钇稳定氧化锆的制备及电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钇稳定氧化锆(YSZ)具有氧离子电导率高及在工作环境下化学稳定性好等特点,在固体氧化物燃料电池(SOFC)中得到广泛应用。粒度分布窄的超细YSZ粉体有助于降低陶瓷的烧成温度,改善陶瓷的显微结构,从而提高陶瓷的电性能。
     本研究以氯化氧锆和氯化钇为原料,碳酸氢铵为沉淀剂,制备含锆、钇的复合沉淀,并经共沸蒸馏脱水和煅烧,得到了钇稳定氧化锆纳米粉体;将所得粉体球磨、成形和等静压处理后烧结制得钇稳定氧化锆陶瓷。运用TG/DSC、TEM、BET、XRD等实验手段对沉淀前驱体、共沸后粉体和煅烧所得YSZ粉体进行了相关表征,并运用SEM和交流阻抗谱等手段研究了陶瓷烧结体的显微结构和电性能。结果表明:
     1)实验所得前驱沉淀中锆和钇的物质量的比为5.49。
     2)共沸蒸馏不但可以有效地脱除沉淀中的水份,减轻颗粒间的团聚,而且还可以降低结晶转化温度。
     3)前驱粉体经800℃煅烧2h可得粒度分布较窄、粒径为20nm左右的球形立方相氧化锆粉体,粉体的比表面积为46.73m~2/g。
     4)在1350℃烧结2h后,烧结体的气孔率急剧减少,烧结体的相对密度达到99.3%,晶粒大小为300nm左右;经1500℃烧结2h,烧结体的相对密度达到最大值99.9%。
     5)烧结体的晶粒电导率随着烧结温度的升高变化不大,晶界电导率随着烧结温度的升高而增加较大;烧结体的总电导率随烧结温度的升高先增加后降低,经1250℃、1300℃、1350℃、1500℃和1550℃烧结所得烧结体在1000℃时的电导率分别为0.157 S/cm、0.173S/cm、0.191 S/cm、0.213 S/cm和0.205S/cm。
     6)烧结体的晶粒和晶界电导活化能及总电导活化能的值在0.7—1.0ev的范围内变化。计算得到YSZ陶瓷(1350℃烧结)的晶界厚度为2.24nm,并导出真实晶界电导率s_(gbt)与表观晶界电导率s_(gb)的关系:s_(gbt)=0.0075s_(gb)。
Yttria-stabilized zirconia (YSZ) is widely used as the solid electrolyte in solid oxide fuel cell (SOFC) because of its high oxygen conductivity and good chemical stability under the condition of the application. The density ceramic with good microstructure can be obtained at lower temperature using ultrafine powders with a narrow size distribution, and it may have the good electrical properties.
     The precipitate containing zirconium and yttrium was prepared using ZrOCl_2 and YCl_3 as raw materials and NH_4HCO_3 as the precipitant. YSZ nanopowder could be obtained by calcining the powder after dealing the precipitate with azeotropic distillation process, and the YSZ ceramics were prepared by sintering the green body obtained after ball milling and uniaxially pressing followed by the isostatically pressing. The precipitate, the powder after azeotropic distillation and the YSZ powder were characterized via TG/DSC、TEM、BET、XRD and some other experiment methods, and the microstructure and electrical property of the ceramic were studied using SEM, EIS and other methods. The results show:
     1) The molar ratio of Zr and Y in the precipitate is 5.49.
     2) The azeotropic distillation process can dehydrate effectively, alleviate the aggregation, and reduce the transformation temperature from amorphous zirconia to crystallized zirconia.
     3) The powders prepared by calcining the precursor after azeotropic distillation process at 800°C for 2 h are less-agglomerated cubic zirconia powders with a narrow size distribution, and the grain size and the specific area of the powders are~20nm and 46.73m~2/g, respectively.
     4) After being sintered at 1350°C for 2 h, the fraction of porosity in the sintered body decreases rapidly, and ceramic obtained at 1350°C has the relative density of 99.3% and the grain size of about 300nm. The relative density of the ceramic sintered at 1500°C for 2h is 99.9%,which reaches up to the maximum.
     5) The grain boundary conductivity of the ceramic grows up with the rising of the temperature, while the grain conductivity almost has not changes with the altering of temperature. The total conductivities at 1000°C of the ceramics sintered at 1250°C, 1300°C, 1350°C, 1500°C and 1550°C are 0.157 S/cm, 0.173S/cm, 0.191 S/cm, 0.213 S/cm and 0.205S/cm, respectively.
