偶联奥曲肽的SPIO的制备及SSTR阳性、阴性肿瘤细胞对其摄取差异性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     生长抑素受体阳性细胞多见于神经内分泌肿瘤(neuroendocrine tumours, NETs),它是来源于神经内分泌细胞的一大类肿瘤,多发生于消化系统,但可散在发生于人体其它多个器官。其最主要来源部位是胃肠和胰腺(占75%),称为胃肠胰神经内分泌肿瘤(gastroenteropancreatic neuroendocrine tumours,GEP NETs)目前积极的外科手术治疗仍然是GEP NETs首选的方法。但由于病灶深藏在胃肠壁或腹膜后,早期诊断、精确定位困难,从而影响临床治疗效果。因此如何能对神经内分泌肿瘤进行早期诊断并精确定位成为国内外研究的重点。
     肿瘤学研究发现,NETs的细胞膜上均有生长抑素受体(somatostatin receptor, SSTR)的显著高密度分布。SSTR是一种G-蛋白偶联的细胞膜跨膜受体,有五种亚型(SSTR1-SSTR5), SSTR的配体是生长抑素(somatostatin,SST),目前引用较多的是生长抑素类似物(somatostatin analogues,SSTA)。SSTA可和SSTR特异性结合并进入细胞内。利用SSTA作为载体的功能,通过SSTR的内化机制将放射性同位素带到细胞内,造成肿瘤区域核素的浓聚,而被SPECT所检测,即生长抑素受体显像(somatostatin receptor scintigraphy,SRS)。SRS应用于NETs原发灶与转移灶的诊断,从上世纪90年代起,即已开始研究并应用于临床,已逐渐成为一种新的检查方法,目前在国外已广泛开展,但仅限于在同位素扫描方面。而在外科临床中,更需要了解病灶的精确空间定位以及其与周围脏器组织的关系,而这恰恰是MRI的优势所在。但MRI又不具有对NETs的特异性与敏感性。如何能将SRS跟MRI的优势互补,得到一种对NETs既具有特异性与敏感性,又具有高图像空间分辨力,能为外科医生提供清晰的三维空间图像,并能清楚的显示出病灶与周围组织器官的关系的这样一种检测方法成为我们所想要研究的方向。
     本研究旨在通过化学方法对MRI检测中常用的造影剂超顺磁性氧化铁(superparamagnetic iron oxide,SPIO)进行修饰并实现和奥曲肽之间的耦联,得到一种SPIO-奥曲肽复合物,在奥曲肽与SSTR的特异性受体结合作用下实现Fe3O4颗粒选择性进入SSTR阳性肿瘤细胞内,形成细胞胞浆内Fe3O4颗粒的选择性聚集,局部驰豫时间发生极大的改变,行MRI扫描检测这种信号改变并获得图像,即生长抑素受体的磁共振分子成像(somatostatin receptor magnetic resonance molecular imaging, SRMRMI)。我们希望SRMRMI既能具有SRS的特异性与敏感性,又具有MRI的高图像空间分辨能力,从而为生长抑素受体阳性肿瘤的早期诊断及定位提供一个新的思路。全文共分为二个部分。
     目的:制备具有高分散性、稳定性、纳米层级的羧甲基葡聚糖改性磁性复合纳米Fe3O4粒子,并与奥曲肽偶联制成SPIO-奥曲肽偶联复合物。
     方法:采用超声预处理技术,在羧甲基葡聚糖.水分散体系中,通过化学共沉淀法制备羧甲基葡聚糖表面改性纳米粒子,偶联上奥曲肽后用红外光谱(IR)、原子力显微镜(AFM)、透射电子显微镜(TEM)、X射线衍射(XRD)、振荡样品磁强(VSM)等对产物进行了表征。
     结果:(1)以氯化铁和氯化亚铁为铁源,葡聚糖为修饰剂,将反应溶液超声预处理后,通过化学共沉淀法,成功制备了羧甲基葡聚糖磁性纳米粒子(CMD-MNPs)。并通过酰胺键将奥曲肽以共价键连接于纳米微粒之上,得到CMD-MNPs-Oc。(2)通过对CMD-MNPs-Oc粒子扫描电镜分析:其粒径为50nm左右,粒径分布窄,呈现很好的球形。超声预处理混合溶液,能够很好阻止Fe3O4纳米粒子的团聚。葡聚糖的修饰没有改变Fe3O4的晶体结构,而且大大提高磁性纳米粒子的水溶性和稳定性。(3)通过外加磁场时磁化曲线的检测,证明CMD-MNPs-Oc粒子具有超顺磁性,室温下饱和磁化强度为35emu·g-1。
     结论:
     1.经超声预处理制备的复合纳米粒子的分散性较好,且仍保持Fe3O4的晶相结构。
     2.磁性复合纳米粒子经羧甲基葡聚糖改性后,在水溶液中的稳定性显著提高,并仍具有超顺磁性。注射液,超顺磁性
     目的:检测胰腺癌BXPC-3细胞与结肠癌HCT-116细胞生长抑素受体各亚型的表达,确定生长抑素受体阳性及阴性细胞株;生长抑素受体阳性肿瘤细胞是否能特异性的摄取偶联奥曲肽的SPIO;检测与偶联奥曲肽的SPIO共培养后生长抑素受体阳性细胞与生长抑素受体阴性细胞MRI信号的差异。
     方法:分别培养BxPC-3胰腺癌细胞、HCT-116结肠癌细胞。使用RT-PCR分别检测两种细胞内SSTR1、SSTR2、SSTR3、SSTR4、SSTR5的mRNA表达,以确定生长抑素受体阳性及阴性肿瘤细胞株。两种细胞常规培养至对数生长期,将相同浓度CMD-MNPs-Oc溶液分别加入各自的培养基中,继续共同培养,即分为两组:A组为CMD-MNPs-Oc孵育后的BxPC-3细胞;B组为CMD-MNPs-Oc孵育后的HCT-116细胞。然后在相同的孵育时间分别取细胞混悬液获取细胞沉渣行电镜检查,观察Fe3O4颗粒是否被内摄进入肿瘤细胞内,并对比Fe3O4颗粒在细胞内分布部位及量的情况。使用HE染色及普鲁士蓝染色两种方法定量检测Fe3O4颗粒分别进入生长抑素阳性肿瘤细胞和生长抑素阴性肿瘤细胞内的量(分组同电镜检测)。用MRI机器对处理后的细胞混悬液进行扫描,检测Fe3O4颗粒在细胞内的选择性聚集及其驰豫性的改变(A、B分组同电镜检测,C组为无细胞的纯培养液作为空白对照)。
     结果:RT-PCR结果显示BxPC-3细胞中SSTR1、SSTR2、SSTR3、SSTR4、SSTR5均呈现阳性表达,相反HCT-116细胞中则表现为阴性表达。电镜结果显示,在A组中,进入细胞内的Fe3O4颗粒较多,且多位于胞浆而不是线粒体内,并可见有小吞饮泡形成;在B组中,进入细胞内的Fe3O4颗粒很少,且位于溶酶体内。HE染色结果显示A组CMD-MNPs-Oc孵育后的BxPC-3细胞的胞浆中见较多散在颗粒状物,而B组CMD-MNPs-Oc孵育后的HCT-116细胞内则未见颗粒状物。进一步普鲁士蓝染色结果显示A组BxPC-3细胞的胞浆内较多深蓝色或青色Fe3O4颗粒,其阳性细胞百分比为97%,而B组HCT-116细胞的胞浆内则极少见深蓝色或青色Fe3O4颗粒,阳性细胞百分比在6%。MRI检测结果A组细胞MRI扫描T2加权图像信号强度明显低于C组空白对照组的信号(P<0.001),其信号强度下降率为69.6%,其信号强度也明显低于B组,差异具有统计学意义(P<0.001)
     结论:
     1. BxPC-3细胞中生长抑素受体呈阳性表达,HCT-116细胞中生长抑素受体呈阴性表达。
     2. CMD-MNPs-Oc能通过受体结合作用将Fe3O4颗粒特异性、靶向性的被摄取到生长抑素受体阳性细胞胞浆内。
     3. CMD-MNPs-Oc通过特异性、靶向性的将Fe3O4颗粒被摄取到生长抑素受体阳性细胞胞浆内,从而实现在MRI检测下生长抑素受体阳性细胞与生长抑素受体阴性细胞信号的明显差异。
Research background:
     Somatostatin receptor positive tumor cells are commonly seen in neuroendocrine tumours (NETs), they are originated from neuroendocrine cells and are often discovered in digestive system, however, they can also be sporadic in other body organs. This kind of tumour majorly originated in the stomach and intestine and pancreas, all of which account for 75% of the whole and are also known as gastroenteropancreatic neuroendocrine tumors (GEP NETs). The preferred therapy to GEP NETs mainly relies on aggressive surgical operation. However, since the lesion is usually hidden deeply within the gastrointestinal wall or retroperitoneum, it is hard for early diagnosis or accurate localization of the tumor, the effect of clinical treatment is therefore largely affected. Hence, proposing a method for early diagnosis and accurate localization of the neuroendocrine tumor has become a focus of international research.
