α-EWG二硫缩烯酮作为碳亲核体在有机合成中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳键形成和官能团的转化反应是构建有机分子骨架最重要、最基本的反应。Baylis-Hillman反应(以下简称为BH反应)是近年来引起有机化学家广泛兴趣的重要的碳碳键形成反应之一。BH反应系催化剂作用下活化烯(炔)烃和亲电体的偶联反应。因为该反应具有原子经济性、形成多官能团产物等特点,已成为有效地形成碳碳键的重要方法之一。该反应能在较温和的条件下实现各种亲电体和活化烯烃化合物α-位的偶联反应。作为该反应的重要组成部分,活化烯烃由于其本身的结构特征,具有与一般烯烃不同的独特的性质,是非常重要的有机合成中间体。人们已经对该类化合物进行了相当深入的研究,但是对β-位含有取代基,尤其是含有β,β’-双供电子基团的活化烯烃的性质和应用研究还有少。这类烯烃化合物由于受到供电子基团的影响,具有一些不同于一般活化烯烃化合物的独特性质。因此,深入研究具有供电子基团的活化烯烃的各种性质,扩展它们在有机合成化学中的应用具有十分重要的意义。
     过去的一百年时间里,α-羰基二硫缩烯酮已经成为了一类重要的有机合成中间体。就其结构而言,α-羰基二硫缩烯酮类化合物可视为一类β?位含有两个供电子烷硫基的活化的烯烃。结合上述BH反应的成键特点以及碳碳键形成反应的重要性,本论文拟以β-位上连有双供电子基团的烯类化合物为研究对象,着重研究了这类化合物和各种醛及睛类的三组分反应、与吡啶甲醛的BH反应及产物的应用和芳香醇类的碳碳偶联反应,具体研究内容简述如下:
     1.首次实现在四氯化钛催化作用下,双烷硫基活化的烯酮类化合物和各种芳香醛及腈类的三组分反应,得到一系列重要的氮杂BH类型产物。该反应首先经历了活化烯烃和醛的BH反应,然后所得的烯丙基醇进一步和乙腈等发生分子间的Ritter反应。该反应具有条件温和、产率较高、产物分子中含有多种官能团等特点。
     2.研究环烷硫基活化的极化烯酮和糠醛的BH反应,实验结果发现生成的BH加成物没有直接和活化烯烃,而是得到了异常的碳正离子重排后再和活化烯烃反应的产物;并将该反应应用到含有2-呋喃基的BH加成产物,得到了一类结构比较新颖的2, 5-二取代呋喃类化合物。
     3.首次实现烷硫基活化的烯烃类化合物和吡啶甲醛的BH反应,该反应实现说明了吡啶和四氯化钛配位后能较好对生成的烯丙醇去活化,而不能继续和极化烯或者腈类反应。当用α-氰基二硫缩烯酮和2-吡啶醛反应时,其加成产物可以经过分子内的热环化反应合成具有生物、药物活性的中氮茚衍生物。进一步实验证明这类中氮茚具有很高的亲核性,能在十分温和的条件下和醛酮发生偶联反应,从而合成了一系列含有中氮茚结构单元的三芳基化合物。
     4.利用烷硫基活化的活化烯烃化合物中的α-碳具有较强亲核性的特点,实现了一系列α-EWG二硫缩烯酮化合物与醇的偶联反应。实验证明,该偶联反应在路易斯酸和质子酸的作用下均能够获得较为理想的结果。实验结果从分说明了这类活化烯烃的α?位具有较强的亲核性。
The carbon-carbon bond formation and the functional group transformations are most fundamental reactions for the construction of a molecular framework and hence represent a forefront of research in organic chemistry. The Baylis-Hillman (BH) reaction, the coupling of activated alkenes with carbon electrophiles under relatively mild conditions, is emerging as one of the most valuable carbon-carbon bond forming reaction in recent years. Since the BH reaction possesses the two most requirements, atom economy and generation of useful functional groups,it qualifies to be the list of efficient synthetic reactions. The BH reaction is the coupling reaction of different electrophiles and theα-position of activated alkenes under mild conditions. This reaction possesses three components: activated alkenes, electrophiles and catalyst which produces fused functional groups molecular. As an essential component of the BH reaction, alkenes especially activated alkenes are a kind of very important building blocks in organic synthesis, and have been applied in various fields. While the alkenes which bearβ-substituent(s), especially with electron-donatingβ,β’-disubstituents could have some special characters due to the effect of electron-donating groups (EDGs) and electron-withdrawing groups (EWGs). In contrast to the extensive studies on the common activated alkenes, the investigations on the electron-donating activated alkenes remained few researches. So, it seems to be very important to deeply study the characters and extend applications of this kind of alkenes with EDGs.
     α-Οxoketene dithioacetals are a kind of versatile intermediates used in organic synthesis during the past decades. It is a type of activated alkenes, which bear double donating alkylthio groups atβ?position. Our recent work focused on the property and synthetic application of this kind of activated alkene. In connection with the characteristic of BH reaction and the importance of carbon-carbon bond formation, we will investigate the three components reaction of alkylthio groups activated alkenes, different aldehydes and nitriles; the BH reaction of pyridine aldehyde and alkylthio groups activated alkenes including the application of the adducts; the carbon-carbon bond coupling reaction of alcohols and polarized ketene dithioacetals. The following statements are the brief of my work.
     Mediated with titanium (IV) chloride (TiCl4), a series of Aza-Baylis-Hillman reaction adducts were obtained vir three components reaction of bisalkylthio activated polarized alkene, different arylaldehyde and nitrile. This type of reaction is a sequence of Baylis-Hillman reaction and the active adducts was then conformed a Ritter fashion reaction. This reaction covers the mild reaction condition, high yield and the products bearing fused functional groups, etc.
     When furfural or thiophene-2-carbaldehyde was taken as electrophile, the similar BH type reaction could not give the Aza-BH reaction products. The active alcohol was first produced, and a more stable carbocation was formed after an abnormal rearrangement by the catalyst, which was captured by the activated alkene.
     The BH reaction of alkylthio activated activated alkenes and picolinaldehyde was realized. The experimental results illuminate that the pyridine can cooperate with titanium and deactivated the corresponding adducts which could not react with activated alkene or nitriles any more. When the BH adducts is derived from the reaction ofα?CN-β,β?bisethylthioketene acetal and picolinaldehyde, it can be converted into potential biological and medicinal active indolizine derivatives after intramolecular themal cyclization reaction. More important, the obtained ethylthio activated indolizine is a type of highly activated carbon nucleophiles. It can be reacted with aldehydes or ketones under very mild conditions to afford a series of triaryl compounds containing indolizine nucleus.
     The coupling reaction of a series ofα-EWG ketene dithioacetals and alcohols was carried out base on the strong nucleophilicα-position of the tested ketene dithioacetals. The experimental results prove that the reaction can catalyze by either Lewis acid or protonic acid and show high nucleophilic abilities of theα?position of these polarized alkenes.
引文
[1] Kelber, C. The Effect of Sulphuric Carbonic Acid and Atzaki on Acetophenone [J] Berichte Der Deutschen Chemischen Gesellschaft 1910, 43: 1252-1259.
    [2] For reviews, see: (a) Dieter, R. K. Alpha-Oxo Ketene Dithioacetals and Related Compounds-Versatile 3-Carbon Synthons [J] Tetrahedron 1986, 42, 3029-3096. (b) Junjappa, H.; Ila, H.; Asokan, C. V. α-Oxoketene-S,S-, N, S- and N, N-acetals: Versatile Intermediates in Organic Synthesis [J] Tetrahedron 1990, 46, 5423-5506. (c) Kolb, M. Ketene Dithioacetals in Organic Synthesis: Recent Developments [J] Synthesis 1990, 171-190.
    [3] Rudorf, W. D.; Schierhorn, A.; Augustin, M.; Reaktionen von o-Halogenacetophenonen mit schwefelkohlenst off und Phenylisothiocyanat [J] Tetrahedron 1979, 35 (4): 551-556.
    [4] Gompper, R. Kunz, R. Ketene-Dichloride und N-Dichlormethylen-Sulfonamide [J] Chem. Ber. 1966, 99 (9): 2900-2904.
    [5] Ouyang, Y.; Dong, D.; Yu, H. A Clean, Facile and Practical Synthesis of Alpha-oxoketene S, S-acetals in Water [J] Adv. Syn & Cat. 2006, 348 (1-2): 206-210.
    [6] Singh, G.; Ila, H.; Junjappa, H. Cationic Benzoannelation of Active Methylene Ketones via Oxoketene dithioacetals [J] Tetrahedron Lett. 1984, 25, 5095-5098.
