α-羟基二硫缩烯酮的合成及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
α-羰基二硫缩烯酮是一类重要的有机合成中间体。自从1910年由Kelber首次合成以来,经过近百年的发展已经成为有机合成化学的研究热点之一。官能团的多样性这一结构特点和烷硫基的空间电子效应赋予了该类化合物化学反应的多样性,既可以与亲电试剂又可以和亲核试剂发生反应。利用该中间体可以合成许多具有特殊结构的化合物,广泛地应用于有机合成和天然产物的合成中。
     α-羟基二硫缩烯酮是由α-羰基二硫缩烯酮经还原制得的,该类化合物易于制备,具有多个反应中心。从结构上看,α-羟基二硫缩烯酮属于烯丙型的醇,由于受到双烷硫基的强供电子作用,更易在α位形成稳定的碳正离子,可以与亲核体发生亲核取代等反应。此外,受到α’-位官能团及烷硫基变化的影响,α-羟基二硫缩烯酮的性质也会产生明显的变化。因此,α-羟基二硫缩烯酮的合成及其在有机合成中的应用是一个重要的研究课题。
     本课题组从事α-羰基二硫缩烯酮化学的研究已经有十几年的时间,在研究积淀的基础之上本论文利用合成设计,以α-羟基二硫缩烯酮的合成为工作基础,探索了α-羟基二硫缩烯酮发生的一系列基本反应,例如Ritter反应、碳碳键偶联反应、脱水反应和醚化反应,并以这些反应为基础,分别发展了合成多取代六元含氮、含氧杂环化合物的新方法。论文工作主要包括以下4个方面的内容:
     1.设计合成了α-乙酰基二硫缩烯酮化合物,然后经过还原反应,制备了一系列α-羟基二硫缩烯酮类化合物。
     2.研究了α-羟基二硫缩烯酮发生的一系列基本反应,包括Ritter反应;与活泼亚甲基化合物和活化烯烃的偶联反应;脱水反应和与醇脱水成醚反应等。
     3.以与活泼亚甲基化合物的偶联反应为基础,利用偶联产物--多羰基二硫缩烯酮合成了3,4-二氢-2-吡啶酮类化合物。
     4.研究了α-烯酰基二硫缩烯酮经还原一步分子内成环的反应,制得了δ-内酯类化合物。
α-Oxo ketenedithioacetals are a kind of versatile intermediates in organic synthesis. Since Kelber first synthesized in 1910,α-oxo ketene-(S,S)-acetals chemistry has become a hot spot in organic chemistry research through the development of about one hundred years. It can be used in many reactions for their functional group multiplicity and special stereoelectronic effect from the alkylthio functionalities, react not only with electrophilic reagent but also with nucleophilic reagent. It can construct many compounds with special structures and can be applied in organic synthesis and the composition of natural products.
     α-Hydroxy ketene-(S,S)-acetals, synthesized byα-oxo ketenedithioacetals which is reducted, is easier to prepare and bear much more functionalities. From the view of structure,α-hydroxy ketene-(S,S)-acetals belong to allylic alcohol. Because of receiving the affection of strong supplies electron from the alkylthio functionalities,α-hydroxy ketene-(S,S)-acetals form stable carbon cation easily atαposition and carry on nucleophilic substitution reaction with nucleophilic reagent. In addition, received the affection of changes from functionalities atα′position and alkylthio functionalities, the nature ofα-hydroxy ketene-(S,S)-acetals also change remarkably. Therefore, studies on the synthesis and the applications ofα-hydroxy ketene-(S,S)-acetals should be a valuable research project.
     Based on the research achievements of our group inα-oxo ketene-(S,S)-acetal chemistry in the past several years, my thesis under synthetic design, taking the synthesis of newα-hydroxy ketene-(S,S)-acetals as foundation, explores a series of basic reactions whichα-hydroxy ketene-(S,S)-acetals can react, such as Ritter reaction、C-C bond-forming reaction、Dehydration reaction and Etherification reaction, and based on these basic reactions, we also carried out on the new synthetic methodologies for oxygen-, nitrogen-containing heterocycles. The contents in this thesis mainly include four aspects:
     1. Design and synthesisα-Oxo ketenedithioacetals, prepared a series ofα-hydroxy ketene-(S,S)-acetals by reduction.
     2. Study a series of basic reactions whichα-hydroxy ketene-(S,S)-acetals can react, including Ritter reaction with acetonitrile、C-C bond-forming reaction with active methylene compounds and activated alkenes、Dehydration reaction and Etherification reaction with alcohol.
