锌粉促进下环境友好的三组分“一锅法”苄基酯的合成及烯丙基溴化锌与亚胺的加成反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Three Component "One Pot" Synthesis of Benzylic Esters Mediated by Zinc Powder under Solvent-free Conditions and Study of Addition Reaction of Allylzinc Bromide to Imines
  • 作者:周鹏鑫
  • 论文级别:硕士
  • 学科专业名称:有机化学
  • 学位年度:2008
  • 导师:王进贤
  • 学科代码:070303
  • 学位授予单位:西北师范大学
  • 论文提交日期:2008-05-01
摘要
随着“绿色化学”概念的发展和深入,环境友好-经济性已成为技术创新的主要推动力,同时对有机合成化学提出了严峻的挑战。发展更为温和的化学合成工艺对于可持续发展是非常重要的。化学家们开发并使用了许多取代传统有机溶剂的“洁净”反应介质,如水、离子液体、超临界流体或近临界流体、聚乙醇等,而另一种办法则是不使用反应介质,即所谓的“无溶剂”有机合成。无溶剂有机合成的优点显而易见:这些方法除了可取代传统有机溶剂、减少污染外,还能为反应分子提供不同于反应介质中的新的反应环境,因而有可能使反应的选择性、转化率得到改善和提高,或使分离提纯等操作过程较容易进行。这些特点促使无溶剂反应的研究日益重视,使之成为绿色化学的重要组成部分。
     羰基化合物的苄基化在有机合成中是一类重要的反应。通常,这类反应是在无水的有机溶剂中进行。上世纪80年代以来,随着绿色化学的兴起,水相中的此类有机反应逐渐受到人们的重视。目前被广泛研究的是羰基化合物的烯丙基化和炔丙基化。但羰基化合物的苄基化却研究的较少。
     苄基酯是一类重要的化合物,在天然产物合成中和有机化学理论研究方面有着重要的用途。苄基酯的合成通常是分两步进行的:第一步,苄基有机金属试剂对羰基化合物进行加成反应制备苄基醇;第二步,苄基醇与酰化试剂进行反应得到苄基酯。在多步骤反应中,进行下一步反应之前往往需要保护羟基。如果将加成和酰化反应在一锅中进行,则可以减少分离步骤,简化实验操作,从而减少浪费。
     本论文从环境友好的角度出发,在锌粉的促进下,实现了苄基酯的“无溶剂”合成。同时对无溶剂条件下有机锌试剂与醛亚胺的烯丙基化反应也进行了研究。本论文分为三章:
     第一章:金属锌参与的有机合成反应研究进展
     本章主要综述了金属锌参与的加成反应,尤其对锌粉促进下的Barbier-type反应作了较为详细的概述。对锌粉参与的其它反应诸如还原、偶联、消除等也作了简要介绍。
     第二章:醛、溴苄、酸酐三组分“一锅法”合成苄基酯
     本章主要研究了锌粉促进的三组分“一锅法”合成苄基酯的反应。首次实现了通过锌粉促进下的无溶剂、三组分、“一锅法”苄基酯的合成。与文献报道的方法相比此方法具有步骤经济,产率高,无催化剂等优点。
     第三章无溶剂条件下烯丙基溴化锌与醛亚胺的加成反应研究
     高烯丙基胺是合成天然产物的重要中间体。我们首次在非催化、无溶剂条件下实现了醛亚胺的烯丙基化,合成出了一系列的高烯丙基胺。与文献报道的方法相比,我们的方法具有产率高,环境友好,无催化剂等特点。
With the development of the concept of“green chemistry”, environment friendly-economy has become an important impetus of technology innovator, and makes organic synthesis face serious challenge. Developing more benign synthetic procedures in chemical synthesis is important in moving towards sustainable technologies. In reducing the amount of waste, energy usage, and the use of volatile, toxic and flammable solvents, several approaches are available including avoiding the use of organic solvents for the reaction medium.“Neat”reaction medium such as water, ionic liquids, near-critical liquid and supercritical liquid, polypropylene glycol etc were developed by organic chemists to instead of traditional organic solvents. Another alternative is no to use a reaction medium, the so-called“solvent free”or“solventless”reaction. The advantages of“solvent-free”reaction were obvious.
