超高密度图案化磁记录介质中偶极作用与热辅助磁化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于记录介质的超顺磁效应,传统的水平磁记录方式已经达到理论极限。为了实现特比(Tb 1Terabit=2~(40)bit)级的超高密度存储,各种记录方案正在探索之中,其中图案化介质和热辅助磁记录技术被认为是最有发展潜力的方向,如果将两者结合则记录密度会更高。本论文结合已有的实验数据与前人的理论工作,通过有限差分法求解动力学方程和Monte Carlo随机方法重点研究了以下几个与图案化介质及热辅助磁化技术有关的问题:
     (1)针对数值微磁学中矩形网格处理复杂边界时计算精度较低的问题,利用磁体本身的几何对称性和退磁张量的性质,通过在实空间求积分的方法解析地推导了等边三棱柱的退磁张量。根据这一张量表达式,可以得到任意精度的退磁因子,把这一结果应用在微磁学的网格划分当中,可以提高对复杂边界的处理能力。
     (2)为了能够在数值计算中高效地求出系统中的偶极作用能,解决由于偶极作用长程性带来求和速度收敛缓慢的问题,我们通过重新定义网格求和方程,并采取分段处理的方法,解决了Lekner求和法中由于对称性降低而导致的奇异性问题,成功地把Lekner求和法从三维周期性边界条件下的库仑作用系统推广到了二维周期性结构的磁偶极作用系统。应用Lekner求和法可以高效地处理图案化介质这类规则排列的磁偶极子系统中偶极作用能的计算问题。
     (3)为了深入理解偶极作用能对信息位稳定性与信息写入过程的具体影响,为实际设计图案化记录系统时选择合适的图案化介质提供理论指导,我们通过求解二维系统的动力学方程,研究了有限阵列和周期性边界条件阵列磁性颗粒间偶极作用能对系统静态与动态性质的影响。发现有限阵列的静态磁学性质诸如剩磁状态、矫顽力等与系统的大小密切相关,而磁化动力学过程则不受系统大小的影响。发现偶极作用能对系统的磁化强度翻转模式有决定性的作用。对于有限阵列来说,在平面各向异性的水平磁化翻转过程中,由偶极作用强度决定了三种翻转模式,即一致转动、成核模式及这两种模式的过渡区域;在垂直各向异性的垂直磁化翻转过程中,由偶极作用强度决定了四种翻转模式,即成核模式、非线性激发、旋卷模式以及成核与旋卷的过渡区域。对于周期性边界条件下的阵列,由磁场脉冲持续时间和偶极作用强度共同决定了中心磁矩翻转类型相图,相图中可以分为五种翻转类型,即关联翻转、过冲翻转、下冲翻转、弹道翻转以及未发生翻转区。
     (4)为了理解偶极作用能对系统热稳定性的影响以及温度不均匀性对热辅助写入过程的具体影响,我们运用Monte Carlo方法研究了这两个问题。发现偶极作用能的增加会导致系统闭锁温度的升高,从而提高系统的热稳定性。在高斯分布型的稳定温度场中,发现根据温度场的半高宽可以把翻转过程分为三类不同的成核模式,即边缘成核而后中心扩展模式、边缘成核而后边缘扩展模式以及两种模式的混合模式,并且翻转弛豫时间的对数与半高宽导数之间成分段的线性关系,其分段点受外场和中心温度的影响。而对于给定半高宽的温度场来说,弛豫时间与温度的关系与经典成核理论描述均匀温度场中弛豫时间与温度的关系相似,只是此时的能量势垒和比例系数都与温度场的半高宽有关。
Because of the superparamagnetism in recording media, the traditional longitude recording technology is close to the theoretical limit. At the same time, patterned media (PM) and heat assisted magnetic recording (HAMR) are regarded as the potential ways to achieve Terabit level ultrahigh area density. In this dissertation, we studied the following problems about PM and HAMR by computer simulations based on the experiment data and previous theoretical work:
     (1) In order to improve the accuracy in micromagnetic simulation of complex boundary, we derived the point function demagnetization tensor of equilateral triangular prisms in terms of the symmetry of the magnetic body and a theorem about demagnetization tensor. One can obtain the demagnetization factors with any accuracy of equilateral triangular prisms by numerically integrate this expression. This result can be used in micromagnetic discretization and improve the accuracy of calculation.