     3. Base on C-C bond-forming reaction with active methylene compounds, used coupling products—polycarbonyl compounds to synthesis 3,4-dihydropyridin-2(1H)-ones.
     4. Study one-step intramolecular ring-closure reaction ofα-alkenoyl ketene-(S,S)-acetals by reduction and synthesis type ofδ-lactones compounds.
引文
1. Kelber, C.. The effect of sulphuric carbonic acid and atzaki on acetophenone[J]. Berichte Der Deutschen Chemischen Gesellschaft. 1910, 43: 1252-1259.
    2. Dieter, R. K.. Alpha-Oxo Ketene Dithioacetals and Related Compounds-Versatile 3-Carbon Synthons[J]. Tetrahedron. 1986, 42 (12): 3029-3096.
    3. Junjappa, H., Ila, H., Asokan, C. V.. α-Oxoketene-S,S-,N,S-and N,N-acetals: Versatile intermediates in organic synthesis[J]. Tetrahedron. 1990, 46 (16): 5423-5506.
    4. Kolb, M.. Ketene Dithioacetals in Organic Synthesis: Recent Developments[J]. Synthesis. 1990 (3), 171-190.
    5. Yakoyama, M., Imamoto, T.. Organic reactions ofcarun disulfide. Synthesis. 1984, 797.
    6. 刘群,杨智蕴. α?羰基二硫代缩醛化学的进展.有机化学,1992,12:225.
    7. (a) Tse-Lok Ho 著,刘培文,丁革非,操时杰译,有机化学中的软硬酸碱原理,科学出版社,1988 年. (b) Rao, C. S., Chakrasali, R. T., Lla, H., Junjappa, H.. Regio and chemoselective conjujate 1,4-reduction of a-oxo ketene dithioacetals with sodium borohydride and sodium cyanoborohydride. Tedrahedron. 1990, 46, 2195.
    8. W. -D. Rudorf, A. Schierhorn and M. Augustin.. Reaktionen von o-halogenacetophenonen mit schwefelkohlenstoff und phenylisothiocyanat. Tetrahedron. 1979, 35 (4): 551-556.
    9. Chandrasekharam, M., Bhat, L., Ila, H. and Junjappa, H.. Reformatsky reaction on thiocarbonyl compounds: New C---C bond forming reaction . Tetrahedron Letters. 1993, 34 (40): 6439-6442.
    10. Gompper, R., Kunz, R.. Keten-Dichloride und N-Dichlormethylen-Sulfonamide[J]. Chem Ber. 1966, 99(9): 2900-2904.
    11. Ouyang, Y., Dong, D., Yu, H. F. et al. A clean, facile and practical synthesis of alpha-oxoketene S,S-acetals in water[J]. Adv Syn & Cat. 2006, 348 (1-2): 206-210.
    12. Saquet, M., Thuillier, A., Bull. Soc. Chim. Fr., 1966, 3969.
    13. Trost, B. M.; Schroeder, G. M. Palladium-Catalyzed Asymmetric Alkylation of Ketone Enolates. J. Am. Chem. Soc. (Communication); 1999; 121(28); 6759-6760.
    14. Nair, S. K., Jose, A. M., Asokan, C. V.. Reactions of α-Hydroxyketene Dithioacetals with Lawesson’s Reagent: An Efficient Method for the Synthesis of α, β-Unsaturated Dithioesters. Synthesis. 2005, 8, 1261–1264.x.x.205
    15. Myrboh, B., Singh, L. W., Ila, H., Junjappa, H.. Partial Reductive Demethylthiolation of α-Ketoketene S,S-Acetals with Sodium Borohydride/Nickel Chloride: A New, General Method for 2-Methylthio-1-alkenyl Ketones. Synthesis, 1982, 4, 307.
    16. Gammill, R. B., Gold, P. M., Mizak, S. A.. α-Ketene dithioacetal chemistry. 1. Alternate modes of lithium aluminum hydride reduction. Regio-and stereospecific vs. reduction-alkylation-fragmentation. J. Am. Soc. Chem., 1980, 102, 3095.
    17. Gammill, R. B., Bell, L. T., Nash, S. A... .alpha.-Oxo ketene dithioacetal chemistry. 3. A regio- and stereospecific lithium aluminum hydride reduction resulting in the formation ofstereochemically defined .beta.-alkyl .gamma.-bis(methylthio) alcohols. J. Org. Chem., 1984, 49, 3039.