     6) The activation energies of grain boundary conductivity, grain conductivity and total conductivity change in the rang from 0.7ev to 1.0ev. The relationship between the real grain boundary conductivity (s_(gbt)) and the apparent grain boundary conductivity (s_(gb)) can be expressed as s_(gbt)—0.0075s_(gb), which is conducted from the calculated thickness of the grain boundary(2.24nm).
引文
1.豆斌朝,林振汉,吴亮等.氧化锆固体电解质的掺杂性能和应用[J].稀有金属快报,2004,23(6):18-20
    2.王常珍编著.固体电解质和化学传感器.北京:冶金工业出版社,2000
    3.韩敏芳,彭苏萍著.固体氧化物燃料电池材料及制备.北京:科学出版社,2004
    4.李英,龚江宏,唐子龙等.ZrO_2基固体电解质研究进展[J].陶瓷学报,1997,18(4):223-227
    5.关振铎等著.无机材料物理性能[M].北京:清华大学出版社,1992
    6. T.H.Etsell, S.N.Flengas. The electrical properties of solid oxide electrolytes[J]. Chem. Rev., 1970,70(3):339-376
    7. Zacate M O, Minervini L, Bradfield D J, et al. Defect cluster formation in M_2O_3-doped cubic ZrO_2[J]. Solid State Ionics, 2000, 128: 243-254
    8.金格瑞等编(清华大学无机非金属材料教研组译).陶瓷导论[M].北京:中国建筑工业出版社,1983
    9. Rhodes W H,Cater R E. Cationic self-diffusion in calcia-stabilized zirconia[J]. J Am Ceram Soc. 1966, 49(5): 244—249
    10.苏勉曾著.固体化学导论[M].北京:北京大学出版社,1987
    11. Philippe Knauth, Harry L Tuller. Solid State Ionics: Roots, Status and Future Prospects[J]. J Am Ceram Soc, 2002, 85(7): 1654-1680
    12. Strickler D W, Carlson W G. Ionic Conductivity of Cubic Solid Solutions in the System CaO-Y_2O_3-ZrO_2[J]. J Am Ceram Soc, 1964, 47: 122-127
    13. A. Rizea, D Chirlesan, G. Petot-Evas, et al. The influence of alumina on the microstructure and grain boundary conductivity of yttria-doped zirconia. Solid State Ionics, 2002, 146: 341-353
    14. X.J. Chen, K.A. Khor, Chan S H, et al. Influence of microstructure on the ionic conductivity of yttfia-stabilized zirconia. Materials Scince and Engineering A, 2002, 335: 246-252
    15. J. Luo, Ball R J, Stevens R. Gadolinia doped ceria yttria stabilized zirconia electrolytes for solid oxide fuel cell application. Mater. Sci., 2004, 39: 235-240
    16.江涛,魏群,杨金平等.汽车氧传感器ZrO_2基电解质材料的研究进展[J].电子元件与材料,2006,125(9):1-4
    17.王连红.ZrO_2氧传感器的发展与应用.山东陶瓷,2004,27(2):15-18
    18.石敏,刘宁.ZrO_2基固体电解质氧传感器的研究现状及发展趋势.合肥工业大学学报(自然科学版),2003,26(3):388-393
    19. Gibson R W, Kumar R V, Fray D J. Novel sensors for monitoring high oxygen concentrations[J]. Solid State Ionics, 1999, 121: 43-50
    20.李瑛,王林山著.燃料电池[M].北京:冶金工业出版社,2000
    21. Damberger T A. Fuel cells for hospital[J]. J Power Sources, 1998, 71: 45—50
    22.吕振刚,郭瑞松,阮文彪等.氧化锆基固体电解质材料的掺杂研究[J].兵器材料科学与工程,2005,28(1):62—65
    23. R. Hansch, D. Lavergnat, Norber H M et al. Nanocrystallized yttria-stabilized zirconia for solid oxide fuel cell applications[J]. Adv. Eng. Mater. 2005, 7(3): 142-144
    24. Luo M, Lu G, Zheng X. Redox behavior of Ce_xZr_(1-x)O_2 mix prepared by the Sol-Gel method[J]. J Mater Sci Let, 1988, 17: 553-558
    25.刘传芳,陈家镛.用反胶团法制备稳定ZrO_2超细粉的研究[J].无机材料学报,1997,12(5):749—753
    26. Sharana S C, Gokhale N M, Dayal R, et al. Synthesis, microstructure and mechanical properties of ceria stabilized tetragonal zirconia prepared by spraying drying technique[J]. Bull Mater Sci, 2002, 25(1): 15-20