     Being important building blocks and versatile synthons, homobenzyl acetates are highly featured in the organic syntheses of many biological active molecules. In a long synthetic scheme it may be desirable to protect the newly generated hydroxyl group before proceeding further. It would be more advantageous if both addition and acetylation reactions are achieved in one pot. One pot synthesis saves steps by eliminating the need to isolate the intermediate and thus minimizes waste.
     Benzylation of carbonyl compounds is one of most useful processes in organic synthesis. Usually,this type of reaction is performed in anhydrous organic solvent . Since the 1980s, the importance of organic reactions carried out in aqueous media has been gradually recognized because there is growing public interest in green chemistry. Allylation and propargylation of carbonyl compounds have been extensively studied. However, benzylation of carbonyl compounds has not been the topic of much interest.
     From the view of environment friendly, this thesis achieved the“solvent-free”three-component synthesis of benzylic esters. At the same time, the addition reaction of allylzinc bromides to aldimines was also investigated under solvent-free conditions.
     This thesis includes three chapters:
     Chapter one: Recent Development of Organic Syntheses Mediated by Metal Zinc
     In this section, zinc-mediated reactions organized by reaction type are reviewed. Reaction of addition, coupling, reduction and elimination were all discussed. In particular, zinc mediated addition reaction were summarized in detail.
     Chapter two: Environmentally Friendly Three-component“One-pot”Synthesis of Benzylic Esters Mediated by Zinc Powder
     This chapter mainly investigated three component“one pot”synthesis of benzylic esters mediated by zinc powder under“solvent-free”conditions. We studied the metal effect and solvent effect as well as the scope of the reaction. Under the optimized conditions, we successfully synthesized 28 benzylic esters. Compared with traditional methods, the valuable features of our methodology include:(i) step economy and higher yields; (ii) broader substrate scope: our methods are applicable to various kinds of aromatic aldehydes.
     Chapter three: Addition Reaction of Allylzinc bromide to Aldimine under Solvent-free Conditions
     Allylation of imine by allylmetallic reagents catalyzed by Lewis acid is the most important way of synthesis of homoallyl amines, which is of the great potential to be converted to important building blocks in natural product synthesis. In this section, we found that the reactivity of allylzinc bromide was enhanced greatly under solvent-free conditions. A novel method involves non-catalyst, solvent-free were developed for the synthesis of homoallyl amines. Compared with literature methods, the advantages of our methodology include higher yields, environmentally benign and no catalyst. No side product was observed.
引文
[1] a) Anastas P. T., Warner J. C.“Green Chemistry. Theory and Practice”. Oxford: Oxford Univ. Press, 1998; b) Anastas P. T., Warner J. C. Green Chemistry. Frontiers in Benign Chemical Synthesis and Processes. Oxford: Oxford Univ. Press, 1998.
    [2] (a) C. J. Li, Chem. Rev. 1993, 93, 2023; (b) R. E. Sammelson, M. J. Kurth Chem. Rev. 2001, 101, 137; (c) M. Siskin, A. R. Katritzky, Chem. Rev. 2001, 101, 4. (d) C. J. Li, Chem. Rev. 2005, 105, 3095.
    [3] T. D.Waugh,“The grignard reaction in Kirk-Othmer encyclopedia of science and technology”3rd ed.; J.Wiley: New York, 1980.
    [4] R. D. Rieke , Science 1987 , 246 , 1260.
    [5] G. Wagner, A. Saytzeff, Ann. 1875, 175, 351.
    [6] P. Barbier C. R. Acad. Sci. 1899, 128, 110.
    [7] P. J. Pearce, D. H. Richards, N. F. Scilly, J. Chem. Soc. Perkin Trans. I 1972, 1655.
    [8] T. A. Killinger, N. A. Boughton, T. A. Runge, J. Wolinsky, J. Organomet. Chem. 1997, 124, 141.
    [9] (a) C. Einhorn, J. L. Luche, J. Organomet. Chem. 1987, 322, 177; (b) C. Petrier, J. Einhorn, J. L. Luche, Tetrahedron 1985, 11, 1449.