    18. Asokan, C. V., Ila, H., Junjappa, H.. Methylthio-2,4-dimethyl-5-aryl or styryl- 1,4-pentadien-3-ols to cyclopentenone derivatives. Tetrahedron Letter. 1985, 26, 1087-1090.
    19. Datta, A., Ila, H., Junjappa, H.. Polarized ketene dithioacetals 63 : Stereoselective synthesis of α-ylidene-γ-butyrolactones. Tedrahedron, 1987, 43, 5367.
    20. Datta, A., Bhattacharjee, S., Ila, H., Junjappa, H.. Polarized Ketene Dithioacetals; 71.1 Synthesis of 2,5-Substituted 3-Bis(methylthio)methylenetetrahydrofurans. Synthesis, 1988, 9, 725.
    21. Yadav. K. M., Suresh. J. R., Patro, B., Ila, H., Junjappa, H.. Stepwise controlled reduction of α-oxoketene dithioacetals with Zn/ZnCl2-TMEDA in ethanol. Tetrahedron, 1996, 52, 4679.
    22. John, M. M., Siephen, R. S.. Routes to building blocks for heterocyclic synthesis by reduction of ketene dithioacetals. Tetrahedron. 1997, 53, 17151.
    23. 刘群,朱再明,胡玉兰,张姝佳。α-羰基烯酮环二硫代缩醛化学(XIII)—β,β-1,3-亚丙二硫基-α,β-不饱和酮在镁一甲醇中的还原反应,东北师大学报,1994, 1, 115.
    24. Gammill, R. B., Sobieray, D. M., Gold, P. M.. α-Oxoketene dithioacetalchemistry. 2. Conjugate reductions with electrophilic reducing agents. J. Org. Chem., 1981, 46, 3555.
    25. Okauchi, T., Tanaka, T., Minami, T.. Lewis Acid-Promoted Deoxygenative Di[β,β-bis(ethylthio)]vinylation of Aldehydes with Trimethylsilylketene Bis(ethylthio)acetal. J. Org. Chem., (Article), 2001, 66(11), 3924-3929.
    26. Trost, B. M., Stanton, J. L.. New synthetic methods. 1,3-Alkylative carbonyl transposition. J. Am. Chem. Soc., 1975, 97, 4018-4025.
    27. Dieter, R. K., Jenkitkasemwong, Y.. α-Oxoketene dithioacetals: versatile substrates for 1,3-cabonyl transposition. Tetrahedron Letters, 1982, 23, 3747—3750.
    28. Dieter, R. K., Lin, Y. J., Dieter, J. W.. 1,3-Carbonyl transposition methodology employing α-oxoketene dithioacetals: application in the synthesis of phenols and (+)-myodesmone. J. Org. Chem., 1984, 49, 3183.
    29. Appapao, S., Datta, A., Ila, H., Junjappa, H.. Reformatsky reaction on α-oxoketene S,S-acetals: synthesis of novel polarized vinylketene S,S-acetals anddimethyl 2-aryl(methyl)-1,3-dicarboxylates. Synthesis, 1985, 169-171.
    30. (a) Myrboh, B., Asokan, C. V., Ila, H., Junjappa, H.. A novel general method for the sythesis of 2-methyl-substituted and 2-unsubstituted methyl 5-aryl-2,4-pentadienoates. Synthesis, 1984, 50. (b) Asokan, C. V., Ila, H., Junjappa, H.. A facile and convenient synthesis of methyl7-aryl-2,4.6-heptatrienoates. Synthesis, 1985, 163.
    31. Asokan, C. V., Ila, H., Junjappa, H.. (Methylthio)-2,4-dimethyl-5-aryl or styryl-l,4-pentadien-3-ols to cyclopentenone derivatives. Tetrahedron Letters, 1985, 26, 1087.
    32. Patra, P. K., Patta, B., Junjappa, H.. Tandem carbocationic cyclization of bis(methythio)methylene arylcyclopropyl ketones: a promising sequence for assembling functionalized cyclopent[a] indene framework. Tetrahedron Letters, 1993, 34, 3951-3954.
    33. Asokan, C. V., Ila, H., Junjappa, H.. Synthesis of methyl-5-aryl -3-oxo-4-pentenenoates and novel substituted cyclopentenones. Synthesis, 1988, 281-283.
    34. (a) Bamfield, P., Gordon, P. F.. Chem. Soc. Rev. 1984, 13, 44. (b) Singh, G., Ila, H., Junjappa,H.. Cationic benzoannelation of active methyleneketones via oxoketendithioacetals. Tetrahedron Letters, 1984, 25, 5059-5098.