     The recent researches in oncology have revealed the high density of somatostatin receptor (SSTR) on the cell membranes of NETS. As a G protein-coupled transmembrane receptor, SSTR has 5 subtypes:SSTR1 to SSTR5; and the subtypes of GEP NETs expression are primarily SSTR2 and SSTR3. The ligand of SSTR is somatostatin (SST),which has analogues called somatostatin analogues (SSTA). SSTA can be ligated to SSTR specifically and transited into cells. Therefore, We can take advantage of the endocytosis mechanism of SSTR, and use SSTA as a carrier protein to transport radioactive isotopes into cells. The enriched radioactive isotopes in tumor cells can be detected by SPECT, which is called somatostatin receptor scintigraphy(SRS). SRS had been studied and applied for clinical practice since 1990s to diagnose primary and metastatic lesions of NETs. As a new examine method, SRS has been widely used overseas but is limited in SPECT. In clinical surgery, it is essential to locate the exact position of the lesion and its relationship with the surrounding organs and tissues, and MRI has its advantage in revealing this. However, MRI doesn't show any specificity and sensitivity to NETs. Thus it has become our goal to develop a method that combines both the advantages of SRS and MRI to reach a high specificity and sensitivity for NETs diagnosis and at the meantime presents high spatial resolutions to provide surgeons with a clearer 3-dementional imaging of the lesion and its relationship with the surrounding organs or tissues.
     The objective of our study is to develop a new early-dignosis and accurate positioning method for somatostatin receptor positive tumor with somatostatin receptor magnetic resonance molecular imaging (SRMRMI), which uses the coupling of chemically modified contrast medium superparamagnetic iron oxide(SPIO) usually applied in MRI and Octreotide, to form a SPIO-Octreotide complex, and selectively transport Fe3O4 particles into tumor cells by the specific combination of Octreotide with SSTR to form a enrichment of Fe3O4 particles in cytoplasm, which can be detected by MRI because of the change of relaxation time. We hope that SRMRMI has the potentials of both high specificity and sensitivity presented in SRS and high spatial resolutions presented in MRI, which provide us with a new way to early diagnose and locate the somatostatin receptor positive tumors. Our study can be divided into two parts.
     Objective:To prepare the carboxymethyldextran modified Fe3O4 magnetic nanoparticles (CMD-MNPs), which are of high dispersity and stability, and crosslink octreotide with CMD-MNPs.
     Methods:By means of chemical co-deposition method, modified magnetic nanoparticles were prepared in carboxymethyldextran-water dispersed phase by ultrasonic pretreatment. Crosslinked with octreotide, the product was characterized by IR spectrum, transmission electron microscopy, x-ray diffractometer, and vibrating sample magnetometer, and the T2 relaxativity in solution is measured.
     Results:(1) The carboxymethyldextran magnetic nanoparticles was prepared by chemical co-deposition method, and the octreotide was successfully linked to the CMD-MNPs with the amide linkage. The reaction solution which contained ferric chloride and ferrous chloride as the source of iron, and glucan as the modifying agent, was pretreated by ultrasonic equipment. (2) The scanning electron microscope shows that nanoparticles is globular and the radius is about 50nm, accompanied with concentrated distribution of the radius. The ultrasonic pretreatment could stop the gathering of the Fe3O4 nanoparticles. The glucan modifying agent has obviously reinforced the water-solubility of the nanoparticles with no change of the crystal construction of Fe3O4. (3) The composite nanoparticles show the property of superparamagetism. The saturated magnetizing strength is 35emu g-1 in the room temperature.