    [7] (a) Liu, Q.; Kocienski, P.; A New Method for the Preparation of Phenoles and Its Derivatives [J] Chinese Chem. Lett. 1991, 2, 353-355. (b) 刘群, 王子苓, 董德文, 杨智蕴. 经由 α-羰基烯酮环二硫代缩醛的取代-环合芳构化及分解反应 [J] 有机化学 1995, 180-184.
    [8] 刘群, 赵洪武, 杨智蕴, 徐柏玲. α?氧代烯酮环二硫代缩酮化学(XXV)---经由取代-环合芳构化反应合成羟乙基芳基硫醚[J]高等学校化学学报 1996, 73-76.
    [9] Kocienski, P.; Pontiroli, A.; Liu, Q. Enantiospecific Syntheses of Pseudopterosin Aglycones. Part 2. Synthesis of Pseudopterosin K-L Aglycone and Pseudopterosin A-F Aglycone via a B, BA, BAC Annulation Strategy [J] J. Chem. Soc. Perkin Trans. I 2001, 2356-2366.
    [10] Gupta, A.; Ila, H.; Junjappa, H. Aromatic Annelation via α-Oxoketene Dithioacetals: Synthesis of Thioresorcinol Dimethyl Ethers [J] Tetrahedron Lett. 1987, 28, 1459-1462.
    [11] Gupta, A.; Ila, H.; Junjappa, H. Cycloaromatization of α-Oxoketene Dithioacetals with Lithioacetonitrile: A Facile Route for 4-Substituted and 4, 5-Annelated Pyridines [J] Tetrahedron Lett. 1988, 29, 6633-6636.
    [12] Ila, H.; Junjappa, H.; Barun, O. Studies on Regioselective Addition of Benzylic Organometallics to α-Oxoketene Dithioacetals in Aromatic Annelation Protocol [J] J Organomet. Chem. 2001, 624, 34-40.
    [13] Balu, M.; Singh, G.; Ila, H.; Junjappa, H. Cycloaromatization of α-Oxoketendithioacetalswith Benzylmagnesium Chloride: A Novel Naphthalene Annelation Reaction [J] Tetrahedron Lett. 1986, 27, 117-120.
    [14] Yadav, K.; Mohanta, P.; Ila, H.; Junjappa, H. Regioselective Synthesis of Substituted 1-Methyl- and 2-Methylnaphthalenes [J] Tetrahedron 1996, 52, 14049-14056.
    [15] Rao, C. S.; Balu, M. P.; Ila, H.; Junjappa, H. Cycloaromatization of α-Oxoketene Dithioacetals and β-Oxodithioacetals with Benzyl-,1-(naphthylmethyl) and 2-(naphthyl- methyl)magnesium halides: Synthesis of Condensed Polynuclear Aromatic Hydrocarbons [J] Tetrahedron 1991, 47, 3499-3510.
    [16] (a) Balu, M.; Ila, H.; Junjappa, H. Cycloaromatization of α-Oxoketene Dithioacetals with 2- Picolyllithium: A Facile Quinolizinium Cation Annelation [J] Tetrahedron Lett. 1987, 28, 3023-3026. (b) Datta, A.; Ila, H.; Junjappa, H. Novel Cycloaromatization in Reformatsky Reaction on α-Oxoketene Dithioacetals: A Regioselective Synthesis of Substituted Ethyl 2-hydroxy-6- methylthiobenzoates [J] Tetrahedron Lett. 1988, 29, 497-500.
    [17] Ila, H.; Junjappa, H.; Mohanta, P. In Progress in Heterocyclic Chemistry [M], Gribble, G.; Gilchrist, L. Eds, Pergamon Press: Oxford, 2001, Chapter 1, 1–24.
    [18] Compper, R.; Topfl, W. Ketenderivate.3. Pyrazole und Isoxazole aus Ketenmercaptalen [J] Chem. Ber. 1962, 95, 2881.
    [19] (a) Rudorf, W.; Augustin, M. α?Ketene S, S-Acetals and Acylketene S, N-Acetals as Buildingsets for Heterocycles-5-Cyanopyrimidines [J] J. Prakt. Chem. 1978, 320, 585-599. (b) Peruncheralathan, S.; Khan, T.; Ila, H.; Junjappa, H. Regioselective Synthesis of 1-Aryl-3, 4-Substituted/annulated-5-(methylthio) Pyrazoles and 1-Aryl-3-(methylthio)-4,5- substituted / annulated Pyrazoles [J] J. Org. Chem. 2005, 70, 10030-10035.
    [20] Purkayasha, M.; Ila, H.; Junjappa, H. Regioselective Synthesis of 5-Alkylthio- and 3-Alkylthioisoxazoles from Acylketene Dithioacetals [J] Synthesis 1989, 20-24.
    [21] Compper, R.; Topfl, W. Ketenederivate.2. Reaktionen Substituier Ketenmercaptale [J] Chem. Ber. 1962, 95, 2871.
    [22] (a) Chauhan, M. S.; Junjappa, H. The Use of α-Ketoketene S,S-acetals for a Novel Pyrimidine Synthesis [J] Synthesis 1974, 880-882. (b) Singh, L. W.; Gupta, A. K; Ila, H.; Junjappa, H. A Facile Synthesis of 2-Amino-4-alkoxy-6-styryl- and 2-Amino-4- alkoxy-6-(4-aryl-1, 3-butadienyl)-pyrimidines by Direct Cyclocondensation [J] Synthesis 1984, 516-518.
    [23] Barun, O.; Ila, H.; Junjappa, H. A Facile Access to 2-Methylthio/Alkoxy/ Amino-3-acyl- imidazo [1,2-a] pyridines Based on Cupric Chloride Promoted Oxidative Ring Closure of α-Oxoketene N, S-, N, O-, and N, N-Acetals [J] J. Org. Chem. 2000, 65, 1583-1587.
    [24] Mahata, P. K; Venkatesh, C.; Syam Kumar, U. Reaction of α-Oxoketene-N, S-arylamino- acetals with Vilsmeier Reagents: An Efficient Route to Highly Functionalized Quinolinesand Their Benzo/Hetero-Fused Analogues [J] J. Org. Chem. 2003, 68, 3966-3975.
    [25] (a) Barun, O.; Mohanta, P. K; Ila, H.; Junjappa, H. An Efficient General Synthesis of Novel Functionalized Tetrahydroisoquinoline Derived Enamines via Polarized Ketene N,S-Acetals [J] Synlett 2000, 653-657.
    [26] Dong, D.; Bi, X.; Liu, Q.; Cong, F. [5C + 1N] Annulation: a Novel Synthetic Strategy for Functionalized 2, 3-dihydro-4-pyridones [J] Chem. Commun. 2005, 3580–3582.
    [27] Zhao, L.; Liang, F.; Bi, X. Sun, S.; Liu, Q. Efficient Synthesis of Highly Functionalized Dihydropyrido-[2, 3-d] pyrimidines by a Double Annulation Strategy from α-Alkenoyl- α-carbamoyl Ketene-(S, S)-acetals. J. Org. Chem. 2006, 71,1094-1098.
    [28] Sommen, G.; Comel, A.; Kirsch, G. Substituted Selenophenes Starting from Ketene Dithioacetals and Sodium Selenide [J] Synlett 2003, 855-857.
    [29] Sundaram, G.; Venkatesh, C.; Syam Kumar. U.; Iia, H.; Junjappa, H. A Concise Formal Synthesis of Alkaloid Cryptotackiene and Substituted 6 H-Indolo[2,3-b]quinolines [J] J. Org. Chem. 2004, 69, 5760-5762.
    [30] Barun, O.; Nandi, S.; Panda, K.; Iia, H.; Junjappa, H. [4+2] Cycloaromatization of 4,4-bis (methylthio)-3-buten-2-one with Active Methylene Ketones: A Simple and Facile Phenol Annulation [J] J. Org. Chem. 2002, 67, 5398-5401.
    [31] Bi, X.; Dong, D.; Liu, Q.; Pan, W.; Zhao, L.; Li, B. [5 + 1] Annulation: A Synthetic Strategy for Highly Substituted Phenols and Cyclohexenones [J] J. Am.Chem. Soc.2005, 127, 4578-4579.
    [32] Bi, X.; Dong, D.; Li, Y.; Liu, Q.; Zhang, Q. [5C + 1S] Annulation: A Facile and Efficient Synthetic Route toward Functionalized 2, 3-Dihydrothiopyran-4-ones [J] J. Org. Chem. 2005, 70, 10886-10889.
    [33] Patra, P.; Sriram, V.; Iia, H.; Junjappa, H. Lewis Acid Induced Tandem Carbocationic Ring Opening and cyclizations of α-[Bis(methylthio)methylene]ethyl-2-styrylcyclopropyl Ketones and Carbinols: Novel Approach to Bicyclo3.3.0]octane and Cyclopent[a]indene frameworks [J] Tetrahedron 1998, 54, 531-540.