     (2) In order to deal with the long range effect of dipolar interaction efficiently, the Lekner summation method is extended from three dimensional Coulomb systems to two dimensional magnetic dipolar systems successfully. The Lekner method can be used to sum the dipolar interaction energy in PM and other regular arrays efficiently and can be used in other randomly distributed systems combined with other summation techniques.
     (3) On solving the dynamics equations of two dimensional systems, we studied the dipolar interaction in finite arrays and periodic arrays to understand the effects of dipolar interaction energy on the writing process and stability of the reconding bits. It is found that the quasistatic properties, such as remanence and coercivity are influenced by the size of finite arrays. On the contrary, the reversal modes are only determined by the dipolar interaction strength. For the easy plane anisotropy, the dipolar interaction strength determines three reversal modes, which are coherent rotation, nucleation and the transition between them, and four reversal modes in perpendicular easy axis anisotropy case, which are nucleation, nonlinear excitation, curling and the transition between nucleation and curling. For periodic arrays, the dipolar interaction strength and the duration of magnetic field determine a phase diagram of reversal types of precession switching. There are five reversal types in the phase diagram, which are correlated reversal, overshoot reversal, undershoot reversal, ballistic reversal and nonreversal.
     (4) With the help of Monte Carlo method, we studied the dipolar interaction effects on the thermal stability of magnetic systems and the nonuniformity of temperature effects on the thermally assisted magnetization processes. It is found that the block temperature of the system increase with increasing dipolar interaction strength, so the dipolar interaction can improve the thermal stability of systems. In the Gaussian stable temperature field, we found three nucleation modes according to the full width at half maximum (FWHM) of the temperature field. At the same time, the logarithmic of relaxation time is sectional linear to the inverse value of FWHM. The sectional point is determined by applied field and central temperature. In addition, for a given FWHM, the relationship between relaxation time and temperature can approximately described by the classical nucleation theory, but the energy barrier and the proportion coefficient are both related to the FWHM of the temperature field.
引文
[1]Miura Y.Information Storage for the Broadband Network Era-Fujitsu's Challenge in Hard Disk Drive Technology.Fujitsu Scientific & Technical Journal,2001,37:111-125
    [2]http://techon.nikkeibp.co.jp/members/News/20041214/106840
    [3]http://en.wikipedia.org/wiki/IBM_305
    [4]IBM Research website,http://www.research.ibm.com/research/gmr/basics.html
    [5]Terris B.D.Thomson T.Nanofabricated and self-assembled magnetic structures as data storage media.J.Phys.D:Appl.Phys.2005,38:R199-R222
    [6]http://en.wikipedia.org/perpendicular.html
    [7]Kenneth E.J.Magnetic materials and structures for thin-film recording media.J.Appl.Phys.2000,87:5365-5370
    [8]Neel L.Theorie du trainage magnetique des ferromagnetiques en grains fins avec applications aux terres cuites.Ann.Geophys.,1949,5:99-136
    [9]Stoner E C.Wohlfarth E P.A mechanism of magnetic hysteresis in heterogeneous alloys.Magnetics,IEEE Transactions on,1991,27:3475-3518
    [10]杨正.磁记录物理.兰州:兰州大学出版社,1986
    [11]钟智勇,荆玉兰,唐晓莉,等.图案化磁记录介质.材料导报.2005,19:88-93
    [12]Hamann H F,Martin Y C,Wickramasinghe H K.Thermally assisted recording beyond traditional limits.Appl.Phys.Lett.2004,84:810-813
    [13]Bertram H N.Theory of magnetic recording.Cambridge university press,1994