    27. Jiang Y, Bhide S V, Virkar A V. Synthesis ofnanosize yttria-stabilized zirconia by a molecular decomposition process[J]. J. Solid State Chemistry, 2001, 157: 149-159
    28.黄传勇,唐子龙,张中太.纳米级二氧化锆粉体合成新方法[J].硅酸盐学报,2000,28(1):11-14
    29.黄传勇,唐子龙,张中太等.氧化锆超细粉的绿色合成及粉末性能表征[J].材料工程,2000(8):21-24
    30. Srdic V V, Winterer M, Hahn H. Sintering behavior of nanocrystalline zirconia prepared by chemical vapor synthesis[J]. J Am Ceram Soc, 2000, 83(4): 729-736
    31.戴遐明,邵义,李庆丰.等离子喷雾热解制备二氧化锆超细粉末的研究[J].硅酸盐学报,1995.23(1):39-43
    32.万吉高,王开军,陈家林.低温处理制备无团聚氧化锆超细粉末的研究.稀有金属材料与工程,2000,29(5):347-349
    33 韩敏芳,李伯涛,彭苏萍.Y_2O_3稳定ZrO_2纳米细粉性能研究[J].云南大学学报,2002,24(1A):29-32
    34.韩敏芳,彭苏萍,杨翠柏等.氧化锆纳米粉体烧结性能研究[J].材料科学与工艺,2004,12(1):29—32
    35. Yawen Zhang, Gang Xu, Chunhua Yan, et al. Nanocrystalline rare earth stabilized zirconia: solvothermal synthesis via heterogeneous nucleation-growth mechanism, and electrical properties[J]. J. Mater. Chem, 2002,12:970-977
    36. Xin. M. Wang, Gordon Lorimer, Ping. Xiao. Solvothermal synthesis and processing of yttria-stabilized zirconia nanopowder[J]. J. Am. Ceram. Soc.2005, 88 (4):809-816
    37.余桂郁,杨南如.溶胶凝胶法简介—溶胶凝胶法的基本原理与过程[J].硅酸盐通报,1992.
    38. Christopher N. Chervin, Brady J Clapsaddle,,Hsiang Wei Chiu. Aerogel synthesis of yttria-stabilized zirconia by a non-alkoxide Sol-Gel route[J]. Chem. Mater. 2005, 17, 3345-3351
    39. Satyajit Shukla, Sudipta Seal, Rashmi Vij, et al. Reduced activation energy for grain growth in nanocrystalline yttria-stabilized zirconia[J]. Nano Letters, 2003, 3(3): 397-401
    40. J. Wang, Lee See Ee, S.C.Ng, et al. Reduced crystallization temperature in a microemulsion-derived zirconia precursor. Mater. Lett. 1997,30:119-124
    41.杨传芳,陈家镛.用反向胶团制备稳定ZrO_2超细粉的研究[J].无机材料学报.1997,12(5):749—754
    42.李样生,刘桂华,李永绣等.硬脂酸络合法制备ZrO_2-Y_2O_3纳米粉[J].稀土.2002,23(6):17-20
    43.刘继进,陈宗璋,何莉萍等.聚合络合法制备钙稳定氧化锆[J].硅酸盐学报.2002,30(2):251-253
    44. Yoldas B E. Zirconium oxides formed by hydrolytic condensation of alkoxides and parameters that defect their morphology[J]. J Mater Sci. 1986, 21: 1080-1086
    45.李蔚,高濂,郭景坤.醇—水溶液加热法制备纳米氧化锆粉体[J].无机材料学报,199,14(1):161-164
    46.曹化强,王弘.醇盐受控水解法制备YSZ超细粉及其表征[J].中国科学技术大学学报,1997,27(4):436-439
    47.李蔚,王浚,高濂.分散剂在醇—水溶液加热法制备球形粉体过程中的作用[J].硅酸盐学报.2000,28(6):582-584
    48.李世普著.特种陶瓷工艺学.武汉:武汉工业大学出版社,1995
    49.刘维良,喻佑华著.先进陶瓷工艺学,武汉:武汉理工大学出版社,2004
    1. Gong Yi Guo, Yu Li Chen, Wei Jiang Ying. Thermal, spectroscopic and X-ray diffractional analyses of zirconium Hydroxides precipitated at low pH values[J]. Materials Chemistry and Physics, 2004, 84: 308-314
    2.申泮文,车云霞等著.钛分族,钒分族,铬分族.北京:科学出版社,1998
    3.黄春辉著.稀土配位化学[M].北京:科学出版社,1997:38-41
    4.贺伦燕,李南萍.用碳酸氢铵沉淀制备晶状碳酸钇的机理研究[J].稀有金属与硬质合金,2002,30(1):1-5
    5. Sato T, Endo T, Shimada M. Effect of tetravalent dopants on Raman spectra of tetragonal zirconia. J Am Ceram Soc. 1989, 72(5): 761-764
    6.简家文.钇稳定ZrO2固体电解质氧传感器的研究.电子科技大学博士论文,2004
    7.韩敏芳,彭苏萍著.固体氧化物燃料电池材料及制备[M].北京:科学出版社,2004:32-33.