    [34] Nandi, S.; Syam Kumar, U.; Iia, H.; Junjappa, H. Domino Carbocationic Cyclization of Functionalized Cyclopropyl Ketones: Facile One-Pot Access to Peri- and Angularly fused Polycyclic Aromatic and heteroaromatic Frameworks [J] J. Org. Chem. 2002, 67, 4916-4923.
    [35] Wang, M.; Xu, X.; Liu, Q. Iododecarboxylation of Alpha-carboxylate, Alpha-cinnamoyl Ketene Cyclic Dithioacetals [J] Synth. Comm. 2002, 32, 3437-3443.
    [36] 赵玉龙,刘群,孙然, 徐显秀,潘玲. α-溴代二硫缩烯酮的制备 [J] 高等学校化学学报 2002, 23, 1901-1902.
    [37] 赵玉龙, 刘群, 孙然, 迟瑛楠. α-硝基二硫缩烯酮的制备[J] 高等学校化学学报 2004, 25,297-298.
    [38] 赵玉龙,刘群,张薇,于海丰,刘郁,林春. α-乙酰基二硫缩烯酮的新合成方法 [J] 高等学校化学学报 2006, 27, 482-484.
    [39] Anabha, E.; Asokan, C. V. A Convenient Preparation of 2-Aroyl-3, 3-bis(alkylsulfanyl) acrylaldehydes and Their Application in the Synthesis of 5-Aroyl-2-oxo-1, 2-dihydro-2-pyridinecarbonitriles [J] Synthesis 2006, 151–155.
    [40] Prakash Rao, S.; Sivakumar, S. Condensation of α-Aroylketene Dithioacetals and 2-Hydroxyarylaldehydes Results in Facile Synthesis of a Combinatorial Library of 3-Aroylcoumarins [J] J. Org. Chem. 2006, 71, 8715-8723.
    [41] Liu, Q.; Che, G.; Yu, H. The First Nonthiolic, Odorless 1, 3-Propanedithiol Equivalent and Its Application in Thioacetalization [J] J. Org. Chem. 2003, 68, 9148-9150.
    [42] Yu, H.; Liu, Q.; Yin, Y.; α, α-Diacetyl Cyclic Ketene Dithioacetals: Odorless and Efficient Dithiol Equivalents in Thioacetalization Reactions [J] Synlett 2004, 999-1002.
    [43] Dong, D.; Ouyang, Y.; Yu, H.; Liu, Q. Chemoselective Thioacetalization in Water: 3-(1, 3-dithian-2-ylidene) Pentane-2,4-dione as An Odorless, Efficient, and Practical Thioacetalization Reagent. J. Org. Chem. 2005, 70, 4535-4537.
    [44] Dong, D.; Yu, H. Ouyang, Y.; Liu, Q. Thia-Michael Addition Reactions Using 2-[Bis- (alkylthio)-methylene]-3-oxo-N-o-tolylbutanamides as Odorless and Efficient Thiol Equivalents [J] Synlett 2006, 283-287.
    [45] Yu, H.; Dong, D.; Ouyang, Y.; Wang, Y.; Liu, Q. NaOH-Promoted Thiolysis of Oxiranes Using 2-[Bis(alkylthio)methylene]-3-oxo-N-o-tolylbutanamides as Odorless Thiol Equivalents [J] Synlett 2007, 151-155.
    [46] Saquet, M.; Thuillie, A. Composes Organiques Sulfures. 14. Rearrangement Dalcolls Allyliques Sulfures [J] Bull. Soc. Chim. Fr. 1966, 3969-3977.
    [47] (a) Dieter, R. K.; Jenkitkasemwong, Y. α-Oxoketene Dithioacetals: Versatile Substrates for 1, 3-carbonyl Transpositions [J] Tetrahedron Lett. 1982, 23, 3747-3750. (b) Dieter, R. K.; Jenkitkasemwong, Y.; Dieter, J. W. 1, 3-Carbonyl Transposition Methodology Employing α-Oxoketenedithioacetals: Application in the Synthesis of Phenols and (+,-)-myodesmone [J] J. Org. Chem. 1984, 49, 3183 -3195.
    [48] Myrboh, B.; Ila, H.; Junjappa, H. Polarized ketene dithioacetals: A New General Highly Stereoselective and Regiospecific Method for Homologation of Ketones to Alpha, Beta- unsaturated Esters via α-Oxoketene dithioacetals [J] J. Org. Chem. 1983, 48, 5327-5332.
    [49] Nair, S. K.; Jose, A. M.; Asokan, C. V. Reactions of α-Hydroxyketene Dithioacetals with Lawesson’s Reagent: An Efficient Method for the Synthesis of α, β-Unsaturated Dithioesters [J] Synthesis 2005,1261-1264.
    [50] Nair, S. K.; Samuel, R.; Asokan, C. V. Dimsyl Anion Induced Demethylation and Fragmentation Reactions of α-Oxoketenedithioacetals [J] Synthesis 2001 (4): 573-576.
    [51] Samuel, R.; Nair, S. K.; Asokan, C. V. Dimsyl Anion Mediated Tandem Fragmentation Cyclization Reactions of Alkenoyl Ketenedithioacetals: A Facile Synthesis of Substituted 2,3-Dihydro-4H- thiopyran-4-ones [J] Synlett 2000, 1804–1806.
    [52] Li, Y.; Liang, F.; Bi, X.; Liu, Q. Intramolecular Thia-anti-Michael Addition of a Sulfur Anion to Enones: A Regiospecific Approach to Multisubstituted Thiophene Derivatives [J] J. Org. Chem. 2006, 71, 8006-8010.
    [53] Liang, F.; Zhang, J.; Tan, J; Liu, Q. Domino Reaction of Acyclic, α,α?Dialkenoylketene S,S- Acetals and Diamines: Efficient Synthesis of Tetracyclic Thieno[2,3-b]thiopyran-Fused Imidazo[1,2-a]pyridine/Pyrido[1,2-a]pyrimidines [J] Adv. Syn.&Cat. 2006, 348, 1986-1990.
    [54] Okauchi, T.; Tanaka, T.; Minami, T. Lewis Acid-Promoted Deoxygenative Di-[β,β-bis (ethylthio)]vinylation of Aldehydes with Trimethylsilyketene Bis(ethylthio)acetal [J] J. Org. Chem. 2001, 66, 3924-3929.
    [55] Yahiro, S.; Shibata, K.; Saito, T.; Okauchi, T.; Minami, T. Acid-Promoted Reaction of Trimethylsilyl ketene Bis-(ethylthio)-acetal with Imines. Synthesis of γ, γ?Bis (ethylthio)-allyamines [J] J. Org. Chem. 2003, 68, 4947-4950.
    [56] Joseph, B.; Verghese, B.; Sudarsanakumar, C.; Deepa, S.; Viswan, D.; Chanelran, P.; Asokan, C. Highly Facile and Stereoselective Intramolecular [2+2] Photocyclo Additions of bis(alkenoyl)Ketendithioacetals[J] Chem. Commun. 2002, 736-737.
    [57] Zhao, Y.; Liu, Q.; Zhang, J.; Liu, Z. Heteroatom-Substituted Expanded Radialenes: One-Pot Synthesis and Characterization of Expanded 1,3-Dithiolane [n] radialenes [J] J. Org. Chem. 2005, 70 (17): 6913-6917.
    [58] Zhao, Y.; Zhang, W.; Zhang, J.; Liu, Q. A new route to extended tetrathiafulvalenes from α-acetyl ketene-S,S-acetals [J] Tetrahedron Lett. 2006, 47, 3157-3159.
    [59] (a)Liu, Y.; Dong, D.; Liu, Q.; Qi, Y.; Wang, Z. A novel and facile synthesis of dienals and substituted 2H-pyrans via the Vilsmeier reaction of α-oxo-ketenedithioacetals [J] Org. Biomol. Chem. 2004, 2, 28-30; (b) Sun, S.; Liu, Y.; Liu, Q.; Zhao, Y.; Dong, D. One-Pot Synthesis of Substituted Pyridines via the Vilsmeier–Haack Reaction of Acyclic Ketene-S,S-acetals [J] Synlett 2004, (10): 1731-1734.
    [60] Sato,F.; Urabe, H.; Okamoto, S. Synthesis of Organotitanium Complexes from Alkenes and Alkynes and their synthetic Applications [J] Chem. Rev. 2000, 100, 2835-2886.
    [61] Shukla, P.; Hsu, Y.-C.; Cheng, C.-H. Cobalt-catalyzed Reductive Coupling of saturated Alkyl Halides with activated Alkenes [J] J. Org. Chem. 2006, 71, 655-658.