     Conclusions:
     1. The ultrasonic pretreatment can significantly improve the dispersibility of the composite nanoparticles. And it maintains the crystal construction which is similar to that of Fe3O4.
     2. The stability of the composite nanoparticles in the water is significantly improved. The composite nanoparticles also show the property of superparamagetism.
     Objective:To test the somatostatin receptor subtypes (SSTR1-5) mRNA expression in BxPC-3 cells and HCT-116cells to determine the somatostatin receptor positive and negative cell lines. To test the specific endocytosis of SSTR positive tumor cells to SPIO--Octreotide complex. To detect the difference of MRI signals in somatostatin receptor positive and negative tumor cells after CMD-MNPs-Oc co-cultivation.
     Methods:Both the BxPC-3 cells and the HCT-116 cells were cultured respectively, and the intracellular expression of somatostatin receptor subtypes (SSTR 1-5) mRNA was tested by reverse transcription polymerase chain reaction (RT-PCR) technique to determine the somatostatin receptor positive and negative cell lines. Both cells were cultured to logarithmic phase when CMD-MNPs-Oc solutions were added to the culture mediums respectively, which therefore comprises 2 groups of cells:Group A was BxPC-3 cells cultured with CMD-MNPs-Oc; Group B was HCT-116 cells cultured with CMD-MNPs-Oc. With the same incubation time, cell suspensions were collected from each group and after that centrifugated respectively to undergo electron microscopy in order to observe whether the Fe3O4 particles were uptaken into the tumor cells and compare the distribution and quantity of the Fe3O4 particles within the tumor cells. The cells underwent conventional HE staining and Prussian blue iron staining, and the ratio of the numbers of the positive iron containing cells to the numbers of the total cells were calculated for each group. The electron microscope inspection was applied to observe the selective uptake of high-density particles in the cytoplasm of cells in each group. The T2 relaxativity of resuspension in each group was detected by MR imaging. (Group A and B were calculated using Group C as control.)
     Results:RT-PCR showed positive expressions of SSTR1、SSTR2. SSTR3、SSTR4、SSTR5 in BxPC-3 cell line, and negative expressions of the above receptors in HCT-116 cell line. Electron microscope showed high intake of Fe3O4 particles in group A cells, with high concentration in cytoplasm rather than mitochondria and the formation of pinosome; While group B cells had lower Fe3O4 particles intake and the particles were mainly located in lysosome. HE staining after incubation of CMD-MNPs-Oc showed BxPC-3 cells in group A had many particles in cytoplasm while there is no particle in HCT-116 cell line. Prussian blue staining confirmed that cyan or dark blue particles was Fe3O4 particles, which had a high concentration in cytoplasm(positive rate 97%) in group A and a low concentration in cytoplasm(positive rate under 6%) in group B. MRI showed that T2 weighted spin echo sequence imaging of group A was lower than group C (P<0.001), and the calculated△SI% was 69.6%, lower than group B, the differences were of statistical significance (P<0.001)
     Conclusions:
     1. SSTR had positive expression in BxPC-3 cell line and negative expression in HCT-116 cell line.
     2. CMD-MNPs-Oc can specifically transport Fe3O4 particles into the cytoplasm of SSTR positive cells by receptor binding mechanism
     3. SSTR positive and negative cells showed different signals under the detection of MRI due to the specific uptake of Fe3O4 particles into the cytoplasm of SSTR positive cells by means of specific and targeted binding of CMD-MNPs-Oc to somatostatin receptor.
引文
[1]Baudin E. Gastroenteropancreatic endocrine tumors:clinical characterization before therapy.Nat Clin Pract Endocrinol Metab,2007,3(3):228-239.
    [2]Schurr PG,Strate T,Rese K, Kaifi JT, Reichelt U, Petri S, Kleinhans H, Yekebas EF, Izbicki JR. Aggressive surgery improves long-term survival in neuroendocrine pancreatic tumors:an institutional experience. Ann Surg,2007,245(2):273-281.
    [3]O'Toole D,Saveanu A,Couvelard A, Gunz G, Enjalbert A, Jaquet P, Ruszniewski P, Barlier A. The analysis of quantitative expression of somatostatin and dopamine receptors in gastro-entero-pancreatic tumours opens new therapeutic strategies.Eur J Endocrinol,2006,155(12):849-857.
    [4]Patel YC.Somatostatin and its receptor family. Frontiers Neuroendocrinol, 1999,20(3):157-198
    [5]Mandarino L, Stenner D, Blanchard W, Nissen S, Gerich J, Ling N, Brazeau P, Bohlen P, Esch F, Guillemin R.Selective effects of somatostatin-14,-25 and-28 on in vitro insulin and glucagons secretion.Nature,1981,219(1):76-77
    [6]Patel YC, Srikant CB. Subtype selective of peptide analogs for all five cloned human somatostatin receptors (hsstrl-5).Endocrinology,1994,135(12):2814-2817
    [7]Grotzinger C, Wiedenmann B. Somatostatin receptor targeting for tumor imaging and therapy. Ann NY Acad Sci,2004,1014(4):258-264.
    [8]Rufini V,Calcagni ML,Baum RP.Imaging of neuroendocrine tumors.Semin Nucl Med,2006,36(3):228-347.
    [9]Horst F, Rueda E H, Ferreir M L. Activity of magnetite-immobilized catalase in hydrogen peroxide decomposition. Enzyme Microbiol. Technol.,2006,38: 1005-1012
    [10]王东升,张岩,吕平,朱晓辉,张玲,周芳,高晓明等.细胞与分子免疫学杂志,2001,17(3):296-297
    [11]Groman E V, Bouchard J C, Reinhardt C P, et al. Ultrasmall mixed ferrite colloids as multidimensional magnetic resonance imaging, cell labeling, and cell sorting agent. Bioconjugate Chem.,2007,18:1763-1771.