    [10] S. R. Wilson, M. E. Guazzaroni, J. Org. Chem. 1989, 54, 3087.
    [11] (a) H. Mattes, C. Benezra, Tetrahedron Lett. 1985, 26, 5697; (b) J. Y. Zhou, G. D. Lu, S. H. Wu, Synth. Commun. 1992, 22, 481.
    [12] T. Kunz, H. U. Reibig, Liebigs Ann. Chem. 1989, 891.
    [13] S. R. Wilson, M. E. Guazzaroni, J. Org. Chem. 1989, 54, 3087.
    [14] Z. Zha, Z. Xie, C. Zhou, M. Chang, Z. Wang, New J. Chem. 2003, 27, 1297.
    [15] T. H. Chan, C. J. Li, Organometallics 1990, 9, 2649.
    [16] C. J. Li, T. H. Chan, Organometallics 1991, 10, 2548.
    [17] B. M. Trost, S. A. King, J. Am. Chem. Soc. 1990, 112, 408.
    [18] Y. Oda, S. Matsuo, K. Saito, Tetrahedron Lett. 1992, 33, 97.
    [19] Y. Oda, Chem. Co. Sumitomo Private Commun.
    [20] H. N. Cripps, E. F. Kiefer, Org. Synth. 1962, 42, 12.
    [21] F. Marquez, A. Liebaria, A. Delgado, Org. Lett. 2000, 2(4), 547.
    [22] W. J. Chung, S. Higashiya, Y. Oba, J. T. Welch, Tetrahedron 2003, 59, 10031.
    [23]邓道利,路忠辉,吴可,有机化学,1996, 16, 462.
    [24] H. Waldman, Synlett 1990, 627.
    [25] G. O. Resende, L. C. S. Aguiar, O. A. C. Antunes, Synlett 2005, 1, 119.
    [26] C. L. Zhou, Y. Q. Zhou, J. Y. Jiang, X. Zh., Zh. Y .Wang, J. H. Zhang, J. H. Wu, H. Yin, Tetrahedron Lett. 2004, 45, 5537.
    [27] K. Surendra, N. H. M. S. Kumar, N. A. Qazi, S. Shafi, Tetrahedron Lett. 2005, 46, 7205.
    [28] S. Krishnaveni, R. Rao, Tdtrahedron Lett. 2006, 47, 2133.
    [29] A. Chattopadhyay, J. Org. Chem. 1996, 61, 6104.
    [30] C. Petrier, J. Luche, J. Organomet. Chem. 1987, 322,177.
    [31] C. J. Li, T. H. Chan, Organometallics 1990, 9, 2649.
    [32] M. Lombardo, R. Girotti, S. Morganti, C. Trombini, Chem. Commun. 2001, 2310.
    [33] M. Lombardo, S. Morganti, C. Trombini, J. Org. Chem. 2003, 68, 997.
    [34] M. Lombardo, F. Pasi, C. Tiberi, C. Trombini, Synthesis, 2005, 2609.
    [35] R. Keltjens, S. K. Vadivel, R. Gelder, A. J. H. Klunder, B. Zwanenburg, Eur. J. Org. Chem. 2003, 1749.
    [36] M. C. Law, K.-Y. Wong, T. H. Chan, Green Chem. 2002, 4, 161.
    [37] J.-X. Wang, X. Jia, T. Meng, L. Xin, Synthesis, 2005, 2838.
    [38] W. J. Zhou, W. J. Yan, J.-X. Wang, Synlett, 2008, 137.
    [39] L. W. Bieber, M. F. Silva, R. C. Costa, L. O. S. Silva, Tetrahedron Lett. 1998, 39, 3655.
    [40] A. Chattopadhyay, J. Org. Chem. 1996, 61, 6104.
    [41] A. S. Y. Lee, S. F. Chu, Y. T. Chang, Tetrahedron Lett. 2004, 45, 1551.
    [42] (a) V. Jairaj, D. J. Burton, J. Fluorine Chem. 2001, 111, 233; (b ) M. Makosza, K. Grela, W. Fabianowski, Tetrahedron 1996, 52, 9575; (c) F. Marquez, R. Montoro, A. Llebaria, J. Org. Chem. 2002, 67, 308; (d) D. K. Wang, L. X. Dai, X. L. Hou, Y. Zhang, Tetrahedron Lett. 1996, 37, 4187; (e) F. Rubsam, S. Seck,A. Giannis, Tetrahedron 1997, 53, 2823.