    [62] Ballini, R.; Bosica, G..; Fiorini, D.; Palmieri, A.; Petrini, M. Conjugate Additions ofNitroalkanes to electron-poor Alkenes: Recent Results [J] Chem. Rev. 2005, 105, 933-972.
    [63] McGarrigle, E. M.; Gilheany, D. G. Chromium-and Manganese-salen Promoted Epoxidation of Alkenes [J] Chem. Rev. 2005, 105, 1563-1602.
    [64] Lane, B. S.; Burgess, K. Metal-catalyzed Epoxidations of Alkenes with Hydrogen Peroxide [J] Chem. Rev. 2003, 103, 2457-2474.
    [65] Zeni, G.; Larock, R. C. Synthesis of Heterocycles via Palladium e–Olefin and e–Alkyne Chemistry [J] Chem. Rev. 2004, 104, 2285-2309.
    [66] Vasilev, A. A.; Serebryakov, E. P. Synthetic Methodologies for carbo-substituted conjugated Dienes [J] R. Chem. Rev. 2001, 735-776.
    [67] Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry [M]. Part A & B, 3rd.; Plenum: New York, 1990.
    [68] Larock, R. C. Comprehensive Organic Transformations: a guide to functional group transformations [M]. VCH: New York, 1989.
    [69] Scolastico, C. Current Trends in Organic Synthesis [M]. Eds; Plenum: New York, 1999.
    [70] Mahrwald, R. Diastereoselection in Lewis-Acid-mediated Aldol Additions [J] Chem. Rev. 1999, 99, 1095-1120.
    [71] Fürstner, A. Recent Advancements in the Reformatsky Reaction [J] Synthesis 1989, 8, 571-590.
    [72] Ziegler, F. E.; The thermal, aliphatic Claisen Rearrangement [J] Chem. Rev. 1988, 88, 1423-1452.
    [73] Olah. G. A. Friedel-Crafts Chemistry [M]. Ed: Wiley, New York, 1973.
    [74] Walborsky, H. M. Mechanism of Grignard Reagent Formation. The Surface Nature of the Reaction [J] Acc. Chem. Res. 1990, 23, 286-293.
    [75] Oppolzer, W. Asymmetric Diels-Alder and Ene Reactions in Organic Synthesis. New Synthetic Methods [J] Angew. Chem., Int. Ed. Engl. 1984, 23, 876-889.
    [76] Maryanoff, B. E.; Reitz, A. B. The Wittig Olefination Reaction and Modifications Involving Phosphoryl-Stabilized Carbanions. Stereochemistry, Mechanism, and Selected Synthetic Aspects [J] Chem. Rev. 1989, 89, 863-927.
    [77] Meijere, A.; Meyer, F. E. Fine Feathers Make Fine Birds: The Heck Reaction in Modern Garb [J] Angew. Chem., Int. Ed. Engl. 1995, 33, 2379-2411.
    [78] Suzuki, A. Metal-catalyzed Cross-coupling Reaction [M] Diderich, F.; Stang, P. J., Eds, Wiley-VCH Weinhein, Germany, 1998, 49-97.
    [79] For reviews, see: (a) Basavaiah, D.; Rao, P. D.; Hyma, R. S. The Baylis-Hillman Reaction: A Novel Carbon-Carbon Bond Forming Reaction [J] Tetrahedron 1996, 52, 8001-8062. (b) Basavaiah, D.; Jaganmohan Rao, A.; Satyanarayana, T. Recent Advances in theBaylis-Hillman Reaction and Application [J] Chem. Rev. 2003, 103, 811-892.
    [80] Baylis, A. B.; Hillman, M. E. D. German Patent 2155113, 1972 [P]. Chem. Abstr. 1972, 77, 34174q.
    [81] Drewes, S. E.; Roos, G. H. P. Synthetic Potential of the Tertiary-Amine-Catalysed Reaction of Activated Vinyl Carbanions with Aldehydes [J] Tetrahedron 1988, 44, 4653-4670.
    [82] Price, K.; Broadwater, S.; Jung, H.; McQuade, D. Baylis-Hillman Mechanism: A New Interpretation in Aprotic Solvents [J] Org. Lett. 2005,7 (1): 147-150.
    [83] Basavaiah, D.; Jaganmohan Rao, A. 1-Benzopyran-4(4H)-ones as Novel Activated Alkenes in the Baylis–Hillman Reaction: A simple and facile Synthesis of Indolizine-Fused-Chromones [J] Tetrahedron Lett. 2003, 44, 4365–4368.
    [84] Matsuya, Y. J.; Hayashi, K.; Nemoto, H. A Novel Modified Baylis-Hillman Reaction of Propiolate [J] J. Am. Chem. Soc. 2003, 125, 646-647.
    [85] Shi, M. Xu, Y M. An Unexpected Highly Stereoselective Double Aza-Baylis-Hillman Reaction of Sulfonated Imines with Phenyl Vinyl Ketone [J] J.Org. Chem.2003, 68, 4784-4790.
    [86] Auvray, P.; Knochel, P.; Normant, J. F. Diastereoselective Addition of the 2-phenylsulfonyl-substituted Allylic Bromides to Aldehydes in the presence of Zinc or Chromium (II) Chloride [J] Tetrahedron Lett. 1986, 27, 5091-5094.
    [87] Tsuboi, S.; Kuroda, H.; Takatsuka, S.; Fukawa, T.; Sakai, T.; Utaka, M. A new Aldol Condensation of α-allenic Esters with Aldehydes, Including a one-pot synthesis of Enyne Compounds [J] J. Org. Chem. 1993, 58, 5952-5957.
    [88] Hill, J. S.; Isaacs, N. S. Functionalisation of the α-position of Acrylate systems by the addition of Carbonyl Compounds: Highly Pressure-dependent Reactions [J] Tetrahedron Lett. 1986, 27, 5007-5010.
    [89] Ando, D.; Bevan, C.; Brown, J. M.; Price, D. W. Contrasting Pathways for the directed Homogeneous Hydrogenation of Vinyl Sulfoxides and Vinyl Sulfones [J] J. Chem. Soc., Chem. Commun. 1992, 591-592.
    [90] Van Rozendaal, E. L. M.; Voss, B. M. W.; Scheeren H. W. Effect of Solvent, Pressure and Catalyst on the E/Z-Selectivity in the Baylis-Hillman Reaction between Crotononitrile and Benzaldehyde [J] Tetrahedron 1993, 49, 6931-6936.
    [91] Strunz, G. M.; Bethell, R.; Sampson, G.; White, P. On the Baylis-Hillman Reaction of Acrylate, Acrylonitrile and Acrolein with some non-enolizable α?dicarbonyl Compounds: Synthesis of Phytotoxic Dipolaroxin Models [J] Can. J. Chem. 1995, 73, 1666-1674.
    [92] Golubev, A. S.; Galakhov, M. V.; Kolomiets, A. F.; Fokin, A.V. Fluorinated Ketones in the Baylis-Hillman Reaction [J] Bull. Russ. Acad. Sci. 1992, 41, 2193-2196.
    [93] Bailey, M.; Markó, I. E.; Ollis, W. D. Stereoselective Epoxidation of hydroxy enones. The synthesis of the sidechain of Clerocidin [J] Tetrahedron Lett. 1990, 31, 4509-4512.
    [94] Lee, W.-D.; Yang, K.-S.; Chen, K. A remarkable rate acceleration of the Baylis–Hillman reaction [J] Chem. Commun. 2001, 1612-1613.
    [95] Aggarwal, V. K.; Mereu, A. Superior Amine Catalysts for the Baylis–Hillman Reaction: The Use of DBU and its Implications [J] Chem. Commun. 1999, 2311-2312.
    [96] Rezgui, F.; Gaied, M. DMAP-catalyzed Hydroxymethylation of 2-Cyclohexenones in Aqueous Medium through Baylis-Hillman Reaction [J] Tetrahedron Lett. 1998, 39, 5965-5966.
    [97] Shi, M.; Zhao G.-L. Aza-Baylis–Hillman Reactions of Diisopropyl Azodicarboxylate or Diethyl Azodicarboxylate with Acrylates and Acrylonitrile [J] Tetrahedron 2004, 60, 2083–2089.
    [98] Aggarwal, V. K.; Mereu, A.; Tarver, G. J.; McCague, R. Metal- and Ligand-Accelerated Catalysis of the Baylis-Hillman Reaction [J] J. Org. Chem. 1998, 63, 7183-7189.
    [99] Shi, M.; Jiang, J.-K.; Feng, Y.-S. Titanium (IV) Chloride and the Amine-Promoted Baylis-Hillman Reaction [J] Org. Lett. 2000, 2, 2397-2400.