    [12]Ditsch A, Yin J, Laibinis P E, et al. Application of magnetic agarose support in liquid magnetically stabilized fluidized bed for protein adsorption. Biotechnol. Prog.,2006,22:1153-1162
    [13]Takeda S, Mishima F, Fujimoto S, et al. Development of magnetically targeted drug delivery system using superconducting magnet. J. Magn. Magn. Mater., 2007,311:367-371
    [14]Deng Y H, Wang C C, Hu J H, et al. Investigation of formation of silica-coated magnetite nanoparticles via sol-gel. Colliods Interface A:Physicochem. Eng. Aspects,2005,262:87-93
    [15]Kim D K, Mikhaylova M, Wang F H, et al. Starch-coated superparamagnetic nanoparticles as MR contrast agents. Chem. Mater.2003,15:4343-4351
    [16]Sun Y B, Ding X B, Zheng Z H, et al. A novel approach to magnetic nanoadsorbents with high binding capacity for bovine serum albumin. Macromcl. Rapid Commun.,2007,28:346-351
    [17]Ahmad S, Tester R F, Corbett A, et al. Dextran and 5-aminosalicylic acid (5-ASA) conjugates:synthesis, characterisation and enzymic hydrolysis. Carbohydr. Res.,2006,341:2694-2701
    [18]R.S. Molday. Magnetic iron-dextran microspheres. US Patent no.4452773, June 5,1984
    [19]Mclean K M, Johnson G, Chatelier R C, et al. Method of immobilization of carboxymethyl-dextran affects resistance to tissue and cell colonization. Colloids Surface B.,2000,18:221-234
    [20]Wan S R, Huang J S, Yan H S, et al. Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers. J. Mater. Chem.,2006,16: 298-303
    [21]Ugelstad J, Berge A, Ellingsen T, et al. Preparation and application of new monosied polymer particles. Prog. Polym. Sci.,1992,17:87-161
    [22]朱屯.国外纳米材料技术进展与应用.北京:化学工业出社,2002:69-77
    [23]川赵维,齐署华,陈佑.纳米磁性高分子复合微球的制备及在水检测中的应用.应用化工,2005,34(9):524-526
    [24]Lv Y Q, Deng Z S, Liu J.3-D numerical study on the induced heating effects of embedded micro/nanoparticles on human body subject to external medical electromagnetic field. IEEE Trans. Nanobioscience,2005,4(4):284-294.
    [25]Turner J L, Chen Z, Wooley K L. Regiochemical functionalization of a nanoscale cage-like structure:robust core-shell nanostructures crafted as vesseis for selective uptake and release of small and large guests. J. Control Release,2005, 109:189-202
    [26]刘颖,王长葆,王建华.Fe3O4超细粉分散体系的制备.功能材料,1999,30(1): 24-25
    [27]贾晓林,谭伟.纳米粉体分散技术发展概况.非金属矿,2003,26(4):1-3
    [28]Suslick K S, FangM M, Hyeon T, et al. Sonochemical synthesis of iron colloids. J. Am. Chem. Soc.1996,118 (11):11960-11961
    [29]Shafi K V, Gedanken A, Goldfarb B, et al. Sonochemical preparation nanosized amorphous Fe2Ni alloys. Appl. Phys,1997,81(10):6901-6907
    [30]Hyeon T, FangmM T, Suslick K S. Nanostructured molybdenum carbidee sonochemical synthesis and catalytic properties. J. Am. Chem. Soc.,1996,118: 54927-54931
    [1]Solcia E,Kloppel G,Sobin LH.WHO:Histological typing of endocrine tumours. Springer,2000:Berlin-New York.
    [2]ModlinIM,LyeKD,KiddMA.5-decadeanalysisof13715carcinoidtumors[J].Cancer, 2003,97(4)934-959.
    [3]K. Oberg, S. Jelic et al. Neuroendocrine gastroenteropancreatic tumors:ESMO Clinical Recommendations for diagnosis, treatment and follow-up Annals of Oncology 20 (Supplement 4):2009;ⅳ150-ⅳ153
    [4]Ito T, Sasano HE et al.pidemiological study of gastroenteropancreatic neuroendocrine tumors in Japan. J Gastroenterol.2010 Jan 9. [Epub ahead of print].
    [5]Panzuto F, Nasoni S, Falconi M, et al. Prognostic factors and survival in endocrine tumour patients:comparison between gastrointestinal and pancreatic localization. Endocr Relat Cancer 2005;12:1083-92.
    [6]Bettini R, Boninsegna L, Mantovani W, et al. Prognostic factors at diagnosis and value of WHO classification in a mono-institutional series of 180 non-functioning pancreatic endocrine tumours. Ann Oncol 2008;19:903-8.
    [7]Modlin IM, Oberg K, Chung DC, et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol 2008; 9:61-72
    [8]Panzuto F, Nasoni S, Falconi M, Corleto VD, Capurso G, Cassetta S, Di Fonzo M, Tornatore V, Milione M, Angeletti S, Cattaruzza MS, Ziparo V, Bordi C,Pederzoli P,Delle Fave G. Prognostic factors and survival in endocrine tumor patients: comparison between gastrointestinal and pancreatic localization.Endocr Relat Cancer,2005,12(4):1083-1092
    [9]Schurr PQStrate T,Rese K, Kaifi JT, Reichelt U, Petri S, Kleinhans H, Yekebas EF, Izbicki JR. Aggressive surgery improves long-term survival in neuroendocrine pancreatic tumors:an institutional experience. Ann Surg,2007,245(2):273-281.
    [10]K. Oberg, S. Jelic et al. Neuroendocrine gastroenteropancreatic tumors:ESMO Clinical Recommendations for diagnosis, treatment and follow-up Annals of Oncology 20 (Supplement 4):2009;ⅳ150-ⅳ153,
    [11]Gabriel M, Muehllechner P, Decristoforo C, et al.99mTc-EDDA/HYNIC-Tyr(3)-octreotide for staging and follow-up of patients with neuroendocrine gastro-entero-pancreatic tumors. Q J Nucl Med Mol Imaging,2005,49 (3):
    237-244
    [12]Schillaci O, S panu A, Scopinaro F,et al. Somatostatin receptor scintigraphy with lIln1-pentetreotide in non-functioning gastroenteropanceratic neuroendocrine tumors. Int J Oncol.2003,23 (6):1687
    [13]Sundin A, Garske U, Orlefors H. Nuclear imaging of neuroendocrine tumours. Best Pract Res Clin Endocrinol Metab,2007,21 (1):69-85.