    [14]曹江伟.超高密度磁记录介质用FePt薄膜的研究.兰州大学博士论文,2006
    [15]Hee H C,Zou Y Y,Wang J P,Tilted media by micromagnetic simulation:A possibility for the extension of longitudinal magnetic recording? Journal of Applied Physics,2002,91,8004-8008
    [16]He L,Doyle W D,Fujiwara H,High speed coherent switching below the Stoner-Wohlfarth limit,IEEE Transactions on Magnetics,1994,30:4086-4090
    [17]Suess D,Schrefl T,Scholz W,et al.Fast switching of small magnetic particles,Journal of Magnetism and Magnetic Materials,2002,242:426-431
    [18]Wang J P,Zou Y Y,Hee H C,Chong T C,Zheng Y F Approaches to tilted magnetic recording for extremely high areal density.Magnetics,IEEE Transactions on,2003,39:1930-1935
    [19]Tofall S A M,Rahman I Z,Rahman M A.Patterned nanostructured arrays for high-density magnetic recording.Appl Organometal Chem.2001,15:373-384
    [20]Ross C A.Patterned magnetic recording media.Annu.Rev.Mater.Res.2001,31:203-223
    [21]http://www.seagate.com
    [22]Lodder J C.Methods for preparing patterned media for high-density recording.J.Magn.Magn.Mater.2004,272-276:1692-1698
    [23]Gurovich B A,Dolgy D I,Kuleshova E A,et al.Selective removal of atoms as a new method for fabrication of nanoscale patterned media.Microelect.Eng.2003,69:358-362
    [24]Chou S Y,Krauss P R.Quantum magnetic disk.J Magn.Magn.Mater.,1996,155:449-454
    [25]Masaharu O,Masaki M,Kanta O,et al.Formation,properties and photoelectron spectroscopy of magnetic nanostures.J.Electron Spectroscopy and Related Phenomena,2002,124:165-170
    [26]Zhang L,Bain J A,Zhu J A.Characterization of heat-assisted magnetic probe recording on CoNi/Pt multilayers.J.Magn.Magn.Mater.,2006,305:16-23
    [27]Hulteen J C,Martin C R.Template synthesis of nanoparticles in nanoporous membranes.In Nanoparticles and nanostructures films;reparation,characterization and application.Wiley-VCH,1998,185
    [28]Aranda P,Garcia J M.Porous membranes for the preparation of nanostruetures.J Magn Magn Mater.,2002,249:214-218
    [29]Weston J L,Butera A,Otte D,et al.Nanostructured magnetic networks:a materials comparison.J Magn Magn Mater,1999,193:515-521
    [30]孙丰强,蔡伟平,张立德,等.基于二维胶体晶体刻蚀法德纳米颗粒阵列.物理,2003,32:223
    [31]Park M,Harrison C,ChaikinP,et al.Block copolymer lithogrphy;periodic arrays of-10~(11) holes in 1 square centimeter.Science,1997,276:1401-1403
    [32]Cheng J Y,Ross C A,Chan V Z H,et al.Templated self-assembly of block copolymers:effect of substrate topography.Adv Mater,2000,13:1174-1177
    [33]Sun S,Murray C B,Weller D,et al.Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices.Science,2000,287:1989-1992
    [34]Chunsheng E,Simth D,Wolfe J,et al.Physics of patterned magnetic medium recording:Design Considerations.J.Appl.Phys.,2005,98:024505-024512
    [35]Lyberatos A,Guslienko K Y.Thermal stability of the magnetization following thermomagnetic writing in perpendicular media.2003,95:1119-1127
    [36]Landau D P,Binder K.A Guide to Monte Carlo simulations in statistical physics.Cambrige University Press,2000
    [37]Hubert A,Rudolf S.Magnetic Domains:The analysis of magnetic microstructures.Springer-Verlag,1998
    [38]Landau L D,Lifshitz E.On the theory of the dispersion of magnetic permeability in ferromagnetic bodies.Phys.Z.Sowjetunion,1935,8:153-160
    [39]Brown W F.Theory of the Approach to Magnetic Saturation.Phys.Rev.,1940,58:736-742
    [40]Brown W F.The Effect of Dislocations on Magnetization Near Saturation.Phys.Rev.,1941,59:528-535
    [41]Brown W F.Micromagnetics.Interscience Publishers,1963
    [42]曾谨言.量子力学Ⅰ.北京:科学出版社,2000
    [43]戴道生,钱昆明.铁磁学上册.北京:科学出版社,2000
    [44]Majlis N.The Quantum Theory of Magnetism.World Scientific,2000
    [45]Massimiliano d'Aquino.Nonlinear magnetization dynamics in thin-films and nanoparticles.UNIVERSITA DEGLI STUDI DI NAPOLI DOCTORATE THESIS,2005