    [100] Shi, M.; Feng, Y.-S. Titanium (IV) Chloride and Quaternary Ammonium Salt Promoted Baylis-Hillman Reaction [J] J. Org. Chem. 2001, 66, 406-411.
    [101] Shi, M.; Jiang, J. K. Amendment in Titanium(IV) Chloride and Chalcogenide-Promoted Baylis–Hillman Reaction of Aldehydes with α, β-Unsaturated Ketones [J] Tetrahedron 2000, 56, 4793-4797.
    [102] Shi, M.; Jiang, J. K.; Cui, S. C. Titanium (IV) Chloride and Oxy-Compounds Promoted Baylis–Hillman Reaction [J] Tetrahedron 2001, 57, 7343-7347.
    [103] Balan, D.; Adolfsson, H. Titanium Isopropoxide as Efficient Catalyst for the Aza-Baylis-Hillman Reaction. Selective Formation of α-Methylene β-Amino Acid Derivatives [J] J. Org. Chem. 2002, 67, 2329-2334.
    [104] Kataoka, T.; Iwama, T.; Tsujiyama, S.; Iwamura, T.; Watanabe, S. The chalcogeno-Baylis-Hillman Reaction: A New Preparation of Allylic Alcohols from Aldehydes and Electron-deficient Alkenes [J] Tetrahedron 1998, 54, 11813-11824.
    [105] Kataoka, T.; Iwama, T.; Kinoshita, H.; Tsujiyama, S.; Tsurukami, Y.; Iwamura, T.; Watanabe, S. The chalcogeno-Baylis-Hillman Reaction of an α, β-Unsaturated Thioester: A New Approach to α-Methylene-β-Hydroxy Carboxylic Acid Derivatives [J] Synlett. 1999, 197-198.
    [106] Iwama, T.; Kinoshita, H.; Kataoka, T. 2, 6-Diphenyl-4H-chalcogenopyran-4-ones and 2,6-diphenyl-4H-chalcogenopyran-4-thiones: A New Catalyst for the Baylis-Hillman Reaction[J] Tetrahedron Lett. 1999, 40, 3741-3744.
    [107] Kinoshita, H.; Kinoshita, S.; Munechika, Y.; Iwamura, T.; Watanabe, S.-i.; Kataoka, T. Chalcogeno Morita-Baylis-Hillman Reaction of 2-(Methylchalcogeno)phenyl Vinyl Ketones with Aldehydes, Ketones, and α-Dicarbonyl Compounds [J] Eur. J. Org. Chem. 2003, 4852-4861.
    [108] Kataoka, T.; Kinoshita, H.; Kinoshita, S.; Iwamura, T. The Chalcogeno Baylis-Hillman Reaction of Ketones and α–Dicarbonyl Compounds [J] J. Chem. Soc. Perkin. Trans. 1, 2002, 2043-2045.
    [109] Kinoshita, H.; Osamura, T.; Kinoshita, S.; Iwamura, T.; Watanabe, S.-i.; Kataoka, T.; Tanabe, G.; Muraoka, O. Chalcogeno-Morita-Baylis-Hillman Reaction of Enones with Acetals: Simple α-Alkoxyalkylation of Enones [J] J. Org. Chem. 2003, 68, 7532-7534.
    [110] Kataoka, T.; Kinoshita, H.; Kinoshita, S.; Iwamura, T.; Watanabe, S. A Converient Synthesis α-Halomethylene Aldols or β-Halo-α-(ydroxyalkyl)acrylates Using the Chalcogeno Baylis-Hillman Reaction [J] Angew. Chem., Int. Ed. 2000, 39, 2358.
    [111] Taniguchi, M.; Hino, T.; Kishi, Y. Aldol reaction of allenolates generated via 1,4-addition of iodide anion or its equivalent to α,β-acetylenic ketones [J] Tetrahedron Lett. 1986, 27, 4767.
    [112] Li, G.; Wei, H.; Gao, J.; Caputo, T. D. TiCl4-Mediated Baylis-Hillman and Aldol Reaction Without the direct Use of a Lewis Base [J] Tetrahedron Lett. 2000, 41, 1-5.
    [113] Karur, S.; Hardin, J.; Headley, A.; Li, G. A Novel Approach to Morita–Baylis–Hillman (MBH) lactones via the Lewis acid-promoted Couplings of α, β-unsaturated Lactone with Aldehydes [J] Tetrahedron Lett. 2003, 44, 2991–2994.
    [114] Basavaiah, D.; Sreenivasulu, B.; Srivardhana Rao, J. A novel Baylis–Hillman protocol for the Synthesis of Functionalized Fused Furans [J] Tetrahedron Lett. 2001, 42, 1147-1149.
    [115] You, J.; Xu, J.; Verkade, J. A Highly Active and Selective Catalyst System for the Baylis–Hillman Reaction [J] Angew. Chem. Int. Ed. 2003, 42, 5054 –5056.
    [116] Nayak, S. K.; Thijs, L.; Zwanenburg, B. Baylis-Hillman Reaction of N-trityl aziridine-2-(S)- Carboxaldehyde [J] Tetrahedron Lett. 1999, 40, 981-984.
    [117] Alcaide, B.; Almendros, P.; Aragoncillo, C. Asymmetric Synthesis of Densely Functionalized 3-substituted 3-hydroxy-β-lactams via Novel, Highly Stereoselective Baylis-Hillman and Allylation Reactions of Enantiopure 3-oxo-2-azetidinones [J] Tetrahedron Lett. 1999, 40, 7537-7540.
    [118] Pan, J.; Chen, K. Diastereoselective Baylis–Hillman Reaction using N-glyoxyloyl CamphorPyrazolidinone as an Electrophile: Synthesis of Optically Pure 2-hydroxy-3- methylene succinic Acid Derivative [J] Tetrahedron Lett. 2004, 45, 2541–2543.
    [119] Brzezinski, L. J.; Rafel, S.; Leahy, J. W. The Asymmetric Baylis-Hillman Reaction [J] J. Am. Chem. Soc. 1997, 119, 4317-4318.
    [120] Yang, K.-S.; Chen, K. Diastereoselective Baylis-Hillman Reactions: The Design and Synthesis of a Novel Camphor-Based Chiral Auxiliary [J] Org. Lett. 2000, 2, 729-731.
    [121] Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatakeyama, S. Chiral Amine-Catalyzed Asymmetric Baylis-Hillman Reaction: A Reliable Route to Highly Enantiomerically Enriched (α?Methylene-β?Hydroxy) esters [J] J. Am. Chem. Soc. 1999, 121, 10219-10220.
    [122] Kawahara, S.; Nakano, A.; Esumi, T.; Iwabuchi, Y.; Hatakeyama, S. β?Isocupreidine -Catalyzed Asymmetric Baylis-Hillman Reaction of Imines [J] Org. Lett. 2003, 5, 3103-3105.
    [123] McDougal,N. T.; Schaus, S. E.; Asymmetric Morita-Baylis-Hillman Reactions Catalyzed by Chiral Br?nsted Acids [J] J. Am. Chem. Soc. 2003, 125, 12094-12095.
    [124] Barrett, A. G. M.; Kamimura, A. Catalytic Asymmetric Synthesis of α-Methylene- β-Hydroxyl-ketones [J] J. Chem. Soc., Chem. Commun. 1995, 1755-1756.
    [125] Shi M, Xu Y M. Catalytic, Asymmetric Baylis±Hillman Reaction of Imines with Methyl Vinyl Ketone and Methyl Acrylate [J] Angew. Chem. Int. Ed. 2002, 41 (23), 4507-4510.
    [126] Shi M, Chen L H, Li C Q. Chiral Phosphine Lewis Bases Catalyzed Asymmetric aza-Baylis-Hillman Reaction of N-Sulfonated Imines with Activated Olefins [J] J. Am. Chem. Soc. 2005, 127, 3790-3800.
    [127] Matsui,K.; Takizawa, S.; Sasai, H. Bifunctional Organocatalysts for Enantioselective aza-Morita-Baylis-Hillman Reaction [J] J. Am. Chem. Soc. 2005, 127, 3680-3681.
    [128] Basavaiah, D.; Bhavani, A. K. D.; Sarma, P. K. S. Applications of the Baylis–Hillman reaction 2: a simple stereoselective synthesis of (E)- and (Z)-trisubstituted alkenes [J] J. Chem. Soc.,Chem. Commun. [J] 1994, 1091-1092.
    [129] Basavaiah, D.; Bhavani, A. K. D.; Pandiaraju, S.; Sarma, P. K. S. Baylis-Hillman Reaction: Magnesium Bromide as a Stereoselective Reagent for the Synthesis of [E]- and [Z]-Allyl Bromides [J] Synlett 1995, 243-244.