    [14]Gotthardt M, Dijkgraaf I, Boerman OC, et al. Nuclear medicine imaging and therapy of neuroendocrine tumours. Cancer Imaging,2006,6:S178-S184.
    [15]Grotzinger C, Wiedenmann B. Somatostatin receptor targeting for tumor imaging and therapy. Ann NY Acad Sci,2004,1014:258-264.
    [16]Zhang X, Cai W, Cao F, et al.18F-Labeled bombesin analogs for targeting GRP receptor-expressing prostate cancer. J Nucl Med,2006,47:492-501.
    [17]Aloj L, Caraco C, Panico M, et al.In vitro and in vivo evaluation of 111In-DTPAGlu-G-CCK8 for cholecystokinin-B receptor imaging. J Nucl Med,2004,45:485-494.
    [18]Virgolini I, Raderer M, Kurtaran A, et al.123I-Vasoactive intestinal peptide (VIP) receptor scanning:update of imaging results in patients with adenocarcinomas and endocrine tumors of the gastrintestinal tract. Nucl Med Biol,1996,23:685-692.
    [19]Chen J, Giblin MF, Wang N, et al.In vivo evaluation of 99mTc/188Re-labeled linear alpha-melanocyte stimulating hormone analogs for specific melanoma targeting. Nucl Med Biol,1999,26:687-693.
    [20]Alshoukr F, Rosant C, Maes V, et al.Novel Neurotensin Analogues for Radioisotope Targeting to Neurotensin Receptor-Positive Tumors. Bioconjugate Chem,2009,20:1602-1610.
    [21]Langer M,La Bella R,Garcia-Garayoa E,et al.99mTc-Labeled Neuropeptide Y Analogues as Potential Tumor Imaging Agents.Bioconjugate Chem,2001, 12:1028-1034.
    [22]Jalilian AR, Shanehsazzadeh S, Akhlaghi M, et al.Development of [111In]-DTPA-buserelin for GnRH receptor studies. Radiochimica Acta, 2010,98:113-119.
    [23]Christ E, Wild D, Forrer F, et al.Glucagon-like peptide-1 receptor imaging for localization of insulinomas. J Clin Endocrinol Metab,2009,94:4398-4405.
    [24]Luker KE, Gupta M, Luker GD. Imaging chemokine receptor dimerization with firefly luciferase complementation. FASEB J.2009,23:823-834.
    [25]Liu S.Radiolabeled cyclic rgd peptides as integrin αvβ3-targeted radiotracers: maximizing binding affinity via bivalency.Bioconjug Chem,2009,20:2199-2213.
    [26]Patel YC. Sandostatin and its receptor family [J]. Front Neuroendocrinol,1999, 20(3):157-198
    [27]Schally AV.Oncological applications of somatostatin analogs.Cancer Res,1988, 48:6977-6985,
    [28]Gulec SA,Drouant GJ,Fuselier J,et al. Antitumor and antiangiogenic effects of somatostatin receptor 2 targeted in situ radiation with (111)In-DTPA-octreotide.J Surg Res.2001,97:131-137
    [29]Masteodimou N, ThermosK. The somatostatin receptor(sstl) modulates therelease of somatostatin in rat retina (J).NeurosciLett,2004,356(1):13.
    [30]LiM, ZhangR,LiF, eta.l Transfection ofSSTR-1 and SSTR-2 inhibits Panc-1 cell proliferation and rendersPanc-1 cells responsive to somatostatin analogue (J) JAm CollSurg,2005,201(4):571.
    [31]Moore SB, van derHoek J, de Capua A, et a.l Discovery of iodinated somatostatin analogues selective for hsst2 and hsst5 with excellent inhibition of growth hormone and prolactin release from rat pituitary cells (J). JMed Chem, 2005,48(21):6643.
    [32]LiM, FisherWE,Kim HJ, et a.l Somatostatin, somatostatin receptors,and pancreatic cancer (J).World J Surg,2005,29(3):293
    [33]Dromain C,Baere T,Lumbroso J, Caillet H, Laplanche A, Boige V, Ducreux M, Duvillard P, Elias D, Schlumberger M, Sigal R, Baudin E. Detection of Liver Metastases From Endocrine Tumors:A prospective comparison of somatostatin receptor scintigraphy, computed tomography, and magnetic resonance imaging. J Clin Oncol,2005,23(1):70-78
    [34]Panzuto F,Falconi M,Nasonil S, Angeletti S, Moretti A, Bezzi M, Gualdi G, Polettini E, Sciuto R, Festa A, Scopinaro F, Corleto VD, Bordi C, Pederzoli P, Delle FG. Staging of digestive endocrine tumours using helical computed tomography and somatostatin receptor scintigraphy.Ann Onc,2003,14(4):586-591
    [35]Weissleder R. Molecular imaging in cancer. Science,2006,312 (5777): 1168-1171
    [36]Gandhi SN, Brown MA, Wong JG, Aguirre DA, Sirlin CB.MR contrast agents for liver imaging:what, when,how. Radiographics,2006,26(11):1621-1636
    [37]程伟中,曾蒙苏,严福华,饶圣祥,沈继章,陈财忠,施伟斌,张澍杰.MRI特异性对比剂铁羧葡胺对肝脏局灶性病变检出的比较研究.中华放射学杂志,2006,40(3):255-259
    [38]Koh DM, Brown G, Meer Z, Norman AR, Husband JE.Diagnostic accuracy of rim and segmental MRI enhancement of colorectal hepatic metastasis after administration of mangafodipir trisodium. AJR,2007,188(2):154-161
    [39]Mikiwa M, Yokawa T, Miwa N, Brautigam M, Akaike T, Maruyama A. An Intelligent MRI Contrast Agent for Tumor Sensing. Acad Radiol,2002,9 (Suppl 1):S109-111
    [40]Goldsmith SJ. Receptor imaging:competitive or complementary to antibody imaging? Semin Nucl Med 1997;27:85-93
    [41]Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 2000; 18:410-4.
    [42]Dodd CH, Hsu HC, Chu WJ, Yang P, Zhang HG, Mountz JD Jr, et al. Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. J Immunol Methods 2001; 256:89-105.