    35. Mohanta, P. K., Peruncheralathan, S., Ila, H., Junjappa, H.. Domino carbocationic rearrangement of α-[bis(methylthio)-methylene]alhyl-2-aryl-cyclopropyl carbinols: facile access to 1-arylindanes. J. Org. Chem., 2001, 66, 1503-1508.
    36. Gupta, A. K., Ila, H., Junjappa, H.. Aromatic annelation via α-oxoketene dithioacetals: synthesis of thioresorcinol dimethyl ethers[J]. Tetrahedron Lett. 1987, 28 (13): 1459-1462.
    37. Gupta, A. K., Ila, H., Junjappa, H.. Cycloaromatization of α-oxoketene dithioacetals with lithioacetonitrile: A facile route for 4-substituted and 4,5-annelated pyridines[J]. Tetrahedron Lett, 1988, 29 (50): 6633 -6636.
    38. Mehta, B. K., Nandi, S., Ila, H., Junjappa, H.. Highly Regioselective 1,2-Addition of Alkoxybenzyl Grignard Reagents to α-Oxoketene Dithioacetals: A Facile Regiocontrolled Synthesis via Aromatic Annelation, of Alkoxynaphthalenes and Their Condensed Analogs. Tetrahedron, 1999, 55, 12843-12852.
    39. Balu, M. P., Singh, G., Ila, H., Junjappa, H.. Cycloaromatization of α-oxoketendithioacetals with benzylmagnesium chloride: A novel naphthalene annelation reaction[J]. Tetrahedron Lett, 1986, 27 (1): 117-120.
    40. Yadav, K. M., Mohanta, P. K., Ila, H., Junjappa, H.. Regioselective synthesis of substituted 1-methyl-and 2-methylnaphthalenes[J]. Tetrahedron, 1996, 52 (44): 14049-14056.
    41. Rao, C. S., Balu, M. P., Ila, H., Junjappa, H.. Cycloaromatization of α-oxoketene dithioacetals and β-oxodithioacetals with benzyl-,1-(naphthylmethyl) and 2-(naphthylmethyl)magnesium halides: Synthesis of condensed polynuclear aromatic hydrocarbons[J]. Tetrahedron, 1991, 47 (20-21): 3499-3510.
    42. Mehta, B. K., Nandi, S., Ila, H., Junjappa, H.. Highly Regioselective 1,2-Addition of Alkoxybenzyl Grignard Reagents to α-Oxoketene Dithioacetals: A Facile Regiocontrolled Synthesis of Alkoxynaphthalenes and Their Condensed Analogs via Aromatic Annelation. Tetrahedron, 1999, 55, 12843-12852.
    43. (a) Balu, M. P., Ila, H., Junjappa, H.. Cycloaromatization of α-oxoketene dithioacetals with 2- picolyllithium: A facile quinolizinium cation annelation[J]. Tetrahedron Lett, 1987, 28(26): 3023-3026. (b) Datta, A., Ila, H., Junjappa, H.. Novel cycloaromatization in reformatsky reaction on α-oxoketene dithioacetals: A regioselective synthesis of substituted ethyl 2-hydroxy-6- methylthiobenzoates [J]. Tetrahedron Lett, 1988, 29(4): 497-500.
    44. Sukumar, N., Syam, K., IIa, H., Junjappa, H.. Domino carbocationic cyclization of functionalized cyclopropyl ketones: facile one-pot access to peri-and angwlarly fused polycyclic aromatic and heteroaromatic frameworks. J. Org. Chem. 2002, 67, 4916-4923.
    45. Suresh. J. R., Barun, D., Ila, H., Junjappa, H.. α-oxoketene dithioacetals mediated benzoammelation of aromatic heterocycles: an efficient regio controlled synthesis of highly substituted and polycyclic benzo[b]thiophenes. Tetrahedron, 2000, 56, 8153-8160.
    46. Barun, 0., Nandi, S., Panda, K., Ila, H., Junjappa, H.. [4+2]Cycloaromatization of 4-bis(methylthio)-3-buten-2-one with active methylene ketones: a simple and facile phenol annulation. J. Org. Chem., 2002, 67, 5398-5401.
    47. Xihe Bi, Dewen Dong, Qun Liu, Wei Pan, Lei Zhao and Bing Li. [5 + 1] Annulation: ASynthetic Strategy for Highly Substituted Phenols and Cyclohexenones. J. Am. Chem. Soc., 2005, 127, 4578-4579.
