磁性纳米颗粒及其集合体的磁学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米磁学是指处理维度在亚微米或者亚微米以下量级的结构所具有的磁学性质的一门新兴学科。本论文属纳米磁学范畴,研究对象是纳米磁性颗粒及其集合体,研究目标包括理解和探索多体偶极体系的物理规律以及促进诸如作为纳米磁性颗粒集合体的磁记录材料以及磁性液体等的应用。
     弛豫现象是纳米磁性颗粒集合体磁学性能的重要基础。它牵涉到诸如多体偶极体系对外界的响应,磁记录的时间稳定性等基本问题。目前关于磁晶易轴随机分布以及偶极相互作用对磁性纳米颗粒集合体在磁学方面弛豫性质的影响人们并不完全清楚。作为一个理论研究,本学位论文重点探索磁性纳米颗粒集合体中的偶极相互作用效应和磁晶易轴随机分布效应,主要考察的物理问题是弛豫以及势垒分布。
     有别于通常的蒙特卡罗模拟,我们在弛豫方面借助于局域配分函数和主方程,该模型适用于计算磁性纳米颗粒的诸多弛豫性质;在相互作用方面,我们通过除了通过平均场方法计算颗粒的磁化问题之外,还基于Landau-Lifshitz-Gilbert(LLG)方程模拟了集合体磁矩的运动,对比蒙特卡罗方法,我们考虑了磁矩进动的因素。为了分析这些方法的可靠性,我们分别用配分函数计算了单个磁性颗粒的热力学平衡态性质,另一方面,把LLG方程应用于研究磁性颗粒的磁滞回线等,我们获得了与实验和理论相符的结果。
     关于磁性液体中聚集结构的稳定态,我们以垂直于磁性液体膜面而形成的六角排列的聚集柱体结构为例,建立了颗粒聚集相与分散相的颗粒扩散模型,并利用平均场方式得到了聚集结构中颗粒之间的偶极作用场,我们模型预言的结果与实验较好一致,同时得到结论,当颗粒半径较小时,磁性液体中可以有相当可观的分散颗粒,这意味着在对磁性液体中磁能量进行分析的时候,假设所有的颗粒都参加了聚集是需要修正的。另外,我们模型还预言了特征场的存在。我们还进一步分析了聚集结构之间相互作用对本扩散模型的影响。(第二章)
     关于单个磁性纳米颗粒热力学平衡态的磁学性质,我们通过数值解法求解配分函数获得了磁化强度以及平均塞曼能、各向异性能、比热的性质。我们发现,当外磁场与磁性颗粒易轴平行时,其比热随温度变化曲线上出现的峰位随着外磁场的增强而往高温区移动;而当外磁场与磁性颗粒易轴垂直时,比热与温度的曲线上其峰位随着外磁场的增强而相低温区移动。这是由磁性纳米颗粒的能量面特点所决定的。(第三章)
     在弛豫方面,我们考虑了磁晶易轴随机分布效应以及加热速率的影响。我们成功得到了纳米磁性颗粒集合体在零场冷(ZFC)和场冷(FC)过程后测量所得的磁化强度,以及弛豫过程、记忆效应等性质。我们的结果表明,①在我们所研究的磁晶易轴随机分布的磁性纳米颗粒集合体中,其ZFC过程后随温度测量所得曲线上的峰值可由方程(4-14)表出,方程(4-14)预言了现在被普遍实验和模拟所证明的峰值温度与外磁场H2/3的关系,并与其定量上符合得相当好,这说明了方程(4-14)较H2/3关系更能体现其峰值温度的本质,从而给出更丰富的物理信息。②在弛豫过程方面,我们的模型支持用Tln(t/τ0)标度并支持通过S(t)的峰位来考察系统内的有效势垒;同时,在外磁场较大的情况下,用Tln(t/τ0)标度较好,S(t)的峰位置较好地对应着初始状态下的有效势垒(位于低势垒区);从S(t)上得到的分布不一定是系统的真实势垒分布。③我们的模型重现了该系统在降温后的记忆效应,表明,不存在体积分布和相互作用,仅仅存在磁晶易轴空间随机分布的体系,在降温后也具有记忆效应。(第四章)
     在偶极相互作用方面,我们的结果表明,在纳米磁性颗粒集合体中,存在着两种性质的排列趋势,铁磁性的排列和反铁磁性的排列,两者分别对磁化强度的增加起促进和阻碍作用。在多层结构中两种趋势可以发生转变。我们进而分析了磁化过程中的势垒问题。对于非相互作用的纳米磁性颗粒体系,我们验证了文献上所报道的外磁场使势垒变宽并导致峰位向低势垒区移动的论点,并得到结论,同一强度的外磁场下,初始磁化的势垒分布最宽,退磁化时最均匀,而反向磁化时所获得的势垒分布最窄。相互作用对势垒分布曲线峰位和宽度的影响与磁化过程有关。在初始磁化过程中存在一个阈值磁场,当外磁场小于该阈值磁场,外磁场对系统势垒的影响不大;特别的,在我们所研究的二维六角排列的体系里面,退磁化和反向磁化的过程中,势垒分布的峰位以及宽度变化与内在偏置场有关,并且由于内在偏置场的作用系统势垒分布宽度可以出现随着外磁场的减小而增宽,或是势垒的峰位随着外磁场的减小而向低势垒区移动的情况。(第五章)
     综上,我们强调,①即使是单一体积的磁性纳米颗粒集合体,磁晶易轴随机分布仍然可以用于解释当前实验和理论所证实的诸多弛豫现象;②可以通过外磁场和相互作用控制系统的势垒分布。在研究方法方面,我们所提出的基于局域配分函数的弛豫模型还可应用于处理一些静磁学问题;关于磁性液体中的扩散模型可以应用于电流体中的颗粒聚集现象等。
