compositions of water and dissolved sulfate from shallow wells on Vulcano Island, Aeolian Archipelago, Italy [J]. Geothermics,2001:30,69-91.
    [36]Dilsiz C. Conceptual hydrodynamic model of the Pamukkale hydrothermal field, southwestern Turkey, based on hydrochemical and isotopic data [J]. Hydrogeology Journal,2005:14(4), 562-572.
    [37]Imbach T. Deep groundwater circulation in the teconically active area of Bursa, Northwest Anatolia, Turkey [J]. Geothermics,1997:26(2),251-278.
    [38]Larsen D., Swihart G H. and Xiao Y. Hydrochemistry and isotope composition of springs in the Tecopa basin, southeastern California, USA [J]. Chemical Geology,2001,179:17-35.
    [39]高志友,尹观,范晓,等.四川稻城地热资源的分布特点及温泉水的同位素地球化学特征[J].矿物岩石地球化学通报,2004,23(2):134-139.
    [40]尚英男.环境同位素示踪技术在地热地球化学研究中的应用[J].世界核地质科学,2006, 23(1):21-26.
    [41]沈立成,袁道先,丁悌平,等.中国西南地区CO2释放点的He同位素分布不均一性及大地构造成因[J].地质学报,2007,81(4):475-487.
    [42]侯增谦,李振清.印度大陆俯冲前缘的可能位置:来自藏南和藏东活动热泉气体He同位素约束[J].地质学报,2004,78(4):482-493.
    [43]张卫民,王焰新,孙占学.赣南横径地区碳酸温泉CO2成因研究[J].水文地质工程地质,2005,(6):6-9.
    [44]赵柯,姜光辉,杨琰,等.滇东主要断裂带温泉CO2成因浅析[J].地球与环境,2005,33(2):11-15.
    [45]Van Donkelaar C., Hutcheon I. E. and Krouse H. R.34S,18O, D in shallow groundwater:Tracing anthropogenic sulfate and accompanying groundwater/rock interactions [J]. Water, Air and Soil Pollution,1995,79:279-298.
    [46]Thomas P.δ34S isotope values of dissolved sulfate (SO42-) as a tracer for battery acid (H2SO4) contamination in groundwater [J]. Environmental Geology,2005,47:215-224.
    [47]储雪蕾.北京地区地表水的硫同位素组成与环境地球化学[J].第四纪研究,2000,20(1):87-97.
    [48]顾慰祖,林曾平,费光灿等.环境同位素硫在大同南寒武-奥陶系地下水资源研究中的应用[J].水科学进展,2000,11(1):14-20.
    [49]肖琼,沈立成,袁道先,等.利用δ180和δ34S示踪重庆都市圈地下热水循环过程[J].重庆大学学报,2011,34(5):87-92.
    [50]罗琼.区域旅游资源的整体性与旅游资源开发——以重庆市巴南区东温泉景区为例[J].重庆师范学院学报(自然科学版),2002,19(3):63-67.
    [51]胡志毅.重庆温泉旅游资源及其开发策略探讨[J].西华师范大学学报(自然科学版),2005,26(3):317-320.
    [52]宋林琳.重庆温泉旅游开发的SWOT分析及对策[J].重庆科技学院学报(社会科学版),2008,(7):78-79.
    [53]罗祥康.重庆市地下热水开发利用条件的初步研究[J].四川地质学报,1987,7(1):58-65.
    [54]罗云菊,刘东燕,刘新荣.重庆南温泉背斜地下热水系统的探讨[J].重庆大学学报(自然科学版),2006,29(3):131-133.
    [55]罗云菊,刘东燕,许模.重庆地下热水径流特征研究[J].地球与环境,2006,34(1):49-54.
    [56]罗云菊,刘东燕,刘新荣.重庆打造“温泉之都”的可行性分析[J].重庆大学学报(自然科学版),2007,30(1):147-151.
    [57]李东升,刘东升.重庆地热水资源热储构造与径流补给[J].河海大学学报(自然科学版),2011,39(4):372-376.
    [58]肖琼,沈立成,陈展图.水温突降-缓升型的响应机理之冷水下渗学说的研究——以重庆北温 泉水Fe3+、Mn2+对汶川地震的响应为例[J].中国地质,2009,36(6):1406-1412.
    [59]肖琼,沈立成,袁道先,等.重庆北温泉水化学特征对汶川8.0级地震的响应[J].中国岩溶,2009,28(4):385-390.
    [60]胡克定.重庆市北温泉危岩带特征与防治对策[J].中国地质灾害与防治学报,1995,6(3):57-62.
    [61]柴蕊.天津市周庄地热田地下热水的水化学和钙化研究[D].2006:27-28.
    [62]郎赟超.喀斯特地下水文系统物质循环的地球化学特征[D].2005:71-83.
    [63]林耀庭,熊淑君.四川盆地海相三叠系地下水驱动条件及水资源分布的研究[J].化工矿产地质,1998,20(3):214-219.
    [64]Marfia, A. M., Krishnamurthy, R.V.,Atekwana, E.A., et al. Isotopic and geochemical evolution of ground and surface waters in a karst dominated geological setting:a case study from Belize, Central America[J]. Applied Geochemistry,2004,19(6):937-946.
    [65]朱创业,武文慧.华蓥山锶成矿带稳定同位素特征及成矿机理探讨[J].地球化学,1999,28(2):197-201.
    [66]王莹,周训,于湲,等.应用地热温标估算地下热储温度[J].现代地质,2007,21(4):605-612.
    [67]郑西来,刘鸿俊.地热温标中的水-岩平衡状态研究[J].西安地质学院学报,1996,18(1):74-79.
    [68]Parkhurst, D.L., Appelo, C.A.J. User Guide to PHREEQC (Version 2)-A Computer Program for Speciation, Batch-reaction, One-dimensional Transport, and Inverse Geochemical Calculations[R]. US Geol. Surv. Water-Resour. Invest. Rep.99-4259,1999,196-203.
    [69]北京大学地质学系地热研究室.地热资源勘探译文集[M].北京:地质出版社,1980.
    [70]王恒纯.同位素水文地质学[M].北京:地质出版社,1991.
    [71]李廷勇,李红春,沈川洲,等.重庆2006-2008年大气降水δD和δ180特征初步分析[J].水科学进展,2010,21(6):757-764.
    [72]储雪蕾.北京地区地表水的硫同位素组成与环境地球化学[J].第四纪研究,2000,20(1):87-97.
    [73]林耀庭,高立民,宋鹤彬.四川盆地海相三叠系硫同位素组成及其地质意义[J].地质地球化学,1998,26(4):43-49.
    [74]中国科学院贵阳地球化学研究所同位素地质研究室(译).锶同位素地质学[M].北京:科学出版社,1975.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700