    [46]宛德福,马兴隆.磁性物理学.成都:电子科学技术出版社,1994
    [47]Gilbert T L.A phenomenological theory of damping in ferromagnetic materials.Magnetics,IEEE Transactions on,2004,40:3443-3449
    [48]Berkov D V,Gorn N L.Numerical simulation of quasistatic and dynamics remagnetization process with special applications to thin films and nanoparticles.Handbook of Advanced Magnetic Materials Volume Ⅱ,2005:421-503
    [49]Fidler J,Schrefl T.Micromagnetic modeling--the current state of the art.J.Phys.D:Appl.Phys.2000,33:R135-R156
    [50]Donahue M J,McMichael R D.Exchange energy representations in computational micromagnetics.Physica B 1997,233:272-278
    [51]钟尔杰,黄廷祝.数值分析.北京:高等教育出版社,2004
    [52]Metropolis N,Rosenbluth A W,Rosenbluth M N,et al.Equation of State Calculations by Fast Computing Machines.Journal of Chemical Physics,1953,21:1087-1092
    [53]Binder K,Heermann D W.Monte Carlo simulation in statistical physics.Berlin:Springer-Verlag,1997
    [54]Gonzalez J M,Chubykalo O A,Rueda R S.A micromagnetic approach,based on the Monte Carlo algorithm,to the thermally activated magnetization reversal processes.J.Magn.Magn. Mater., 1999,203:18-22
    [55] Reif F. Fundamentals of statistical and thermal physics. New York.McGraw-Hill Book Company, 1967
    [56] Dimitrov D A, Wysin G M. Magnetic properties of superparamagnetic particles by a Monte Carlo method. Phys. Rev. B, 1996,54:9237-9241
    [57] Wang L, Ding J, Kong H Z, et al. Monte Carlo simulation of a cluster system with strong interaction and random anisotropy. Phys. Rev. B, 2001,64:214410-214419
    [58] Glauber R J. Time-Dependent Statistics of the Ising Model. Journal of Mathematical Physics, 1963,4: 294-307
    [59] Nowak U, Chantrell R W, Kennedy E C. Monte Carlo Simulation with Time Step Quantification in Terms of Langevin Dynamics. Phys. Rev. Lett., 2000,84:163-166
    [60] Smirnov-Rueda R, Chubykalo O, Nowak U, et al. Real time quantification of Monte Carlo steps for different time scales. J. Appl. Phys., 2000,87:4798-4780
    [61] Chubykalo O, Smirnov-Rueda R, Nowak U, et al. Monte Carlo technique with a quantified time step: Application to the motion of magnetic moments. Phys. Rev. B, 2003,67: 064422-064431
    [62] Cheng X L , Jalil M B A, Lee H K. Time-quantifiable Monte Carlo method for simulating a magnetization-reversal process. Phys. Rev. B, 2005,72:094420-094427
    [63] A. Aharoni, Introduction to the Theory of Ferromagnetism, Oxford University Press , 2001.
    [64] Beleggia M, Tandon S, Zhu Y, et al. On the magnetostatic interactions between nanoparticles of arbitrary shape. J Magn. Magn. Mater., 2004,278-286
    [65] De'Bell K, Maclsaac A B, Whitehead J P. Dipolar effects in magnetic thin films and quasi-two-dimensional systems. Rev. Mod. Phys., 2000,72: 225-257
    [66] De'Bell K, Maclsaac A B, Booth I N, et al. Dipolar-induced planar anisotropy in ultrathin magnetic films. Phys. Rev. B,1997,55:15108-15118
    [67] Peng Q Z. Microstructural dependence of magnetization process in thin film recording media. Ph.D. Dissertation, University of California, San Diego, 1997
    [68] OOMMF User's Guide, http://math.nist.gov/oommf/
    [69] Moskowitz R, Torre D E. Theoretical aspects of demagnetization tensors. Magnetics, IEEE Transactions on, 1966,2:739-744
    [70] Osborn J A. Demagnetizing Factors of the General Ellipsoid. Physical Review, 1945,67:351-357
    [71] Chen D X, Brug J A, Goldfarb R B. Demagnetizing factors for cylinders. Magnetics, IEEE Transactions on, 1991,27:3601-3619
    [72] Rhodes P, Rowlands G. On the calculation of acoustic radiation impedance of polygonal-shaped apertures. J. Acoust. Soc.Am., 1992,92:2961-2963
    [73] Rhodes P, Rowlands G Demagnetising energies of uniformly magnetized rectangular blocks. Proc. Leeds Phil. Lit. Soc, 1954, 6:191-210