    [43]Zhao M, Kircher MF, Josephson L, Weissleder R.Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjug Chem 2002; 13:840-4.
    [44]Koch AM, Reynolds F, Kircher MF, Merkle HP, Weissleder R, Josephson L Uptake and metabolism of a dual fluorochrome Tat-nanoparticle in HeLa cells. Bioconjug Chem 2003; 14:1115-21.
    [45]Kang HW, Josephson L, Petrovsky A, Weissleder R, Bogdanov A Jr. Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconjug Chem 2002; 13:122-7.
    [46]Schellenberger EA, Bogdanov A Jr, Ho" gemann D, Tait J, Weissleder R, Josephson L. Annexin V-CLIO:a nanoparticle for detecting apoptosis by MRI. Mol Imaging 2002; 1:102-7.
    [47]Meng XX, Wan JQ, Jing M, Zhao SG, Cai W, Liu EZ. Specific targeting of gliomas with multifunctional superparamagnetic iron oxide nanoparticle optical and magnetic resonance imaging contrast agents. Acta Pharmacol Sin 2007; 28:2019-26
    [48]Egleton, R.D. and Davis, T.P. (1997) Bioavailability, and transport of peptides and peptide drugs into the brain. Peptides 18,1431-1439
    [49]Park, J.W. et al. (2001) Tumor targeting using anti-her2 immunoliposomes. J. Control. Release 74,95-113
    [50]Tycko, B., and F. R. Maxfield.1982. Cell.28:643-661
    [1]Patel YC. Sandostatin and its receptor family [J]. Front Neuroendocrinol,1999, 20(3):157-198.
    [2]Bates CM, KeggH, Grady S. Experssion of somatostatin receptors 1 and 2 in the adultmouse kidney (J).Regul Pept,2004,119(1-2):11.
    [3]Masteodimou N, ThermosK. The somatostatin receptor(sstl) modulates therelease of somatostatin in rat retina (J).NeurosciLett,2004,356(1):13.
    [4]LiM, ZhangR,LiF, eta.l Transfection ofSSTR-1 and SSTR-2 inhibits Panc-1 cell proliferation and rendersPanc-1 cells responsive to somatostatin analogue (J) JAm CollSurg,2005,201(4):571.
    [5]Moore SB, van derHoek J, de Capua A, et a.l Discovery of iodinated somatostatin analogues selective for hsst2 and hsst5 with excellent inhibition of growth hormone and prolactin release from rat pituitary cells (J). JMed Chem, 2005,48(21):6643.
    [6]LiM, FisherWE,Kim HJ, et a.l Somatostatin, somatostatin receptors,and pancreatic cancer (J).World J Surg,2005,29(3):293.
    [7]Hofland, L.J., Lamberts, S.W.,2003. The pathophysiological consequences of somatostatin receptor internalization and resistance. Endocr. Rev.24,28-47.
    [8]Guillermet-GuibertJ,LahlouH,CordelierP, eta.l Physiology of somatostatin receptors (J). JEndocrinol Invest,2005,28(11):5.
    [9]Pyronnet, S.; Bousquet, C.; Najib, S.; Azar, R.; Laklai, H. et al.Antitumor effects of somatostatin. Mol. Cell. Endocrinol.,2008,286,230-237.
    [10]Rens-Domiano, S.; Reisine, T. Biochemical and functional properties of somatostatin receptors. J. Neurochem.,1992,58,1987-1996.
    [11]Florio T,Morini M,Villa V, et al. Endocrinology,2003;144:1574-1584
    [12]Marion DJ,Wout AP,Kwekkeboom DJ,et al.Tumor Imaging and Therapy Using Radiolabeled Somatostatin Analogues. Accounts of chemical research 2009 42,(7)873-880
    [13]Herbert A. Schmid. Pasireotide (SOM230):Development, mechanism of action and potential applications. Molecular and Cellular Endocrinology 286 (2008)69-74
    [14]Laura Zaccaro, Annarita del Gatto, Carlo Pedone et al Peptides for Tumour Therapy and Diagnosis:Current Status and Future Directions. Current Medicinal Chemistry,2009,16,780-795
    [15]Gabriel, M.; Decristoforo, C.; Donnemiller, E.;et al. An intrapatient comparison of 99mTc-EDDA/HYNIC-TOC with 111In-DTPAoctreotide for diagnosis of somatostatin receptor-expressing tumors.J. Nucl. Med.,2003,44,708-716.
    [16]Czepczynski, R.; Parisella, M. G.; Kosowicz,et al.Somatostatin receptor scintigraphy using 99mTc-EDDA/HYNIC-TOC in patients with medullary thyroid carcinoma. Eur. J. Nucl. Med. Mol.Imaging,2007,34,1635-1645.
    [17]Vallabhajosula, S.; Moyer, B. R.; Lister-James, J.et al Preclinical evaluationof technetium-99m-labeled somatostatin receptor-binding peptides.J. Nucl. Med., 1996,37,1016-1022.
    [18]Shah, T.; Kulakiene, I.; Quigley, A. M.et al. The role of 99mTc-depreotide in the management of Neuroendocrine tumours. Nucl. Med. Commun.,2008,29, 436-440.
    [19]Antunes, P.; Ginj, M.; Zhang, H.et al Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur. J. Nucl. Med. Mol. Imaging,2007,34,982-993.
    [20]Win, Z.; Rahman, L.; Murrell, J.; et al. The possible role of 68Ga-DOTATATE PET in malignant abdominal paraganglioma. Eur. J. Nucl. Med. Mol. Imaging, 2006,33,506.
    [21]Hofmann, M.; Maecke, H.; Borner, R.; et al. Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC:preliminary data. Eur. J.Nucl. Med.,2001,28,1751-1757.
    [22]Win, Z.; Al-Nahhas, A.; Rubello, D.; et al. Somatostatin receptor PET imaging with Gallium-68 labeled peptides. Q. J. Nucl. Med. Mol. Imaging,2007,51, 244-250.
    [23]Reubi, J. C.; Schar, J. C.; Waser, B.; et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur. J. Nucl. Med.,2000,27, 273-282.