    [130] Basavaiah, D.; Bakthadoss, M.; Jayapal Reddy, G. The First Intramolecular Friedel-Crafts Reaction of Baylis-Hillman Adducts: Synthesis of Functionalized Indene and Indane Derivatives [J] Synthesis 2001, 919-923.
    [131] Basavaiah, D.; Krishnamacharyulu, M.; Suguna Hyma, R.; Sarma, P. K. S.; Kumaragurubaran, N. A Facile One-Pot Conversion of Acetates of the Baylis-Hillman Adducts to [E]- -Methylcinnamic Acids [J] J. Org. Chem. 1999, 64, 1197-1200.
    [132] Rezgui, F.; El Gaied, M. M. Réaction régiospécifique des carbanions stabilisés avec la 2-(acétoxyméthyl)cyclohex-2-én-1-one: Synthèse de diénones bicycliques [J] Tetrahedron 1997, 53, 15711-15716.
    [133] Basavaiah, D.; Satyanarayana, T. A Novel and Facile Synthesis of Functionalized [4.4.3]and [4.4.4]Propellano-bislactones Using Acetates of the Baylis-Hillman Adducts [J] Org. Lett. 2001, 3, 3619-3622.
    [134] Kim, J. N.; Lee, K. Y.; Kim, H. S.; Kim, T. Y. Synthesis of 3-Ethoxy carbonyl-4-hydroxy- quinoline N-Oxides from the Baylis-Hillman Adducts of o-Nitrobenzaldehydes [J] Org. Lett. 2000, 2, 343-345.
    [135] Kim, J. N.; Lee, H. J.; Lee, K. Y.; Kim, H. S. Synthesis of N-substituted 1,4-dihydro- quinolines from the Baylis–Hillman acetates via the successive SN2′–SNAr isomerization strategy [J] Tetrahedron Lett.2001, 42, 8341-8344.
    [136] Basavaiah, D.; Satyanarayana, T. One-pot facile conversion of the acetates of Baylis–Hillman adducts into substituted fused pyrimidones in aqueous media [J] Tetrahedron Lett. 2002, 43, 4301-4304.
    [1] Trost, B. M.; Fleming, I. Comprehensive Organic Synthesis [M] Pergamon Press: Oxford, UK, 1991, 4, 1-236.
    [2] Zhao, Y.; Campbell, K.; Tykwinski, R. R. Iterative Synthesis and Characterization of Cross-Conjugated Iso-Polydiacetylene [J] J. Org. Chem. 2002, 67, 336-344.
    [3] Foote, C. S. Catalytic Asymmetric Synthesis Special Issue [J] Acc. Chem. Res. 2000, 33, 323-323.
    [4] Hassner, A.; Stumer, C. Organic Synthesis Based on Name Reactions and Unnamed Reactions [M]; Tetrahedron Organic Chemistry Series; Baldwin, J. E., Magnus. P. D.; Eds.; Pergamon: New York, 1998, 11.
    [5] Current Trends in Organic Synthesis [M]. Scolastico, C., Nocotra. F., Eds; Plenum: New York, 1999.
    [6] Basavaiah, D.; Jaganmohan Rao, A.; Satyanarayana, T.; Recent Advances in the Baylis-Hillman Reaction and Application [J] Chem. Rev. 2003, 103, 811-892.
    [7] Basavaiah, D. Rao, P. D. Hyma, R. S. The Baylis-Hillman Reaction: A Novel Carbon-Carbon Bond Forming Reaction [J] Tetrahedron 1996, 52, 8001-8062.
    [8] Langer, P.; New Strategies for the Development of an Asymmetric Version of the Baylis-Hillman Reaction [J] Angew. Chem. Int. Ed. 2000, 39, 3049-3052.
    [9] Patrick. P.; Evaloni, P.; Gunnar, W. The Reactions of Aryl Acrylates Under Baylis-Hillman Conditions [J] Tetrahedron Lett. 1996, 37, 1715-1718.
    [10] Baylis, A. B.; Hillman, M. E. D. German Patent 2155113, 1972: Chem. Abstr. 1972, 77, 34174q.
    [11] Bode, M. L.; Kaye, P. T.; A Kinetic and Mechanistic Study of the Baylis-Hillman Reaction [J] Tetrahedron Lett. 1991, 32, 5611-5614.
    [12] Fort, Y.; Berthe, M. C.; Caubere, P. The ‘Baylis-Hillman Reaction’ Mechanism and Applications Revisited [J] Tetrahedron 1992, 48, 6371-6384.
    [13] Drewes, S. E. Roos, G. H. P. Synthetic Potential of the Tertiary-Amine-Catalysed Reaction of Activated Vinyl Carbanions with Aldehydes [J] Tetrahedron 1988, 44, 4653-4670.
    [14] Perlmutter, P.; Puniani, E.; Westman, G. The Reactions of Aryl Acrylates Under Baylis-Hillman Conditions [J] Tetrahedron Lett. 1996, 37, 1715-1718.
    [15] Lawrence, N. J.; Crump, J. P.; McGown, A. T.; Hadfield, J. A. Reaction of Baylis–Hillman Products with Swern and Dess–Martin Oxidants [J] Tetrahedron Lett. 2001, 42, 3939-3941.
    [16] Basavaiah, D.; Kumaragurubaran, N.; Sharada, D. S. Baylis–Hillman Chemistry: A Novel Synthesis of Functionalized 1,4-Pentadienes [J] Tetrahedron Lett. 2001, 42, 85-87.
    [17] Garden, S. J.; Skakle, J. M. S. Isatin Derivatives are Reactive Electrophilic Components for the Baylis–Hillman Reaction [J] Tetrahedron Lett. 2002, 43, 1969-1972.
    [18] Kaye, P. T.; Nocanda, X. W.; A Convenient Baylis-Hillman Synthesis of 3-Substituted 2H-1-Benzothiopyrans [J] Synthesis, 2001, 2389-2392.
    [19] Basavaiah, D.; Sharada, D. S.; Kumaragurubaran, N.; Reddy, R. M. The Baylis-Hillman Reaction: One-Pot Facile Synthesis of 2, 4-Functionalized 1,4-Pentadienes [J] J. Org. Chem. 2002, 67, 7135-7137.
    [20] Rezgui, F.; Gaied, M. M. E. DMAP-catalyzed Hydroxymethylation of 2-Cyclohexenones in Aqueous Medium through Baylis-Hillman Reaction [J] Tetrahedron Lett. 1998, 39, 5965-5966.
    [21] Walsh, L. M.; Winn, C. L.; Goodman, J. M. Sulfide–BF3·OEt2 Mediated Baylis–Hillman Reactions [J] Tetrahedron Lett. 2002, 43, 8219 – 8222.
    [22] Kataoka, T.; Kinoshita, H.; Kinoshita, S.; Iwamura, T. Tandem Michael-aldol Reaction via 6-endo-dig cyclization of ynone-chalcogenides: Synthesis of 2-unsubstituted 3-(hydroxyalkyl) chalcogenochromen-4-ones [J] Tetrahedron Lett. 2002, 43, 7039-7041.
    [23] Kataoka, T.; Iwama, T.; Kinoshita, H.; Tsujiyama, S.; Tsurukami, Y.; Iwamura, T.; Watanabe, S. The Chalcogeno-Baylis-Hillman Reaction of an α, β-Unsaturated Thioester, A New Approach to α-Methylene-β-hydroxy Carboxylic Acid Derivatives [J] Synlett 1999, 197-198.
    [24] Tadashi, K.; Hironori, K. Chalcogenide-Lewis Acid Mediated Tandem Michael Aldol Reaction-an Alternative to the Morita-Baylis-Hillman Reaction and a New Development [J] Eur. J. Org. Chem. 2005, 45-48.
    [25] Yamada, Y. M. A.; Ikegami, S. Efficient Baylis–Hillman Reactions Promoted by mild cooperative Catalysts and Their Application to Catalytic Asymmetric Synthesis [J] Tetrahedron Lett. 2000, 41, 2165-2169.
    [26] Kataoka, T.; Kinoshita, S.; Kinoshita, H.; Fujita, M.; Iwamura, T.; Watanabe, S. Self-assisted tandem Michael-aldol Reactions of α, β-unsaturated Ketones with Aldehydes [J] Chem. Commun. 2001, 1958-1959.
    [27] Basavaiah, D.; Gowriswari, V. V. A Simple Synthesis of α-methylene-β-hydroxy alkanones [J] Tetrahedron Lett. 1986, 27, 2031-2032.
    [28] Ho, T.; Chein, R. Intervention of Phenonium Ion in Ritter Reactions [J] J. Org. Chem. 2004, 69, 591-592.