    [74] Aharoni A. Demagnetization factors for rectangular ferromagnetic prisms. J. Appl. Phys., 1998,83:3432-3434
    [75] Chen D X, Pardo E, Sanchez A. Demagnetizing factors of rectangular prisms and ellipsoids. Magnetics, IEEE Transactions on, 2002,38:1742-1752
    [76] Herber R E, Hesjedal T. Calculation of the magnetic stray field of a uniaxial magnetic domain. J. Appl. Phys., 2005,97:074504-074507
    [77] Beleggia M, De Graef M. On the computation of the demagnetization tensor field for an arbitrary particle shape using a Fourier space approach. J. Magn. Magn. Mater., 2003,263 :L1-L9
    [78] Tandon S, Beleggia M, Zhu Y, et al. On the computation of the demagnetization tensor for uniformly magnetized particles of arbitrary shape. J. Magn. Magn. Mater., 2004,271:27-38
    [79] Beleggia M, De Graef M, Millev Y T, et al. Demagnetization factors for elliptic cylinders. J. Phys. D: Appl. Phys., 2005,38:3333-3342
    
    [80] Brown W F. Magnetostatic principles in Ferromagnetism. Amsterdam:North-Holland, 1962
    [81] Joseph R I, Schlomann E. Demagnetizing field in non-ellipsoidal bodies. J. Appl. Phys., 1965,36:1579-1593
    [82] Tsymbal E Y. Theory of magnetostatic coupling in thin-film rectangular magnetic elements. Applied Physics Letters, 2000,77:2740-2742
    
    [83] Ewald P. Investigations of crystals by means of Roentgen rays. Ann. Phys., 1921,64:253-260
    [84] Ding H Q, Karasawa N, Goddard W A. The reduced cell multipole method for Coulomb interactions in periodic systems with million-atom unit cells. Chem. phys. Lett., 1992,196:6-10
    [85] Hinzke D, Nowak U. Monte Carlo simulations with dipolar fields calculation by use of fast Fourier transformations. J. Magn. Magn. Mater., 2000,221:365-372
    [86] Sandak B. Multiscale fast summation of long-range charge and dipolar interactions. Journal of Computational Chemistry, 2001,22:717-731
    [87] Lekner J. Summation of dipolar fields in simulated liquid vapor interfaces. Physica A, 1989,157:826-838
    [88] Lekner J. Summation of coulomb fields in computer simulated disordered systems. Physica A, 1991,176:485-498
    [89] Clark A T, Madden T J, Warren P B. Summation of electrostatic interactions in quasi-two-dimensional simulations. Mol. Phys., 1996,87:1063-1039
    [90] Grzybowski A, Brodka A. Coulomb interactions in a computer simulation of a system periodic in two directions. Mol. Phys., 2002,100:1017-1023
    
    [91] Weisstein E W. Concise encyclopedia of mathematics CD-ROM, CD-ROM edition 1.0,1999
    [92] Whittaker E T, Watson G N. A Course on modern analysis. Cambridge:Canmbridge University press, 1963
    
    [93] Watson G N. Theory of Bessel functions, Cambridge:Canmbridge University press, 1966
    [94] Abramowitz M, Stegun I A. Handbook of mathematical functions. New Yourk:Dover,1965
    [95] Glasser M L. The evaluation of lattice sums: Analytic procedures. J. Math. Phys., 1973, 14:409-413
    [96] Hautot A. A new method for the evaluation of slowly convergent series. J. Math. Phys., 1974,36:1722-1727
    [97] http://functions.wolfram.com
    [98] Gronbech-Jensen N, Hummer G, Beardmore M. Lekner summation of Coulomb interactions in partially periodic systems. Mol. Phys., 1997,92:941-945
    [99] Politi P, Pini M G Dipolar interaction between two-dimensional magnetic particles. Phys. Rev. B, 2002,66:214414-224423
    
    [100] Mazars M. Lekner summations. J. Chem. Phys., 2001,115:2955-2965
    [101] Petersen H G Accuracy and efficiency of the particle mesh Ewald method. J. Chem. Phys. 1995,103:3668-3679
    [102] Deserno M, Holm C. How to mesh up Ewald sums. II. An accurate error estimate for the particle-particle-particle-mesh algorithm. J. Chem. Phys. 1998,109: 7694-7701
    [103] Madelung E. Mathematical Physics. Berlin:Springer, 1957
    
    [104] 姜寿亭,李卫. 凝聚态磁性物理. 北京:科学出版社,2003
    