    [43] L. W. Bieber, E. C. Storch, I. Malvestiti, M. F. Silva, Tetrahedron Lett. 1998, 39, 9393.
    [44] C. Zhou, Z. Wang, Synthesis 2005, 1649.
    [45] (a) H. E. John, G. D. Ian, J. F. Keith, D. H. Gary, Polyhedron 1994, 13, 409. (b) A. Kundu, S. Prabhakar, M. Vairamani, S. Roy, Organometallics 1997, 16, 4796. (c) X.-M. Tan, B. Shen, L. Liu, Q.-X. Guo, Tetrahedron Lett. 2002, 43, 9373. (d) M.-S. Liao, Q.-E. Zhang, W. H. Eugen Schwarz, Inorg. Chem. 1995, 34, 5591.
    [46]李德鹏,谈绩业,王锐,张晓辉,殷宪霞,邹凡,大连大学学报1999, 20(6), 14.
    [47] C. K. Keh, C. M. Wei, C. J. Li, J. Am. Chem. Soc. 2003, 125, 4026.
    [48] X. L . Hou, L. X. Dai, Tetrahedron Lett., 1996,37,4187.
    [49] W. S. Lu, T. H. Chan, J. Org. Chem. 2000, 65, 8589.
    [50] S. Kallstrom, T. Saloranta, A. J. Minnaard, Tetrahedron Lett. 2007, 48, 6958.
    [51] L. Keinicke, P. Fristrup, P. O. Norrby, J. Am. Chem. Soc. 2005, 127, 15756.
    [52] S. Hanessian, R.-Y. Yang, Tetrahedron Lett. 1996, 37, 5273.
    [53] A. S. Y. Lee, L. S. Lin Tetrahedron Lett. 2000, 41, 8803.
    [54] I. H. S. Estevam,L. W. Bieber, Tetrahedron Lett. 2003, 44, 667.
    [55] D. Freitag, P. Metz, Tetrahedron 2006, 62, 1799.
    [56] R. H. Ren, D. M. Pu, L. H. Qin, F. Q. Wen, G. P. Yao, J. Wu, J. Org. Chem. 2007, 72, 3149.
    [57] K. Gao, J. Wu, J. Org. Chem. in press.
    [58] M. L. Kantam, V. Balasubrahmanyam, K. B. S. Kumar, Tetrahedron Lett. 2007, 48, 7332.
    [59] (a) A. Fürstner, Synthesis 1989, 571. (b) A. Fürstner, In Encyclopedia of reagents for organic synthesis (ed. L. A. Paquette); Wiley: New York, 1995, 2402. (c) M. W. Rathke, In Comprehensive organic synthesis (ed. B. M. Trost; I. Fleming); Pergamon: Oxford, 1991, 2, 277; (d) M. W. Rathke, Org. React. 1975, 22, 423.
    [60] S. Reformatsky, Ber. Dt. Chem. Ges. 1887, 20, 1210.
    [61] T. H. Chan, C. J. Li, Z. Y. Wei, J. Chem. Soc. Chem. Commun. 1990, 500.
    [62] (a) H. Mattes, C. Benezra, Tetrahedron Lett. 1985, 26, 5697. (b) J. Y. Zhou, G. D. Lu, S. H. Wu, Synth. Commun. 1992, 22, 481.
    [63] T. H. Chan, C. J. Li, M. C. Lee, Z. Y. Wei, Can. J. Chem. 1994, 72, 1181.
    [64] L. W. Bieber, I. Malvestiti, E. C. Storch, J. Org. Chem. 1997, 62, 9061.
    [65] T. Kitazume, K. Kasai, Green Chem. 2001, 3, 30.
    [66] Tanaka, K.; Toda, F. Chem. Rev. 2000, 100, 1025.
    [67] J. L. Luche, C. Allavena, C. Petrier, C. Dupuy, Tetrahedron Lett. 1988, 29, 5373.