    48. Ila, H., Junjappa, H., Mohanta, P. K.. In Progress in Heterocyclic Chemistry (13), Gribble, G. H., Gilchrist, L. T., Eds, Pergamon Press: Oxford, 2001, Chap 1, 1–24.
    49. Rudorf, W. D., Augustin, M. Acylketene S,S-Acetals and Acylketene S,N-Acetals as Buildingsets for Heterocycles-5-Cyanopyrimidines[J]. J. Prakt. Chem., 1978, 320(4): 585-599.
    50. Xihe Bi, Qun Liu, Shaoguang Sun, Jun Liu, Wei Pan, Lei Zhao, Dewen Dong. A Facile and Efficient Synthesis of 3,5-Disubstituted Tetronic Acids in Aqueous Media Involving Acid-Catalyzed Intramolecular Oxa-Pyridylethylation. Synlett. 2005, 49–54.
    51. Compper, R., Topfl, W.. Ketenederivate.2. Reaktionen Substituier Ketenmercaptale[J]. Chem Ber, 1962, 95(12): 2871.
    52. (a) Chauhan, M. S., Junjappa, H.. The Use of α-Ketoketene S,S-Diacetals for a Novel Pyrimidine Synthesis[J]. Synthesis, 1974 (12), 880-882. (b) Singh, L. W., Gupta, A. K., Ila, H., Junjappa, H.. A Facile Synthesis of 2-Amino-4-alkoxy-6-styryl and 2-Amino-4-alkoxy-6-(4-aryl-1,3-butadienyl)-pyrimi-dines by Direct Cyclocondensation[J]. Synthesis, 1984 (6), 516-518.
    53. Dewen, Dong., Xihe, Bi., Qun, Liu. and Fangdi, Cong.. [5C + 1N] Annulation: a novel synthetic strategy for functionalized 2,3-dihydro-4-pyridones. Chem. Commun. 2005, 3580–3582.
    54. Xihe Bi, Dewen Dong,* Yan Li, Qun Liu* and Qian Zhang. [5C + 1S] Annulation: A Facile and Efficient Synthetic Route toward Functionalized 2,3-Dihydrothiopyran-4 -ones. J. Org. Chem. 2005, 70, 10886-10889.
    55. Singh, G., Junjappa, H., Ila, H.. Synth. Comm., 1985, 165.
    56. Yanbing, Yin., Mang, Wang., Qun, Liu., Janglei, Hu., Shaoguang, Sun., Jing, Kang.. A C?C bond formation reaction at the α-carbon atom of α-oxoketene dithioacetals via the Baylis?Hillman type reaction. Tetrahedron Lett. 2005, 46, 4399–4402.
    57. Anabha, E. R., Asokan, C. V.. A Convenient Preparation of 2-Aroyl-3,3-bis(alkylsulfanyl)acrylaldehydes and Their Application in the Synthesis of 5-Aroyl-2-oxo-1,2-dihydro-2-pyridinecarbonitriles[J]. Synthesis, 2006 (1), 151–155.
    58. (a) Liu, Q., Che, G., Yu, H., et al. The First Nonthiolic, Odorless 1,3-Propanedithiol Equivalent and Its Application in Thioacetalization[J]. J. Org. Chem., 2003, 68(23): 9148-9150. (b) Yu, H., Liu, Q., Yin, Y., et al. α,α-Diacetyl Cyclic Ketene Dithioacetals: Odorless and Efficient Dithiol Equivalents in Thioacetalization Reactions[J]. Synlett, 2004 (6), 999-1002. (c) Jun Liu, Qun Liu, Haifeng Yu, Yan Ouyang, and Dewen Dong. Odorless Thioacetalization Reagent 2-[1,3] Dithian-2-Ylidene-3-Oxo-Butanamide and Its Chemoselectivity. Synth. Comm., 2004, 4545-4556.
    59. Dong, D., Ouyang, Y., Yu, H., et al. Chemoselective thioacetalization in water: 3-(1,3-dithian-2-ylidene) pentane-2,4-dione as an odorless, efficient, and practical thioacetalization reagent. J. Org. Chem., 2005, 70 (11): 4535-4537.
    60. Dong, D., Yu, H., Ouyang, Y., Liu, Q.. et. al. Thia-Michael Addition Reactions Using 2-[Bis(alkylthio)methylene]-3-oxo-N-o-tolylbutanamides as Odorless and Efficient Thiol Equivalents[J]. Synlett, 2006 (2): 283-287.