    [105] Kayali M A, Saslow W M. Hysteresis of finite array of magnetic nanodots. Phys. Rev. B, 2004,70:174404-174409
    [106] Stamps R L, Hillebrands B. Biased switching of small magnetic particles. Appl. Phys. Lett., 1999,75:1143-1145
    [107] Ross C A, Hwang M, Shima M, et al. Micromagnetic behavior of electrodeposited cylinder arrays. Phys. Rev. B, 2002,65: 144417-144424
    [108] Stamps R L, Camley R E. Magnetization processes and reorientation transition for small magnetic dots. Phys. Rev. B, 1999,60:11694-11698
    [109] Stamps R L, Camley R E. High-frequency response and reversal dynamics of two-dimensional magnetic dot arrays. Phys. Rev. B, 1999,60:12264-12269
    [110] Stamps R L, Camley R E. Frustration and finite size effects of magnetic dot arrays. J. Magn. Magn. Mater., 1998,177-181:813-814
    [111] Takagaki Y, Ploog K H. Magnetization of two-dimensional square arrays of nanomagnets. Phys. Rev. B, 2005,71:184439-184445
    [112] Zhang L F, Xu C, Hui P M, et al. Influence of dipolar interaction on small magnetic dot arrays. J. Appl. Phys., 2005,97:103912-103916
    [113] Fassbender J. Magnetization dynamics investigated by time-resolved kerr effect magnetometry. Topics Appl. Phys., 2003,87:59-92
    [114] Slonczewski J C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater., 1996,159: L1-L7
    [115] Sun J Z. Current-driven magnetic switching in manganite trilayer junctions. J. Magn. Magn. Mater., 1999,157:202-206
    [116] Kiselev S I, Sankey J C, Krivorotov I N, et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Letters to Nature 2003,425:380-383
    [117] Grollier J, Cros V, affres H, et al. Field dependence of magnetization reversal by spin transfer, Phys. Rev. B, 2003,67:174402-174409
    [118] Miltat J, Albuquerque G, Thiaville A. An introduction to micromagnetics in the dynamic regime. Topics Appl. Phys.2002,83:1-34
    
    [119] Aharoni A. Theoretical search for domain nucleation. Rev. Mod. Phys., 1962,34:227-238
    [120] Aharoni A. Magnetization Curling. Phys. Stat. Sol., 1966,16:3-42
    [121] Frei E H, Shtrikman S, Treves D. Critical Size and Nucleation Field of Ideal Ferromagnetic Particles. Phys. Rev., 1957,106:446-455
    [122] Newell A J, Merrill R T. The curling nucleation mode in a ferromagnetic cube J. Appl. Phys., 1998,84:4394-4402
    [123] Safonov V L, Bertram H N. Magnetization reversal as a nonlinear multimode process. J. Appl. Phys., 1999,85:5072-5074
    [124] Visscher P B, Traistaru O, Apalkov D M, et al. Visualization of spin waves during switching simulation. 2002,91:7544-7546
    [125] Visscher P B, Apalkov D M, Feng X. Switching simulations in perpendicular media: spin wave instabilities. IEEE Trans. Mag., 2003,38:2523-2525
    [126] Xu C, Ma Y Q, Hui P M, Equilibrium magnetic moment configurations in magnetic nanoparticle films: Effects of anisotropy, dipolar interaction, and Zeeman energy. J. Appl. Phys., 2005,98:084303-084310
    [127] Zhang L F, Xu C, Ma Y Q. Biased switching of dipolar interacting nanoparticles in a periodic array. Phys. Lett. A, 2005,338:373-378
    [128] Lamba S, Annapoorni S. Single domain magnetic arrays: role of disorder and interactions. Eur. Phys. J.B, 2004,39:19-25
    [129] Mallinson J C. Damped gyromagnetic switching, IEEE Transactions on Magnetics, 2000,36:1976-1981
    [130] Bauer M, Fassbender J, Hillebrands B, et al. Switching behavior of a Stoner particle beyond the relaxation time limit, Phys. Rev. B, 2000,61:3410-3415
    [131] Kaka S, Russek S E, Precessional switching of submicrometer spin valves, Appl. Phys. Lett., 2002,80:2958-2860
    [132] Schumacher H W, Chappert C, Sousa R C, et al. Quasi ballistic magnetization reversal, Phys. Rev. Lett., 2003,90:17204-17207
    [133] Hillebrands B, Ounadjela K. Spin Dynamics in Confined Magnetic Structures I. Berlin:Springer-Verlag,2002