This dissertation is subject to the nanomagnetism which as a new discipline deals with the magnetic properties of the structures in size of submicrometer or below submicrometer. Here it focuses on magnetic nanoparticles and the magnetic nanoparticle assembly. The research aims at a better understanding of the physics in a multi-body dipolar system, and a promotion of the applications such as magnetic recording materials, and magnetic fluids.
     The relaxation phenomena play an important and basic role on the magnetic properties of the magnetic nanoparticle assembly, because it is related to how the multi-body dipolar system responses to the external detect, and the time stability of magnetic recording. It is interesting but yet unclear about the effects of randomly distributed anisotropy and the dipolar interactions between particles on the relaxation in magnetic nanoparticle assembly. This dissertation was trying to explore the two effects, i.e. dipolar interaction effect and randomly distributed anisotropy effect. Emphases were put on the relaxation and the energy barrier distribution.
     Being different from the commonly used Monte Carlo simulation, a local partition function and a master equation were employed to study the relaxation properties of the assembly. Two methods were used for the investigation of the dipolar interaction: one is the mean field approximation to calculate the magnetization; the other is the simulation of the magnetic moment on the basis of the Landau-Lifshitz-Gilbert (LLG) equation, which covers the precession of the moment in comparison to the method of Monte Carlo. To verify the simulation techniques used in the dissertation, we calculate the equilibrium magnetic properties of a single magnetic particle, and apply the LLG simulation to the study of the magnetic hysteresis loop of the magnetic particle assembly. The obtained results were in agreement with the published experiments and theories.