    [29] Kevin, I.; Dominic, J.; Brian, C. Ritter-Type Reactions of N-Chlorosaccharin: A Method for the Electrophilic Diamination of Alkenes [J] Org. Lett. 2003, 5, 3313-3315.
    [30] Kristof, V.; Tom, D.; Georges, J.; Frans, C. Diastereoselective Intramolecular Ritter Reaction: Generation of a Cis-Fused Hexahydro-4aH-indeno-[1,2-b]-pyridine Ring System with 4a, 9b-Diangular Substituents [J] Org. Lett. 2000, 2,3083-3086.
    [31] Kim, J. N.; Lee, H. J.; Lee, K. Y.; Gong, J. H. Regioselective Allylic Amination of the Baylis-Hillman Adducts: An Easy and Practical Access to the Baylis-Hillman Adducts of N-Tosylimines [J] Synlett 2002, 173-175.
    [32] Shi, M.; Xu, Y. Catalytic, Asymmetric Baylis-Hillman Reaction of Imines with Methyl Vinyl Ketone and Methyl Acrylate [J] Angew. Chem. Int. Ed. 2002, 41, 4507-4510.
    [33] Shi, M.; Chen, L.; Li, C. Chiral Phosphine Lewis Bases Catalyzed Asymmetric aza-Baylis-Hillman Reaction of N-Sulfonated Imines with Activated Olefins [J] J. Am. Chem. Soc. 2005, 127, 3790-3800.
    [34] Matsui,K.; Takizawa, S.; Sasai, H. Bifunctional Organocatalysts for Enantioselective aza-Morita-Baylis-Hillman Reaction [J] J. Am. Chem. Soc. 2005, 127, 3680-3681.
    [35] Declerck, V.; Ribiere, P.; Martinez, J.; Lamaty, F. Sequential aza-Baylis-Hillman/Ring Closing Metathesis/Aromatization as a Novel Route for the Synthesis of Substituted Pyrroles [J] J. Org. Chem. 2004, 69, 8372-8371.
    [36] Kulkarni, B. A.; Ganesan, A. Solid-Phase Synthesis of β-Keto Esters via Sequential Baylis-Hillman and Heck Reactions [J] J. Comb. Chem. 1999, 1, 373-378.
    [1] (a) Lipshutz, B. H. Five-membered heteroaromatic rings as intermediates in organic synthesis [J] Chem. Rev. 1986, 86, 795-819; (b) Rassu, G.; Zanardi, F.; Battistini, L.; Casiraghi, G. The synthetic utility of furan-, pyrrole- and thiophene-based 2-silyloxy dienes [J] Chem. Soc. Rev. 2000, 29, 109-118; (c) Rodr?′guez, A. R.; Spur, B. W. First total synthesis of the E type I phytoprostanes [J] Tetrahedron Lett. 2003, 44, 7411-7415.
    [2] Apsel, B. Bender, J. A.; Escobar, M. Kaelin, D. E., Jr.; Lopez, O. D.; Martin, S. F. General entries to C-aryl glycosides. Formal synthesis of galtamycinone [J] Tetrahedron Lett. 2003, 44, 1075-1077.
    [3] Krishna, U. M.; Srikanth, G. S. C.; Trivedi, G. K.; Deodhar, K. D. Asymmetric Oxidopyrylium-Alkene [5+2] Cycloaddition: Synthesis of Enantiopure oxa-Bridged Bicyclo [5.4.0] undecanes [J] Synlett 2003, 2383-2385.
    [4] Roberts-Bleming, S.; Davies, G.; Kalaji, M.; Murphy, P.; Celli, A.; Donati, D.; Ponticelli, F. Synthesis and Photoreactivity of 4,5-Dithienyl[1,3]dithiol-2-ones [J] J. Org. Chem. 2003, 68, 7115-7118.
    [5] Ponomarenko, S.; Kirchmeyer, S. Synthesis and thermal behaviour of α, α’ –didecyloligo- thiophenes [J] J. Mater. Chem. 2003, 13, 197-202.
    [6] Makosza, M.; Kwast, E. Viarious nucleophilic substitution of hydrogen in nitroderivatives of five-membered heteroaromatic compounds [J] Tetrahedron 1995, 51, 8339-8354.
    [7] Divaid, S.; Chun, M.; Jouilie, M. Chemistry of 2-(chloromethyl) furans. Reaction of 2-(chloromethyl)furans with aqueous potassium cyanide and other nucleophiles [J] J. Org. Chem. 1976, 41, 2835 - 2846.
    [8] Divaid, S.; Chun, M.; Jouilie, M. Characterization of the primary products from displacement reactions of 2-(chloromethyl) furans [J] Tetrahedron Lett. 1970, 11, 777-779.
    [9] Akai, S.; Morita, N.; Iio, K.; Nakamura, Y.; Kita, Y.; Ambident Effect of a p-Sulfinyl Group for the Introduction of Two Carbon Substituents to Phenol Rings: A Convergent Synthesis of Diverse Benzofuran Neolignans [J] Org. Lett. 2000, 2, 2279-2282.
    [10] Feldman, K. S.; Vidulova, D. Extending Pummerer Reaction Chemistry. Application to the Oxidative Cyclization of Indole Derivatives [J] Org. Lett. 2004, 6, 1869-1871.
    [11] Akai, S.; Takeda, Y.; Fukuda, N.; Kita, Y. Novel ipso- Substitution of p-Sulfinylphenols through the Pummerer-Type Reaction: A Selective and Efficient Synthesis of p-Quinones and Protected p-Dihydro quinones [J] J. Org. Chem. 1997, 62, 5526-5536.
    [12] Kita, Y.; Takeda, Y.; Matsugi, M.; Iio, K.; Gotanda, K.; Murata, K.; Akai, S. Isolation of the Quinone Mono O,S-Acetal Intermediates of the Aromatic Pummerer-Type Rearrangement of p-Sulfinylphenols with 1-Ethoxyvinyl Esters [J] Angew. Chem., Int. Ed. Engl. 1997, 36, 1529-1531.
    [13] Akai, S.; Kawashita, N.; Satoh, H.; Wada, Y.; Kakiguchi, K. Highly Regioselective Nucleophilic Carbon-Carbon Bond Formation on Furans and Thiophenes Initiated by Pummerer-Type Reaction [J] Org. Lett. 2004, 6, 3793-3796.
    [14] Zhang, Q.; Liu, Y.; Wang, M.; Liu, Q. Hu, J.; Yin, Y. Highly Efficient C–C Bond-Forming Reactions of an α-Cyanoketene Dithioacetal with Aldehydes and Ketones [J] Synthesis 2006, 3009-3014.
    [15] Aggarwal, V.; Mereu, A. Superior amine catalysts for the Baylis–Hillman reaction: the use of DBU and its implications [J] Chem. Commun. 1999, 2311–2312.
    [1] Kozmin, S.; Iwama, T.; Y Huang, Y.; Rawal, V. An Efficient Approach to Aspidosperma Alkaloids via [4 + 2] Cycloadditions of Aminosiloxydienes: Stereocontrolled Total Synthesis of (±)-Tabersonine. Gram-Scale Catalytic Asymmetric Syntheses of (+)-Tabersonine and (+)-16-Methoxytabersonine. Asymmetric Syntheses of (+)-Aspidospermidine and (-)-Quebrachamine [J] J. Am. Chem. Soc. 2002, 124, 4628-4629.
    [2] Nakanishi, M.; Mori, M. Total Synthesis of (-)-Strychnine [J] Angew. Chem., Int. Ed. 2002, 41, 1934-1935.
    [3] Yokoshima, S.; Ueda, T.; Kobayashi, S.; Sato, A.; Kuboyama, T.; Tokuyama, H.; Fukuyama, T. Stereocontrolled Total Synthesis of (+)-Vinblastine [J] J. Am. Chem. Soc. 2002, 124, 2137-2139.
    [4] Boekelheide, V.; Fahrenholtz, K. The Formation of Pyrrocolines by the Reaction of Dimethyl Acetylenedicarboxylate with Heterocyclic Zwitterions [J] J. Am. Chem. Soc. 1961, 83, 458-462.
    [5] Wang, B.; Zhang, X.; Li, J.; Jiang, X.; Hu, Y.; Hu, H. Preparation of indolizine-3-carboxamides and indolizine-3-carbonitriles by 1,3-dipolar cycloaddition of N-(cyanomethyl)pyridinium ylides to alkenes in the presence of tetrakispyridinecobalt(II) dichromate or manganese(IV) oxide [J] J. Chem. Soc., Perkin Trans. 1 1999, 1571–1575.
    [6] Dane, A. Combinatorial synthesis of indolizines on solid support [J] Tetrahedron Lett. 1999, 40, 8741-8745.