    1.李世普编.特种陶瓷工艺学[M].武汉:武汉工业大学出版社,1995:61-81
    2. Yawen Zhang, Ang Li, Zhengguang Yan, et al. (ZrO_2)_(0.85)(REO_(1.5))_(0.15)(RE=Sc, Y) solid solutions prepared via three Pechini-type gel routes: 2—sintering and electrical properties[J]. Journal of Solid State Chemistry, 2003, 171: 439-443
    3. X J Chen, K A Khor, S H Chan, et al. Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte[J]. Materials Science and Engineering A, 2002,335:246-252
    4.刘维良,喻佑华著.先进陶瓷工艺学[M].武汉:武汉理工大学出版社,2004:107-111
    1.韩敏芳,彭苏萍著.固体氧化物燃料电池材料及制备[M].北京:科学出版社,2004:72-75
    2.王常珍著.固体电解质和化学传感器[M].北京:冶金工业出版社,2000:33-57
    3.刘毅.交流阻抗谱方法对钇稳定氧化锆晶界电性能的研究[J].物理实验,2005,25(11):15-17
    4.高运明,郭兴敏.利用阻抗谱测定氧化锆试样的电导率[J].武汉科技大学学报(自然科学版),2005,28(3):237-240
    5.查全性著.电极过程动力学导论[M].北京:科学出版社,2005年,第三版
    6.韩敏芳,彭苏萍,李伯涛等.YSZ电解质电性能研究[J].中国科技大学学报,2002,32:274—278
    7.潘华光,汤清华.ZrO_2-Y_2O_3(CaO)固体电解质的致密化烧结及电性能研究[J].功能材料,2000,31(2):189—190
    1.李英,龚江宏,唐子龙等.ZrO_2基固体电解质研究进展[J].陶瓷学报,1997,18(4):223-227
    2. Badwal S P S. Swain M V. J. Zirconia-yttria: electrical conductivity of some fully and partially stabilized single grains[J]. Journal of Materials Science Letters, 1985, 4(4): 487-489
    3. Guo Xin, Tang Chao Qun, Yuan Run Zhang. Grain boundary ionic conduction in zirconia-based solid electrolyte with alumina addition[J]. Journal of the European Ceramic Society, 1995, 15(1): 25-32
    4. Yuan Ji, Jiang Liu, Tianmin He, et al. Study on the properties of Al_2O_3-doped (ZrO_2)_(0.92)(Y_2O_3)_(0.08) electrolyte[J]. Solid State Ionics, 1999, 126: 277-283
    5.刘毅,劳令耳,袁望治等.纳米ZnO对纳米ZrO_2(8Y)致密特性及电导率影响研究[J].无机材料学报,2003,18(5):1147-1151
    6. Feng M, Goodenough J B. Improving stabilized zirconia with strontium gallate[J]. Journal of the American Ceramic Society, 1994, 77(7): 1954-1956
    7. Keizer K, Burggraaf A J, De With G. The effect of bismuth trioxide on the electrical and mechanical properties of zirconia-yttria ceramics[J]. Journal of Materials Science,1982, 17(4): 1095-102
    8. Shi J L, Yen T S, Schubert H. Effect of small amounts of additives on the sintering of high-purity Y-TZP[J]. Journal of Materials Science, 1997 32(5): 1341-1346
    9. Bowen C, Ramesh S, Gill C, et al. Impedance spectroscopy of CuO-doped Y-TZP ceramics[J]. Journal of Materials Science, 1998, 33(21): 5103-5110.
    10.郭新,袁润章.氧化锆晶界设计—氧化物陶瓷晶界设计探索[J].中国科学E,1996,26(1):79-85
    11. Maier J, Bunsenges B. On the conductivity of polycrystalline material[J]. Phys Chem. 1986, 90: 26-33
    12. Verkerk M J, Middelhuis B J, Burggraaf A J. Effect of grain boundaries on the conductivity of high-purity zirconium oxide-yttrium oxide ceramics[J]. Solid State Ionics. 1982, 6(2): 159-170
    13. Clarke D R. On the equilibrium thickness of intergranular glass phases in ceramic materials[J]. J Am Ceram Soc. 1987, 70(1): 15-22
    14.刘毅,劳令耳,袁望治等.ZnO掺杂的ZrO2(3Y)纳米复合相材料的中低温电导研究[J].功能材料.2003,34(3):308-310

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700