     To analyze the stable state of the magnetic-field-induced aggregated structures in a ferrofluid, a particle diffusion model was set up to describe the aggregated phase and dispersed phase of the particles, and applied to the case of the hexagonal columnar structure formed in a magnetic field perpendicular to the ferrofluid film. By introducing a mean field method, we calculated the interaction field between the particles in the column, and ultimately obtained the agreeable ratio of the radius to the spacing between the columns. It was concluded that there would be considerable particles dispersed in the ferrofluid film under a perpendicular field, especially when the particles are small. This meant that at least the assumption of total aggregation of the particles should be modified in the minimization analysis of the system’s free energy. The interaction between the columns was also discussed. (see Chapter 2)
     Based on the partition function, we calculated the magnetic properties of a single magnetic particle, the average anisotropy energy, the average Zeeman energy, and the specific heat of the particle. It was found that, in the case of the easy axis parallel to the magnetic field, the peak on the specific heat (vs temperature) shifted to higher temperature with the magnetic field; but to lower in that perpendicular to the field. This was explained by the character of the magnetic energy map of the particle. (see Chapter 3)
     In regard to the relaxation, we took into account the effects of the randomly distributed anisotropy and the heating rate, and successfully reproduced the relaxation properties of the magnetic particle assembly, such as the magnetization curves (vs temperature) after zero-field-cooling (ZFC) and field-cooling (FC) processes, the relaxation and the memory effect. The followings are concluded.①In the studied system, the temperature (Tp) at the peak of the magnetization curve after a ZFC process could be fitted to Eq. (4-14), which predicts the H2/3 dependence commonly observed by experiments and simulations. Since the good agreement in quantification on H2/3 dependence, we believed Eq. (4-14) would reflect the nature of Tp, rather than the simple H2/3 dependence, and give more physics.②The model supported the Tln(t/τ0) scaling and the investigation on the active barrier distribution from the curve of S(t) vs Tln(t/τ0). Meanwhile, for a strong applied magnetic field, the Tln(t/τ0) scaling is improved, and the peak of the S(t) corresponds well to the active barrier in the studied system. The barrier distribution derived from S(t) was not necessarily the real distribution in the system.③The model reproduced the memory effect after temporary cooling, indicating that without a volume distribution and particle interaction, the particle assembly still possesses the memory effect if a randomly distributed anisotropy is set. (see Chapter 4)
     Regarding the dipolar interaction, it was shown that in the studied system (2D hexagonal lattices and multilayer structures) the particle moments favor two kinds of alignment, ferromagnetic alignment and anti-ferromagnetic alignment, depending on the direction of the applied magnetic field. The ferromagnetic alignment acts on the magnetization, while the anti-ferromagnetic against the magnetization. As the layer number of the system increased, the system’s favorite alignment could be changed. Then we go further to the barrier distribution during the magnetization. In the case of the non-interacting assembly, we reproduced the reported phenomena, behind which, the applied magnetic field broadens the barrier distribution and causes the peak position of the distribution to shift to lower barrier area. It was also concluded that, under the magnetic field with the same magnitude, the barrier distribution was wide when the system was initially magnetized from a zero field value; and uniform in the process of reducing field down to zero; while narrow in that of reversing field. It means that the barrier distribution can be controlled by the magnetization. In the case of the interacting assembly, the effects of the dipolar interactions on the peak and the width of the barrier distribution are also related to the magnetization process. During the initial magnetization, there was a threshold field below which the effects were negligible. Particularly, for the studied 2-dimensional particle system with hexagonal configuration, as the field was dropped to zero and then became inversed, the behaviors of the peak and the width of the barrier distribution were related to a field offset. The peak may shift to lower energy and be broadened as the magnitude of the magnetic field increases. (see Chapter 5)
     Finally, we stressed the following two points of view.①In spite of the uniform size of the particle in the assembly, the randomly distributed anisotropy could be, at least one of the, the origins of several kinds of observed relaxation phenomena.②The energy barrier distribution could be controlled by the external magnetic field together with the dipolar interaction between the particles. In addition, the relaxation model and the diffusion model could be applied to the study of the static magnetic properties, and to the aggregation in electrofluids.