    [24]Iten, F.; Muller, B.; Schindler, C.; et al.Response to [90Yttrium-DOTA]-TOC treatment is associated with long-term survival benefit in metastasized medullary thyroid cancer:a phase Ⅱ clinical trial. Clin. Cancer Res.,2007,13,6696-6702.
    [25]Forrer, F.; Valkema, R.; Kwekkeboom, D. J.; et al. Neuroendocrine tumors. Peptide receptor radionuclide therapy. Best Pract. Res. Clin. Endocrinol. Metab., 2007,21,111-129.
    [26]Forrer, F.; Riedweg, I.; Maecke, H. R.; et al. Radiolabeled DOTATOC in patients with advanced paraganglioma and pheochromocytoma. Q. J. Nucl. Med. Mol. Imaging,2008,52,334-340.
    [27]Kwekkeboom, D. J.; de Herder, W. W.; Kam, B. L.et al.Treatment with the radiolabeled somatostatin analog[177 Lu-DOTA 0,Tyr3]octreotate:toxicity, efficacy, and survival.J. Clin. Oncol.,2008,26,2124-2130.
    [28]De Jong, M.; Breeman, W. A.; Valkema, R.et al.Combination radionuclide therapy using 177Lu-and 90Y-labeled somatostatin analogs. J. Nucl. Med., 2005,46 Suppl 1,13S-17S.
    [29]Davi, M. V.; Bodei, L.; Ferdeghini, M.et al.Multidisciplinary approach including receptor radionuclide therapy with 90YDOTATOC ([90Y-DOTA0, Tyr3]-octreotide) and 177Lu DOTATATE ([177Lu-DOTA0, Tyr3]-octreotate) in ectopic cushing syndrome from a metastatic gastrinoma:a promising proposal.Endocr. Pract.,2008,14,213-218.
    [1]ModlinIM,LyeKD,KiddMA.5-decadeanalysisof13715carcinoidtumors[J].Cancer, 2003,97(4)934-959.
    [2]K. Oberg, S. Jelic et al. Neuroendocrine gastroenteropancreatic tumors:ESMO Clinical Recommendations for diagnosis, treatment and follow-up Annals of Oncology 20 (Supplement 4):2009;ⅳ150-ⅳ153,
    [3]Ito T, Sasano HE et al.pidemiological study of gastroenteropancreatic neuroendocrine tumors in Japan. J Gastroenterol.2010 Jan 9. [Epub ahead of print]
    [4]Solcia E, Kloppel G, Sobin LH. World Health Organization, International Histological Classification of Tumours. Histological typing of endocrine tumours.2000,2nd Edn.
    [5]Jensen RT. Pancreatic endocrine tumors:recent advances. Ann Oncol.1999, 10suppl4:170-176.
    [6]Panzuto F, Nasoni S, Falconi M, et al. Prognostic factors and survival in endocrine tumour patients:comparison between gastrointestinal and pancreatic localization. Endocr Relat Cancer 2005;12:1083-92.
    [7]Bettini R, Boninsegna L, Mantovani W, et al. Prognostic factors at diagnosis and value of WHO classification in a mono-institutional series of 180 non-functioning pancreatic endocrine tumours. Ann Oncol 2008; 19:903-8.
    [8]Modlin IM, Oberg K, Chung DC, et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol 2008; 9:61-72.
    [9]ModlinIM,LyeKD,KiddMA.5-decadeanalysisof13715carcinoitumors[J].Cancer,2 003,97(4):934-959.
    [10]Ramage JK, Davies AH, Ardill J, Bax N, Caplin M,Grossman A, Hawkins R, McNicol AM, Reed N,Sutton R, Thakker R, Aylwin S, Breen D, BrittonK, Buchanan K, Corrie P, Gillams A, Lewington V,McCance D, Meeran K, Watkinson A. Guidelines for the management of gastroenteropancreatic neuroendocrine (including carcinoid) tumours. Gut 2005; 54 Suppl 4:ivl-ivl6
    [11]王沧海,消化系神经内分泌肿瘤的临床特点世界华人消化杂志2008年8月28日;16(24):2788-2791
    [12]Eriksson B, Oberg K, Stridsberg M. Tumor markers in neuroendocrine tumors. Digestion,2000,62 Suppl 1:33-38.
    [13]杨晓鸥,钱家鸣,李景南 血浆嗜铬粒蛋白A对胃肠胰腺内分泌肿瘤的诊断价值,Chin J Gastroenterol,2008, Vol.13, No.4,205-208
    [14]Campana D, Nori F, Piscitelli L, et al. Chromogranin A:is it a useful marker of neuroendocrine tumors? J Clin Oncol,2007,25 (15):1967-1973
    [15]Belli SH, Oneto A, Chromogranin A as a biochemical marker for the management of neuroendocrine tumors:a multicenter study developed in Argentina, Acta Gastroenterol Latinoam.2009 Sep;39(3):184-9.
    [16]Cigrovski Berkovi(?) M, Joki(?) M et, IL-2-330 T/G SNP and serum values-potential new tumor markers in neuroendocrine tumors of the gastrointestinal tract and pancreas (GEP-NETs), J Mol Med.2010 Jan 5. [Epub ahead of print]
    [17]诸琦,谭继宏,孙蕴伟,等.低频小探头超声内镜对胰腺内分泌肿瘤术前定位诊断的价值[J].中华消化内镜杂志,2003,20(6):371-373
    [18]Jani N, Khalid A, Kaushik N, et al. EUS-guided FNA diagnosis of pancreatic endocrine tumors:new trends identified[J]. Gastrointest Endosc,2008,67(1): 44-50.
    [19]Eriksson B, OrleforsH, ObergK, eta.l Developments in PET for the detection of endocrine tumours[J]. Best PractRes Clin Endocrinol Metab,2005,19(2): 311-324.
    [20]Ricke J, Klose KJ, MignonM, et a.l Standardisation of imaging in neuroendocrine tumours:results of a European delphi process[J].Eur JRadio,l 2001,37(1):8-17.
    [21]Gabriel M, Muehllechner P, Decristoforo C, et al.99mTc-EDDA/HYNIC-Tyr(3)-octreotide for staging and follow-up of patients with neuroendocrine gastro-entero-pancreatic tumors. Q J Nucl Med Mol Imaging,2005,49 (3): 237-244.