    61. Liu, B.; Duan, S.; Sutterer, A. C.; Moeller, K. D.. Oxidation cyclization based on reversing the polarity of enol ethers and ketene dithioacetals: construction of a tetrahydrofuran ring and application to the synthesis of (+)-nemorensic acid. J. Am. Chem. Soc. 2002, 124, 10101-10111.
    62. Joseph, B. K., Verghese, B., Sudarsanakumar, C., Deepa, S., Viswan, D., Chanelran, P., Asokan, C. V.. Highly facile and stereoselective intramolecula [2+2] photocycloadditions of bis(alkenoyl) ketendithioacetals. Chem. Comm. 2002, 736-737.
    63. (a) Williamson, A. W. J. Chem. Soc. 1852, 4, 229. (b) Dermer, O. C.. Metallic Salts of Alcohols and Alcohol Analogs. Chem. Rev. 1934, 14, 385-430. (c) Silva, A. L.;Quiroz, B.; Maldonado, L. A. Unexpected aldol condensations under Williamson arylmethyl ether synthesis conditions. Tetrahedron Lett. 1998, 39, 2055. (d) Peng, Y.; Song, G. Green Chem. 2002, 4, 349.
    64. (a) Ritter, J. J.; Minieri, P. P.. A New Reaction of Nitriles. I. Amides from Alkenes and Mononitriles1. J. Am. Chem. Soc. 1948, 70, 4045-4048. (b) Le Goanic, D.; Lallemand, M.-C.; Tillequin, F.; Martens, T. A new and efficient electrochemical ring opening of 7-oxanorbornene systems via a modified Ritter reaction: direct approach to bicyclic valienamine analogues. Tetrahedron Lett. 2001, 42, 5175. (c) Nair, V.; Rajan, R.; Rath, N. P.. A CAN-Induced Cyclodimerization-Ritter Trapping Strategy for the One-Pot Synthesis of 1-Amino-4-aryltetralins from Styrenes. Org. Lett. 2002, 4, 1575-1577. (d) Reddy, K. L.. An efficient method for the conversion of aromatic and aliphatic nitriles to the corresponding N-tert-butyl amides: a modified Ritter reaction. Tetrahedron Lett. 2003, 44, 1453-1455.
    65. Kendall, J. D.; Edwards, H. D. U. S. 2493071, 1950; Chem. Abstr., 1950, 44,7347.
    66. 霍宁 E C 主编,南京大学有机化学教研室译,有机合成第 3 集,北京,科学出版社,1981,174。
    67. (a) March, J. Advanced Organic Chemistry, 4th ed.; Wiley: New York, 1992. (b) Scolastico, C.; Nicotra, F. Current Trends in Organic Synthesis, Eds; Plenum: New York, 1999.
    68. (a) Trost, B. M. Science, 1991, 254, 1471. (b) Kabalka, G. W.; Yao, M.-L.; Borella, S.; Wu, Z-Z. Substitution of Benzylic Hydroxyl Groups with Vinyl Moieties Using Vinylboron Dihalides. Org. Lett. 2005, 7, 2865.
    69. George, W. K., Min-Liang, Yao, Scott, B., and Zhong-Zhi, Wu.. Substitution of Benzylic Hydroxyl Groups with Vinyl Moieties Using Vinylboron Dihalides. Org. Lett. 2005, 7, 2865-2867.
    70. Michael Rubin and Vladimir Gevorgyan.. B(C6F5)3-Catalyzed Allylation of Secondary Benzyl Acetates with Allylsilanes. Org. Lett. 2001, 3, 2705-2707.
    71. James, M. T., Zhenrong, Xu., Xun-tian, Jiang., Alexei, P. L., and Gregory, C. T.. Carbon Nucleophiles in the Mitsunobu Reaction. Mono- and Dialkylation of Bis(2,2,2-trifluoroethyl) Malonates. Org. Lett. 2002, 4, 3843-3845.
    72. Giancarlo, C., Giovanni, B. G., Massimo S. and Giovanni, P.. Dehydrative Alkylation of Alcohols with Triethyl Methanetricarboxylate under Mitsunobu Conditions. Tetrahedron, 1996, 52, 13007-13016.
    73. Gurmeet, K., Monica, K. and Sanjay, T.. Bis(fluorosulfuryl)imide: a Br?nsted Acid Catalyst for the Coupling of Allylic and Benzylic Alcohols With Allyltrimethylsilane. Tetrahedron Letters.1997, 38, 2521-2524.