    [68] C. Dupuy, C. Petrier, L. A. Sarandeses, J. L. Luche, Synth. Commun. 1991, 21, 643.
    [69] I. R.Trehan, J. Singh, A. K. Arora, J. Kaur, G. L. Kad, Indian J. Chem. 1994, 33B, 468.
    [70] (a) M. Ohno, K. Ishizaki, S. Eguchi, J. Org. Chem. 1988, 53, 1285; (b) H. Urabe, K. Kobayashi, F. Sato, J. Chem. Soc. Chem. Commun. 1995, 1043.
    [71] (a) J. Perez Sestelo, J. L. Mascarenas, L. Castedo, A. Mourino, J. Org. Chem. 1993, 58, 118; (b) J. L. Mascarenas,J. Perez Sestelo, L. Castedo, A. Mourino, Tetrahedron Lett. 1991, 32, 2813.
    [72] S. J. Perez, J. L. Mascare?as, L. Castedo, A. Mouri?o, Tetrahedron Lett. 1994, 35, 275.
    [73] P. Blanchard, A. D. Da Silva, J. L. Fourrey, A. S. Machado, M. Robert-Gero, Tetrahedron Lett. 1992, 33, 8069.
    [74] B. Figadere, J. C.Harmange, L. X. Hai, A. Cave Tetrahedron Lett. 1992, 33, 5189.
    [75] S. Raussou, N. Urbain, P. Mangeney, A. Alexakis, N. Platzer, Tetrahedron Lett. 1996, 37, 1599.
    [76] K. M. Pietrusiewicz, M. Zablocka, Tetrahedron Lett. 1988, 29, 937.
    [77] L. A. Sarandeses, A. Mourino, J. L. Luche, J. Chem. Soc. Chem. Commun. 1992, 798.
    [78] T. Huang, C. C. K. Keh, C.-J. Li, Chem. Commun. 2002, 2440.
    [79] R. M. Suarez, J. P. Sestelo, L. A. Sarandeses, Chem-Eur. J. 2003, 9, 4179.
    [80] M. Ueda, H. Miyabe, A. Nishimura, H. Sugino, T. Naito, Tetrahedron: Asynnetry 2003, 14, 2857.
    [81] T. Huang, C. C. K. Keh, C.-J. Li, Chem. Commun. 2002, 2440.
    [82] X. Liu, S. Zhu, S. Wang, Synthesis, 2004, 0683.
    [83] J. S. Yadav, B. V. S. Reddy, P. M. K. Reddy, M. K. Gupta, Tetrahedron Lett. 2005, 46, 8411.
    [84] P. Srihari, A. P. Singh, A. K. Basak, Tetrahedron Lett. 2007, 48, 5999.
    [85] W. N. Chou, D. L. Clark, J. B. White, Tetrahedron Lett. 1991, 32, 299.
    [86] A. Durant, J. L. Delplancke, V. Libert, J. Reisse, Eur. J. Org. Chem. 1999, 2845.
    [87] C. Petrier, J. L. Luche, Tetrahedron Lett. 1987, 28, 2347.
    [88] C. Petrier, J. L. Luche, Tetrahedron Lett. 1987, 28, 2351.
    [89] G. B. Kardile, D. G. Desai, S. S. Swami, Synth. Commun. 1999, 29, 2129.
    [90] W. B. Wang, L. L. Shi, Y. Z. Huang, Tetrahedron Lett. 1990, 31, 1185.
    [91] R. N. Baruah Tetrahedron Lett. 1992, 33, 5417.
    [92] W. B. Wang, L. L. Shi, Y. Z. Huang, Tetrahedron Lett. 1990, 31, 1185.
    [93] M. L. D. Vona, B. Floris, L. Luchetti, V. Rosnati, Tetrahedron Lett. 1990, 42, 6081.
    [94] J. L,Y. L. Wang,T. Sun,Chem. Reagents,2002, 24(5), 2292.
    [95] T. Tsukinoki, H. Tsuzuki, Green Chem. 2001, 3, 37.
    [96] T. Tsukinoki, Y. Mitoma, S. Nagashima, T. Kawaji, I. Hashimoto, M. Tashiro, Tetrahedron Lett. 1998, 39, 8873.