    [7] Fang, X.; Wu, Y.; Deng, J.; Wang, S. Synthesis of monofluorinated indolizines and their derivatives by the 1,3-dipolar reaction of N-ylides with fluorinated vinyl tosylates [J] Teteahedron 2004, 60, 5487-5493.
    [8] Bora, U.; Saikia, A.; Boruah, R. A Novel Microwave-Mediated One-Pot Synthesis of Indolizines via a Three-Component Reaction [J] Org. Lett. 2003, 5, 435-438.
    [9] Nathan, B.; James, G.; Everette, L. Structures Related to Morphine. IX. Extension of the Grewe Morphinan Synthesis in the Benzomorphan Series and Pharmacology of Some Benzomorphans [J] J. Org. chem. 1957, 22, 1370-1372.
    [10] Krock, F.; Krohnke, F. Chem. Ber. 1971, 104, 1629, 1645.
    [11] Kaloko, J.; Hayford, J. Direct Synthesis of Monofunctionalized Indolizine Derivatives Bearing Alkoxymethyl Substituents at C-3 and Their Benzofused Analogues [J] Org. Lett. 2005, 7, 4305-4308.
    [12] Liu, Y.; Song, Z.; Yan,B. General and Direct Synthesis of 3-Aminoindolizines and Their Analogues via Pd/Cu-Catalyzed Sequential Cross-Coupling/Cycloisomerization Reactions [J] Org. Lett. 2007, 9, 407-412.
    [13] Bode, M.; Kaye, P. A New Synthesis of lndolizines via Thermal Cyclisation of 2-Pyridyl Derivatives [J] J. CHEM. SOC. PERKIN TRANS. I 1990, 2612-2613.
    [14] Bode, M.; Kaye, P. lndolizine Studies. Part 2.' Synthesis and NM R Spectroscopic Analysis of 2-Substituted lndolizines [J] J. CHEM. SOC. PERKIN TRANS. I 1990, 1809-1813.
    [15] Basavaiah, D.; Rao, A. First example of electrophile induced Baylis–Hillman reaction: a novel facile one-pot synthesis of indolizine derivatives [J] Chem. Commun. 2003, 604–605.
    [16] Andrew G.; Theodore S. Communications- Reaction of Dimethyl Acetylenedicarboxylate with Pyrrocoline [J] J. Org. chem.1959, 24, 581-582.
    [17] Boekelheide, V.; Miller, A. Synthesis of 2-Phenyl-1-azacyl [3.2.2]-azine [J] J. Org. chem. 1961, 26, 431-432.
    [18] Shchepinov, M. S.; Korshun, V. A. Chem. Soc. Rev. 2003, 32, 170.
    [19] Schick, J. W.; Crowley, D. J. Condensation of thiophene and homologs with ketenes [J] J. Am. Chem. Soc. 1951, 73, 1377-1377.
    [20] Herbert, E.; Ungnade, E.; Crandall, W. The Reaction of Aromatic Aldehydes with Aluminum Chloride and Benzene [J] J. Am. Chem. Soc. 1949, 71, 2209-2210.
    [21] Ernest, F.; Pratt, L.; Green, Q. Reaction Rates by Distillation. IV. The Effect of Changes in Structure on the Rate of the Baeyer Condensation [J] J. Am. Chem. Soc. 1953, 75, 275-278.
    [22] Katritzky, A. R.; Toader, D., First General Synthesis of (p-Nitroaryl)-diarylmethanes via Vicarious Nucleophilic Substitution of Hydrogen [J] J. Org. Chem. 1997, 62, 4137-4141.
    [23] Nair, V.; Abhilash, K. G.; Vidya, N. Practical Synthesis of Triaryl- and Triheteroarylmethanes by Reaction of Aldehydes and Activated Arenes Promoted by Gold (III) Chloride [J] Org. Lett. 2005, 7, 5857-5859.
    [24] Tominaga, Y.; Itonag, S.; Kouno, T.; Shigemitsu, Y. Synthesis of Bis-(7-dimethylamino-1- indolizinyl)-Methane derivatives and their Oxidation: As an Oxidative Chromogenic Reagent in Cilnical Analysis [J] Heterocycles, 2001, 55, 1447-1450.
    [25] Hamel, P.; Zajac, N.; Atjubsin, J. Girard, Y. A General Non-reductive Method for the Desulfenylation of 3-Indolyl Sulfides [J] Tetrahedron lett. 1993, 34, 2059-2062.
    [1] (a) March, J. Advanced Organic Chemistry, 4th ed.; Wiley: New York, 1992. (b) Scolastico, C.; Nocotra, F. Current Trends in Organic Synthesis, Eds; Plenum: New York, 1999.
    [2] Trost, B. M. The atom economy-a search for synthetic efficiency [J] Science 1991, 254, 1471-1477.
    [3] Sheldon, R. A. Atom efficiency and catalysis in organic synthesis [J] Pure Appl. Chem. 2000, 72, 1233-1246.
    [4] Muzart, J. Palladium-catalysed reactions of alcohols. Part B: Formation of C–C and C–N bonds from unsaturated alcohols [J] Tetrahedron 2005, 61, 4179-4212.
    [5] Tamaru, Y. Activation of Allyl Alcohols as Allyl Cations, Allyl Anions, and Amphiphilic Allylic Species by Palladium [J] Eur. J. Org. Chem. 2005, 2647-2656.
    [6] Yasuda, M.; Saito, T.; Ueba, M.; Baba, A. Direct Substitution of the Hydroxy Group in Alcohols with Silyl Nucleophiles Catalyzed by Indium Trichloride [J] Angew. Chem., Int. Ed. 2004, 43, 1414-1416.
    [7] Bisaro, F.; Prestat, G.; Vitale, M.; Poli, G. Alkylation of Active Methylenes via Benzhydryl Cations [J] Synlett 2002, 1823-1826.
    [8] Ozawa, F.; Okamoto, H.; Kawagishi, S.; Yamamoto, S.; Minami, T.; Yoshifuji, M. (π-Allyl) palladium Complexes Bearing Diphosphinidenecyclobutene Ligands (DPCB): Highly Active Catalysts for Direct Conversion of Allylic Alcohols [J] J. Am. Chem. Soc. 2002, 124, 10968-10969.
    [9] Yasuda, M.; Somyo, T.; Baba, A. Direct Carbon-Carbon Bond Formation from Alcohols and Active Methylenes, Alkoxyketones, or Indoles Catalyzed by Indium Trichloride Angew. Chem., Int. Ed. 2006, 45, 793-796.
    [10] Motokura, K.; Fujita, N.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Br?nsted Acid Mediated Heterogeneous Addition Reaction of 1,3-Dicarbonyl Compounds to Alkenes and Alcohols [J] Angew. Chem., Int. Ed. 2006, 45, 2605-2609.
    [11] Kinoshita, H.; Shinokubo, H.; Oshima, K. Water Enables Direct Use of Allyl Alcohol for Tsuji-Trost Reaction without Activators [J] Org. Lett. 2004, 6, 4085-4088.
    [12] Manabe, K.; Kobayashi, S. Palladium-Catalyzed, Carboxylic Acid-Assisted Allylic Substitution of Carbon Nucleophiles with Allyl Alcohols as Allylating Agents in Water [J] Org. Lett. 2003, 5, 3241-3244.
    [13] Kimura, M.; Futamata, M.; Mukai, R.; Tamaru, Y. Pd-Catalyzed C3-Selective Allylation of Indoles with Allyl Alcohols Promoted by Triethylborane [J] J. Am. Chem. Soc. 2005, 127, 4592.
    [14] Trost, B. M.; Quancard, J. Palladium-Catalyzed Enantioselective C-3 Allylation of 3-Substituted-1H-Indoles Using Trialkylboranes [J] J. Am. Chem. Soc. 2006, 128, 6314-6315.
    [15] Yin, Y.; Wang, M.; Liu, Q.; Hu, J.; Sun, S.; Kang, J. A C?C bond formation reaction at the α-carbon atom of α-oxoketene dithioacetals via the Baylis?Hillman type reaction Tetrahedron Lett. 2005, 46, 4399.
    [16] Pan, W.; Dong, D.; Sun, S.; Liu, Q. One-Pot Synthesis of Substituted Indole N-Oxides: TiCl4-Mediated Baylis–Hillman Reaction of α-Oxo Cyclic Ketene-S,S-acetal with o-Nitrobenzaldehydes and Subsequent Intramolecular Cyclization [J] Synlett 2006, 1090-1094.
    [17] Zhang, Q.; Liu, Y.; Wang, M.; Liu, Q.; Hu, J.; Yin, Y. Highly Efficient C–C Bond-Forming Reactions of an α-Cyanoketene Dithioacetal with Aldehydes and Ketones [J] Synthesis 2006, 3009-3014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700