    74. Xie, L.-H.; Hou, X.-Y.; Hua, Y.-R.; Tang, C.; Liu, F.; Fan, Q.-L.; Huang, W. Facile Synthesis of Complicated 9,9-Diarylfluorenes Based on BF3·Et2O-Mediated Friedel-Crafts Reaction. Org. Lett. 2006, 8, 3701-3704.
    75. Qian Zhang, Shaoguang Sun, Jianglei Hu, Qun Liu, and Jing Tan. BF3·Et2O-Catalyzed Direct Carbon-Carbon Bond Formation of α?ΕWG Ketene-(S,S)-Acetals and Alcohols and Synthesis of Unsymmetrical Biaryls. J. Org. Chem. 2007, 72, 139-143.
    76. (a) Kim, D. K.; Ryu, D. H.; Lee, J. Y.; Lee, N.; Kim, Y. W.; Kim, J. S.; Chang, K.; Im, G. J.; Kim, T. K.; Choi, W. S.. Synthesis and Biological Evaluation of Novel A-Ring Modified Hexacyclic Camptothecin Analogues. J. Med. Chem. 2001, 44, 1594-1602. (b) Dallavalle, S.; Ferrari, A.; Biasotti, B.; Merlini, L.; Penco, S.; Gallo, G.; Marzi, M.; Tinti, M. O.; Martinelli, R.; Pisano, C.; Carminati, P.; Carenini, N.; Beretta, G.; Perego, P.; De Cesare, M.; Pratesi, G.; Zunino, F.. Novel 7-Oxyiminomethyl Derivatives of Camptothecin with Potent in Vitro and in Vivo Antitumor Activity. J. Med. Chem. 2001, 44, 3264-3274.
    77. (a) Negishi, E.; Kotora, M.. Regio- and stereoselective synthesis of γ-alkylidenebutenolides and related compounds. Tetrahedron. 1997, 53, 6707-6738. (b) Collins, I. Saturated and unsaturated lactones. J. Chem. Soc., Perkin Trans. 1. 1999, 1377-1395.
    78. (a) Rao, Y. S.. Recent advances in the chemistry of unsaturated lactones. Chem. Rev. 1976, 76, 625-694. (b) Ley, S. V.; Cox, L. R.; Meek, G.. ( -Allyl)tricarbonyliron Lactone Complexes in Organic Synthesis: A Useful and Conceptually Unusual Route to Lactones and Lactams. Chem. Rev. 1996, 96, 423-442. (c) Collins, I.. Saturated and unsaturated lactones. J. Chem. Soc., PerkinTrans. 1 1998, 1869-1888.
    79. (a) Ogliarusco, M. A.; Wolfe, J. F. Synthesis of Lactones and Lactams; Patai, S.; Rappoport, Z., Eds.; Wiley: Chichester, 1993. (b) Pàmies, O.; B?ckvall, J.-E. Enzymatic Kinetic Resolution and Chemoenzymatic Dynamic Kinetic Resolution of δ-Hydroxy Esters. An Efficient Route to Chiral δ-Lactones. J. Org. Chem. 2002, 67, 1261-1265. (c) Ramachandran, P. V.; Prabhudas, B.; Chandra, J. S.; Reddy, M. V. R.. Diastereoselective Dihydroxylation and Regioselective Deoxygenation of Dihydropyranones: A Novel Protocol for the Stereoselective Synthesis of C1-C8 and C15-C21 Subunits of (+)-Discodermolide. J. Org. Chem. 2004, 69, 6294-6304. (d) Knight, J. G.; Ainge, S. W.; Baxter, C. A.; Eastman, T. P.; Harwood, S. J. Synthesis of δ-lactones from 2-alkynyl epoxides and 4-alkynyl-1,3-dioxolan-2-ones by palladium catalysed carbonylation and conjugate nucleophilic addition. J. Chem. Soc. Perkin Trans. 1 2000, 3188.
    80. (a) Schlessinger, R. H.; Li, Y.-J.; Von Langen, D. J.. Nonracemic Syn-Selective Aldol Reactions with a Second-Generation Vinylogous Urethane Lithium Enolate. J. Org. Chem. 1996, 61, 3226-3227. (b) Lin, L.; Fan, Q.; Qin, B.; Feng, X.. Highly Enantio- and Diastereoselective Brassard Type Hetero-Diels-Alder Approach to 5-Methyl-Containing α,β-Unsaturated δ-Lactones. J. Org. Chem. 2006, 71, 4141. (c) Harris, J. M.; O’Doherty, G. A.. An enantioselective total synthesis of phomopsolide C. Tetrahedron Lett. 2002, 43, 8195-8199. (d) Casas, J.; Engqvist, M.; Ibrahem, I.; Kaynak, B.; Córdova, A. Angew.Chem., Int. Ed. 2005, 44, 1343.