    [97] F. A. Khan, J. Dash, C. Sudheer, R. K. Gupta, Tetrahedron Lett. 2003, 44, 7783.
    [98] S. Cicchi, M. Bonanni, F. Cardona, J. Revuelta, and A. Goti, Org. Lett. 2003, 5, 1773.
    [99] S. Mukhopadhyay, G. Rothenberg, H. Wiener, Y. Sasson, Tetrahedron 1999, 55, 14763.
    [100] S. Mukhopadhyay, G. Rothenberg, D. Gitis, Y. Sasson, Org. Lett. 2000, 2, 211.
    [101] S. Venkatraman, C. J. Li, Org. Lett. 1999, 1, 1133.
    [102] (a) S. Venkatraman, C. J. Li, Tetrahedron Lett. 2000, 41, 4831. (b) S. Venkatraman, T. Huang, C. J. Li, Adv. Synth. Catal. 2002, 344(3+4), 399.
    [103] S. Mukhopadhyay, G. Rothenberg, Y. Sasson, Adv. Synth. Catal. 2001, 343(3), 274.
    [104] K. Abiraj, G. R. Srinivasa, D. C. Gowda, Tetrahedron Lett. 2004, 45, 2081.
    [105] G. Cravotto, M. Beggiato, A. Penoni, G. Palmisano, S. Tollari, J.-M. Leveque, W. Bonrath Tetrahedron Lett. 2005, 46, 2267.
    [106] (a) L. Hyldtoft, R. Madsen, J. Am. Chem. Soc. 2000, 122, 8444; (b) C. S. Poulsen, R. Madsen, J. Org. Chem. 2002, 67, 4441.
    [107] P. H. Li, W. P. Rao, M. Wang, L. Wang, Chem. Res. Chinese U. 2004, 20(5), 598.
    [108] B. Jiang, H. Tian, Tetrahedron Lett. 2007, 48, 7942.
    [109] V. V. S. Babu, G. R. Vasanthakumar, S. J. Tantry, Tetrahedron Lett. 2005, 46, 4099.
    [110] D. J. Burton, V. Jairaj, J. Fluo. Chem. 2005, 126, 797
    [111] S. Paul, P. Nanda, R. Gupta, A. Loupy, Synthesis, 2003, 2877.
    [112] a) M. M. Lakouraj, B. Movassagh, Z. Fadaei, Synth. Commun. 2002, 32(8), 1237; b) B. Movassagh, A. Mossadegh, Synth. Commun. 2004, 34(9), 1685; c) B. Movassagh, Y. Zakinezhad, Chem. Lett. 2005, 34(10), 1330. d). B. Movassagh, M. Shamsipoor, Synlett 2005, 1, 121.
    [113] Y. Ishino, M. Mihara, S. Nishihama, I. Nishiguchi, Bull. Chem. Soc. Jpn. 1998, 71, 2669.
    [114] a) J. X. Haberman, C.-J. Li, Tetrahedron Lett. 1997, 38, 4735; b) M. Sugi, D. Sakuma, H. Togo, J. Org. Chem. 2003, 68, 7629.
    [115] D. Enders, L. Kramps, J. Q. Zhu, Tetrahedron: Asymmetry 1998, 9, 3959
    [116] A. Durant, J. L. Delplancke, R. Winand, J. Reisse, Tetrahedron Lett. 1995, 36, 4257.
    [1] a) C.-J. Li, T. H. Chan, Organic Reactions in Aqueous Media. New York: Wiley. 1997; b) C.-J. Li, Chem. Rev. 1993, 93, 2023; c) C.-J. Li, Chem. Rev. 2005, 105, 3095.
    [2] a)李汝雄,《绿色溶剂—离子液体的合成与应用》,北京:化学工业出版社,2004. b) M. J. Earle, K. R. Seddon, Pure Appl. Chem. 2000, 72, 1391.
    [3] a) Anastas P. T., Warner J. C.“Green Chemistry. Theory and Practice”. Oxford: Oxford Univ. Press, 1998; b) Anastas P. T., Warner J. C. Green Chemistry. Frontiers in Benign Chemical Synthesis and Processes. Oxford: Oxford Univ. Press, 1998. c) J. A. Darr and M. Poliakoff, Chem. Rev., 1999, 99, 495
    [4] B. A. Boberts, G. W. V. Cave, C. L. Reston and J. L. Scott, Green Chem., in press.