    [134] Hillebrands B, Ounadjela K. Spin Dynamics in Confined Magnetic Structures II. Berlin:Springer-Verlag,2002
    [135] Bertotti G, Mayergoyz I D, Serpico C, Dimian M, Comparison of analytical solutions of Landau-Lifshitz equation for "damping" and "precessional" switchings, J. Appl. Phys., 2003,93:6811-6816
    
    [136] Bean C P, Livingston J D. Superparamagnetism. 1959,30: S120-S129
    [137] Nunes J P, Bahiana M, Bastos C S M. Magnetization curves as probes of Monte Carlo simulation of nonequilibrium states. Phys. Rev. E, 2004,69:056703-056710
    [138] Scheinfein M R, Schmidt K E, Heim K R, et al. Magnetic order in two-dimensional arrays of nanometer-sized superparamagnets. Phys. Rev. Lett., 1996,76:1541-1543
    [139] Chubykalo-Fesenko O, Chantrell R W. Multidimensional energy barrier distribution of interacting magnetic particles evaluated at different magnetization states. J. Appl. Phys. 2005,97:10J315-10J317
    [140] Rasing T, Berg H, Gerrits T. Ultrafast magnetization and switching dynamics. Topics Appl. Phys., 2003,87:213-252
    [141] Shieh H P D. Kryder M. Dynamics and factors controlling regularity of thermomagnetically written domains. J. Appl. Phys., 1987,61:1109-1114
    [142] Giles R, Mansuripur M. Dynamics of magnetization reversal in amorphous films of rare-earth -transition metal alloys. J. Magn. Soc. Jpn., 1991,15 Suppl. Sl:299-303
    [143] Hasegawa M, Moroga K, Okada M, et al. Computer simulation of direct overwrite scheme in the exchange coupled bilayer for magnetooptical memory, J. Magn. Soc. Jpn., 1991,15 Suppl. S1:307-310
    [144] Berkov D V. Fast switching of magnetic nanoparticles: simulation of thermal noise effects using the Langevin dynamics. IEEE Trans. Magn. 2002,38:2489-2495
    [145] Berkov D V, Gorn N L, Goernert P. Magnetization Dynamics in Nanoparticle Systems: Numerical Simulation Using Langevin Dynamics. physica status solidi(a), 2002,189: 409 - 421
    [146] Nowak U, Hinzke D. Magnetic Nanoparticles: The Simulation of Thermodynamic Properties. ADVANCES IN SOLID STATE PHYSICS, 2001,41:613-622
    [147] Nowak U. Thermally activated reversal in magnetic nanostructures. Ann. Rev. Comp. Phys. 2001,9:105-127
    [148] Zhang L, Bain J A, Zhu J G. Characterization of heat-assisted magnetic probe recording on CoNi/Pt multilayers. J. Magn. Magn. Mater. 2006,305:16-23
    [149] Zhang L, Bain J A, Zhu J G The effect of external magnetic field on mark size in heat-assisted probe recording on CoNi/Pt multilayers. J. Appl. Phys. 2006,99:023902-023906
    [150] Wang S, Kang S S, Harrell J W. Coercivity ratio and anisotropy distribution in chemically synthesized L10 FePt nanoparticle system. Phys. Rev. B, 2003,68:104413-104419
    [151] Nowak U, Mryasov O N, Wieser R, et al. Spin dynamics of magnetic nanoparicles: Beyond Brown's theory. Phys. Rev. B., 2005,72:172410-172413
    [152] Mryasov O N, Nowak U, Guslienko K Y. Temperature-dependent magnetic properties of FePt: Effective spin Hamiltonian model. EUROPHYSICS LETTERS, 2005,69:805-811
    [153] Hinzke D, Nowak U. Magnetization switching in Heisenberg model for small ferromagnetic particles. Phys. Rev. B, 1998,58:265-272
    [154] Lyberatos A, Guslienko K Y. Thermal stability of the magnetization following thermomagnetic writing in perpendicular media. J. Appl. Phys., 2003,94:1119-1129
    [155] Morrish A H. The Physical Principles of Magnetism. Krieger,1965
    
    [156] Hoinville J R, Micromagnetic modeling of thermomagnetic recording process. IEEE Trans. Magn., 2001,37:1254-1256
    [157] Acharyya M, Stauffer D. Nucleation and hysteresis in Ising model: classical theory versus computer simulation. Eur. Phys. J. B, 1998,5:571-577
    [158] Sperb R. An alternative to Ewald sums. Mol. Simul., 1998,20:179-200

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700