    81. Odedra, A.; Wu, C.-J.; Madhushaw, R. J.; Wang, S.-L.; Liu, R.-S. A New Co2(CO)8-Mediated Tandem [5 + 1]/[2 + 2 + 1]-CycloadditionReaction: A One-Pot Synthesis of Tricyclic δ-Lactones from cis-EpoxyEne-ynes. J. Am. Chem. Soc. 2003, 125, 9610-9611.
    82. Rao, H. S. P.; Sivakumar, S. Condensation of α-Aroylketene Dithioacetals and 2-Hydroxyarylaldehydes Results in Facile Synthesis of a Combinatorial Library of 3-Aroylcoumarins. J. Org. Chem. 2006, 71, 8715-8723.
    83. Dieter, R. K., Fishpaugh, J. R.. Synthesis of .alpha.-Pyrones from Vinylogous Thiol Esters and a-Oxo Ketene Dithioacetals. J. Org. Chem. 1988, 53, 2031-2046.
    84. Dieter, R. K.; Guo, F. A Rapid Divergent Synthesis of Highly Substituted δ-Lactones. Org. Lett. 2006, 8, 4779-4782.
    85. Dong, C.; Alper, H. Catalytic Asymmetric Cyclocarbonylation of o-Isopropenylphenols: Enantioselective Synthesis of Six-Membered Ring Lactones. J. Org. Chem. 2004, 69, 5011-5014.
    86. Andreana, P. R.; McLellan, J. S.; Chen, Y.; Wang, P. G. Synthesis of 2,6-Dideoxysugars via Ring-Closing Olefinic Metathesis. Org. Lett. 2002, 4, 3875-3878.
    87. Emmanuel, R. and Mikhail, S. E.. Synthesis of the C12-C19 Fragment of (+)-Peloruside A through a Diastereomer-Discriminating RCM Reaction. Org. Lett. 2005, 7, 2225-2228.
    88. Zhonghui Wan and Scott, G. N.. Optically Active Allenes from δ-Lactone Templates: Asymmetric Total Synthesis of (-)-Malyngolide. J. Am. Chem. Soc. 2000, 122, 10470-10471.
    89. Kennosuke, I., Masayuki, H., Junji, T., and Shuji, K.. Enantioselective Enol Lactone Synthesis under Double Catalytic Conditions. Org. Lett. 2005, 7, 979-981.
    90. (a) Chamberlin, A. R.; Dezube, M.; Dussault, P.; McMills, M. C. Iodocyclization of allylic alcohol derivatives containing internal nucleophiles. Control of stereoselectivity by substituents in the acyclic precursors. J. Am. Chem. Soc. 1983, 105, 5819. (b) Ohfune, Y.; Kurokawa, N. Efficient syntheses of naturally occurring 3,4-dihydroxyprolines: Electrophile-mediated lactonization of 2-amino-3-hydroxy-4-pentenoic acid derivatives. Tetrahedron Lett. 1985, 26, 5307.
    91. (a) Gruttadauria, M.; Aprile, C.; Noto, R. Stereocontrolled approach to δ- and γ-lactones and 1,3-diols. The role of X? ion in the selenolactonization. Tetrahedron Letters. 2002, 43, 1669. (b) Aprile, C.; Gruttadauria, M.; Amato, M. E.; D’Anna, F.; Meo, P. L.; Riela, S.; Noto, R. Studies on the stereoselective selenolactonization, hydroxy and methoxy selenenylation of α- and β-hydroxy acids and esters. Synthesis of δ- and γ-lactones. Tetrahedron. 2003, 59, 2241.
    92. Muthusamy, S.; Gnanaprakasam, B. Imidazolium salts as phase transfer catalysts for the dialkylation and cycloalkylation of active methylene compounds. Tetrahedron Lett. 2005, 46, 635.
    93. Varinder, K. A., Ingo, E., Sarah, Y. F.. Correlation between p Ka and Reactivity of Quinuclidine-Based Catalysts in the Baylis-Hillman Reaction: Discovery of Quinuclidine as Optimum Catalyst Leading to Substantial Enhancement of Scope. J. Org. Chem. 2003, 68, 692-700.
    94. J. B. Chattopadhyaya and A. V. Rama Rao. A novel oxidative desulphurisation of -trithianes and thioacetals with iodine in dimethylsulphoxide. Tetrahedron Lett. 1973, 14, 3735.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700