    [5] a) G. W. V. Cave, C. L. Reston and J. L. Scott, Green Chem., 2001, 2159; b) S. Paul, P. Nanda, R. Gupta, A. Loupy Synthesis, 2003, 2877; c) J.-X. Wang, X. Jia, T. Meng, L. Xin, Synthesis, 2005, 2838; d) P. C. Andrews, A. C. Peatt, C. L. Raston, Green Chem. 2001, 3, 313; e) Tanaka, K.; Toda, F. Chem. Rev. 2000, 100, 1025.
    [6] a) H. Bienayme, C. Hulme, G. Oddon, P. Schmitt, Chem. Eur. J. 2000, 6, 3321; b) T. L. Ho Tandem Reactions in Organic Synthesis. New York: Wiley-Interscience, 1992.
    [7] a) R. H. Ren, D. M. Pu, L. H. Qin, F. Q. Wen, G. P. Yao, J. Wu, J. Org. Chem. 2007, 72, 3149; b) K. Gao, J. Wu, J. Org. Chem. in press; c) M. L. Kantam, V. Balasubrahmanyam, K. B. S. Kumar, Tetrahedron Lett. 2007, 48, 7332.
    [8] a) Smith et al. J. Am. Chem. Soc. 1961; 83, 3649; b) F. Mizue, M. Yasuyuki etc.. Bull. Chem. Soc. Jpn. 1993, 66, 3021; c) K. Alexander, N. Ronny; J. Am. Chem. Soc. 2004, 126; 6356; d) K. Alan, R. Stanislaw; H. Gregory Tetrahedron 1991, 47, 2683-2732.
    [9] a) L. Murphey. J. Am. Chem. Soc.; 1949, 71, 478; b) Inoi,T. et al. J. Org. Chem. 1962, 27,4597; c) S. Kim, R. D. Rieke, J. Org. Chem. 2000, 65, 2322.
    [10] a) P. Knochel, M. P. C. Yeh, S .C. Berk, J. Tabert, J. Org. Chem. 1988, 52, 2390; b) S. C. Berk, M. C. P. Yeh, N. Jeong, P. Knochel, Organometallics 1990, 9, 3053.
    [11] L. W. Bieber, E. C. Storch, I. Malvestiti, M. F. Silva, Tetrahedron Lett. 1998, 39, 9393.
    [12] W. Deng, X.-H .Tan, L. Lei, Q-X Guo. Chin. J. Chem. 2004, 22, 747.
    [13] a) S. W. Hansen, T. D. Spawn, D. J. Burton, J. Fluorine Chem. 1987, 37, 415; b) P. L. Heinze, D. J. Burton, J. Org. Chem. 1988, 53, 2714.
    [1] a) P. Knochel, R. D. Singer, Chem. Rev. 1993, 93, 2117; b) P. Knochel, J. J. Almena-Perea, P. Jones, Tetrahedron 1998, 54, 8257.
    [2] E. Freund, Liebigs Ann. Chem. 1894, 71, 171.
    [3] a) T. Sato, K. Soai, K. Suzuki, T. Mukaiyama, Chem. Lett. 1978, 601; b) T. Mukaiyama, K. Soai, T. Sato, H. Shimizu, K. Suzuki, J. Am. Chem. Chem. 1979, 101, 1455.
    [4] K. Soai, M. Watanabe, M. Koyano, Bull. Chem. Soc. Jpn. 1989, 62, 2124.
    [5] a) K. Soai, S. Niwa, Chem. Rev. 1992, 92, 833; b) M. Asami, K Usui, S. Higuchi, S. Inoue, Chem. Lett. 1994, 297; c) M. Uemura, R. Miyake, K. Nakayama, M. Shiro, J. Org. Chem. 1993, 58, 1238; d) K. Sai, M. Okudo, M. Okamoto, Tetrahedron Lett. 1990, 31, 5011.