    [22]Sundin A, Garske U, Orlefors H. Nuclear imaging of neuroendocrine tumours. Best Pract Res Clin Endocrinol Metab,2007,21 (1):69-85.
    [23]Gotthardt M, Dijkgraaf I, Boerman OC, et al. Nuclear medicine imaging and therapy of neuroendocrine tumours. Cancer Imaging,2006,6:S178-S184.
    [24]Schillaci O, S panu A, Scopinaro F, et al. Somatostatin receptor scintigraphy with lIln1-pentetreotide in non-functioning gastroenteropanceratic neuroendocrine tumors. Int J Oncol.2003,23 (6):1687
    [25]Gunter Klopela,Anne Couvelardb, et al..ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors:Towards a Standardized Approach to the Diagnosis of Gastroenteropancreatic Neuroendocrine Tumors and Their Prognostic Stratification. Neuroendocrinology 2009;90:162-166
    [26]Oberg K. Future aspects of somatostatin-receptor-mediated therapy[J]. Neuroendocrinology,2004,80 Suppll:57-61
    [27]Lamberts SW, van der Lely AJ, de Herder WW, et al.Octreotide. N Engl J Med, 1996,334 (4):246-254.
    [28]Garland J, Buscombe JR., Bouvier C, et al. Sandostatin LAR (long-acting octreotide acetate) for malignant carcinoid syndrome:a 3-year experience. Aliment Pharmacol Ther,2003,17 (3):437-444.
    [29]Arnold R, Simon B, Wied M. Treatment of neuroendocrine GEP tumours with somatostatin analogues:a review. Digestion,2000,62 Suppl 1:84-91.
    [30]Iannopollo, Mauro; Cresti, et al. LAR octreotide 20 mg in metastatic gastroenteropancreatic neuroendocrine tumors.Oncology,2003,14 Suppl 4:35.
    [31]Ren SG, Kim S, Taylor J, et al. Suppression of rat and human growth hormone and prolactin secretion by a novel somatostatin/dopaminergic chimeric ligand. J Clin Endocrinol Metab,2003,88 (11):5414-5421.
    [32]O'Toole D, Saveanu A, Couvelard A, et al.The analysis of quantitative expression of somatostatin and dopamine receptors in gastro-entero-pancreatic tumours opens new therapeutic strategies. Eur J Endocrinol 2006; 155:849-57.
    [33]Kidd M, Drozdov I, Joseph R, PfragnerR, Culler M, Modlin I. Differential cytotoxicity of novel somatostatin and dopamine chimeric compounds on bronchopulmonary and small intestinal neuroendocrine tumor cell lines. Cancer 2008; 113:690-700.
    [34]N. Fazio 1*, F. de Braudl,Interferon-a and somatostatin analog in patients with gastroenteropancreatic neuroendocrine carcinoma:single agent or combination? Annals of Oncology 2007; 18:13-19,.
    [35]P.W马克斯,D.勒布沃尔利用mTOR抑制剂治疗神经内分泌肿瘤[P].中国专利:101360496A,2009.2.4
    [36]Ekeblad S, Sundin A, Janson ET, et al.Temozolomide as monotherapy is effective in treatment of advanced malignant neuroendocrine tumors. Clin Cancer Res 2007; 13:2986-91.
    [37]Hoefnagel CA. Metaiodobenzylguanidine and somatostatin in oncology:role in the management of neural crest tumours.Eur J Nucl Med 1994; 21:561-81.
    [38]Buscombe JR, Cwikla JB, Caplin ME,Hilson AJ. Long-term efficacy of low activity meta-[131I]iodobenzylguanidine therapy in patients with disseminated neuroendocrine tumours depends on initial response. Nucl Med Commun 2005; 26:969-76.
    [39]Mukherjee JJ, Kaltsas GA, Islam N, et al. Treatment of metastatic carcinoid tumours, phaeochromocytoma, paraganglioma and medullary carcinoma of the thyroid with 131I-meta-iodobenzylguanidine [(131)I-mIBG]. Clin Endocrinol (Oxf) 2001; 55:47-60.
    [40]Waldherr C, PlessM, Maecke HR, et a.l The clinical value of [90Y-DOTA]-D-Phe1-Tyr3-octreotide (90Y-DOTATOC) in the treatmentofneur-oendocrine tumours:a clinical phase Ⅱ study[J]. Ann Onco,1 2001,12(7): 941-945,
    [41]Kwekkeboom DJ, Teunissen JJ, BakkerWH, et a.l Radiolabeled somatostatin analog [177Lu-DOTA0, Tyr3] octreotate in patientswith endocrine gastroenteropancreatic tumors[J]. JClinOnco,l 2005,23 (12):2754-2762.
    [42]]Kwekkeboom DJ, de Herder WW, Kam BL, et al. Treatment with the radiolabeled somatostatin analog [177Lu-DOTA 0,Tyr3]octreotate: toxicity,efficacy, and survival. J Clin Oncol 2008; 26:2124-30.
    [43]Zuetenhorst JM, TaalBG. Metastatic carcinoid tumors:a clinical review[J]. Oncologist,2005,10(2):123-131.
    [44]Kennedy. AS, Dezarn WA, McNeillie P et al. Radioembolization for unresectable neuroendocrine hepatic metastases using resin 90Y-microspheres:early results in 148 patients. Am J Clin Oncol 2008; 31:271-9.
    [45]Fjallskog ML, Lejonklou MH, Oberg KE,Eriksson BK, Janson ET. Expression of molecular targets for tyrosine kinase receptor antagonists in malignant endocrine pancreatic tumors. Clin Cancer Res 2003; 9:1469-73.
    [46]Hobday TJ, Mahoney M, Erlichman C.Preliminary results of a phase Ⅱ trial of gefitinib in progressive metastatic neuroendocrine tumors (NET):a Phase Ⅱ Consortium (P2C) study. J Clin Oncol 2005; 23(165):4083.
    [47]Kulke MH, Lenz HJ, Meropol NJ, et al.Activity of sunitinib in patients with advanced neuroendocrine tumors. J Clin Oncol 2008; 26:3403-10
    [48]Teng MW, Kershaw MH, Moeller M,Smyth MJ, Darcy PK. Immunotherapy of cancer using systemically delivered gene-modified human T lymphocytes.Hum Gene Ther 2004; 15:699-708.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700