    [6] P. Knochel, M. C. P. Yeh, S. C. Berk, J. Talbert, J. Org, Chem. 1988, 52, 2390.
    [7] a) P. Knochel and R. D. Singer, Chem. Rev.1993, 93, 2117. b) R. D. Rieke and M. V. Hason, Tetrahedron, 1997, 53, 1925.
    [8] P. knochel, J. J. Almena Perea, P. Jones, Tetrahedron, 1998, 54, 8275-9319.
    [9] a) B. E. Rossiter, N. M. Swingle, Chem. Rev. 1992, 92, 771; b) M. Yamaguchi, T. Shiraishi, M. Hirama, Angew. Chem., Int. Ed. Engl. 1993, 32, 1176; c) H. Sasai, T. Arai, M. Shibasaki, J. Am Chem. Soc. 1995, 60, 903; e) M. Yamaguchi, Y. Igarashi, R. S. Reddy, T. Shiraishi, M. Hirama, Tetrahedron 1997, 53, 11223; f) R. Noyori and M. Kitamura, Angew. Chem., Int. Ed. Engl. 1991, 30, 49.
    [10] a) K. Soai, S. Niwa, Chem. Rev. 1992, 92, 833; b) P. Knochel, S. Vettel, C. Eisenberg, Appl. Organomet. Chem. 1995, 9, 175-188; c) L. A. Paquette, R. Zhou, J. Org. Chem. 1999, 64, 7929-7934.
    [11] a) M. Asami, K Usui, S. Higuchi, S. Inoue, Chem. Lett. 1994, 297; b) M. Uemura, R. Miyake, K. Nakayama, M. Shiro, J. Org. Chem. 1993, 58, 1238; c) K. Sai, M. Okudo, M. Okamoto, Tetrahedron Lett. 1990, 31, 5011.
    [12] P. Knochel, Synlett. 1995, 393-403.
    [13] a) M. V. Hanson, J. D. Brown, Q. J. Niu, R. D. Rieke, Tetrahedron Lett. 1994, 35, 7205; b) R. D. Rieke, M. V. Hanson, J. D. Brown, Q. J. Niu, J. Org. Chem. 1996, 61, 2726; c) S. C. Berk, P. Knochel, M. C. P. Yeh, J. Org. Chem. 1988, 53, 5789.
    [14] a) R. Rossi, F. Bellina, D. Ciucci, J. Orgnomet. Chem. 1997, 542, 113; b) C. Retherford, T.-S., Cghou, R. M. Schelkun, P. Knochel, Tetrahedron Lett. 1990, 31, 1833.
    [15] a) H.Ochiai, T. Nishihara, Y. Tamaru, Z. Yoshida, J. Org. Chem. 1988, 53, 1343; b) Y. Tamaru, T. Nakamura, M. Sakaguchi, H.Ochiai, Z. Yoshida, J. Chem. Soc., Chem. Commun. 1988, 610; c) P. Quinton, T. Le Gall, Tetrahedron Lett. 1991, 32, 4909.
    [16] a) M. V. Hanson, R. D, Rieke, J. Am. Chem. Soc. 1995, 117, 10775; b) I. Zhu, R. D. Rieke, Tetrahedron Lett. 1991, 32, 2865.
    [17] R. D. Enders, U. Reinhold, Tetrahedron: Asymmetry 1997, 8, 1895.
    [18] a) R. Bloch, Chem. Rev. 1998, 98, 1407; b) T. H. Chan, W. Lu, Tetrahedron Lett. 1998, 39, 8605.
    [19] a) Y. Yamamoto, N. Asao, Chem. Rev. 1993, 93, 2207; b) S. Kobayashi, R.Hirabayashi, J. Am. Chem. Soc. 1999, 121, 6942.
    [20] a) G. E. Keck, E. J. Enholm, J. Org. Chem. 1985, 50, 146; b) S. Itsuno, K. Watanabe, K. Ito, A. A. El-Shehawy, A. A. Sarhan, Angew. Chem., Int. Ed. Engl. 1997, 36, 109; c) T. Akiyama, J. Iwai, Synlett 1998, 273; d) K. Nakamura, H. Iwama, Y. Yamamoto, J. Am. Chem. Soc. 1996, 118, 6642.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700