引文
[1] S. D. Bader Colloquium: Opportunities in Nanomagnetism Rev. Mod. Phys. 2006, 78: 1
    [2] J. F. Bobo, L. Gabillet and M. Bibes Recent advances in nanomagnetism and spin electronics J. Phys.: Condens. Matter 2004, 16: S471-S496
    [3] Weller, D., and A. Moser Thermal effect limits in ultrahigh density magnetic recording IEEE Trans. Magn. 1999, 35: 4423
    [4] Parkin, S., X. Jiang, C. Kaiser, A. Panchula, K. Roche, and M. Samant Magnetically Engineered Spintronic Sensors and Memory Proc. IEEE 2003, 91: 661
    [5] Z. Z. Sun & X. R. Wang Fast magnetization switching of Stoner particles A nonlinear dynamics picture Phys. Rev. B 2005, 71: 174430
    [6] Wolf S. A. Spintronics: a spin-based electronics vision for the future Science2001, 294: 1488
    [7] Zutic I., J. Fabian, and S. Das Sarma Spintronics: fundamentals and applications Rev. Mod. Phys. 2004, 76: 323
    [8] Nikonov, D. E., and G. I. Bourianoff Spin gain transistor in ferromagnetic. semiconductors-the semiconductor Bloch-equations approach IEEE Trans. Nanotechnol. 2005, 4: 206
    [9] Ohno H. Making nonmagnetic semiconductors ferromagnetic Science 1998, 281: 951
    [10] Tehrani, S., J. M. Slaughter, M. DeHerrera, B. Engel, N. D. Rizzo, J. Salter, J. Durlam, R. W. Dave, J. Janesky, B. Butcher, K. Smith, and G. Grynkewich Magnetoresistive random access memory using magnetic tunnel junctions Proc. IEEE 2003, 91: 703
    [11] Sugahara, S., and M. Tanaka A spin metal–oxide–semiconductor field-effect transistor using half-metallic-ferromagnet contacts for the source and drain Appl. Phys. Lett. 2004, 84: 2307
    [12] Matsuno, T., S. Sugahara, and M. Tanaka Novel Reconfigurable Logic Gates Using Spin Metal-Oxide-Semiconductor Field-Effect Transistors Jpn. J. Appl. Phys., Part 12004, 43: 6032
    [13] Cowburn, R. P., and M. E. Welland Room temperature magnetic quantum cellular automata Science2000, 287: 1466
    [14] Hassoun, M. M., W. C. Black, Jr., E. K. F. Lee, R. L. Geiger, and A. Hurst, Jr. Field programmable logic gates using GMR devices IEEE Trans. Magn. 1997, 33: 3307
    [15] W. Wernsdorfer, N. Aliga-Alcalde, D. N. Hendrickson and G. Christou Exchange-biased quantum tunnelling in a supramolecular dimer of single-molecule magnets Nature 2002, 416: 406.
    [16] D. P. DiVincenzo and D. Loss Quantum computers and quantum coherence J. Magn. Magn. Mater. 1999, 200: 202.
    [17] Pankhurst, Q. A., J. Connolly, S. K. Jones, and J. Dobson Applications of magnetic nanoparticles in biomedicine J. Phys. D2003, 36: R167.
    [18] Hoffmann, A., S. H. Chung, S. D. Bader, L. Makowski, and L. Chen, , in Biomedical Applications of Nanotechnology, Wiley, New York. (2006)
    [19] Li Li, Zhe-Hui He*, Wei-Wei Wang, and Di-Hu Chen, Synthesis of Amino-Functionalized Epoxy Acrylate Film by Magnetic Filtered Plasma stream, Prog. Org. Coat. 2006, 56: 126-130
    [20] C. Holm, J.-J. Weis The structure of ferrofluids: A status report Current Opinion in Colloid & Interface Science 2003, 10: 133
    [21] D. J. Craik, Magnetism: Principles and Applications. Wiley, New York, 1995
    [22] Webb J. Westbroek P, De Jong E W eds. Biomineralization and biological metal accumulation. Dordrecht :Reidel Publishing Company. 1983
    [23] J. L. Kirschvink, A. Kobayashi-Kirschvink, B. J. Woodford Magnetite biomineralization in the human brain Proc. Natl. Acad. Sci. USA 1992, 89: 7683
    [24] X. R. Wang and Z. Z. Sun Theoretical limit in the magnetization reversal of stoner particle Phys. Rev. Lett. 2007, 98: 077201
    [25] C. Dennis Mee, Eric D. Daniel, Magnetic Recording Technology, McGraw-Hill Professional, 1996; H. Neal Bertram, Theory of magnetic Recording, Cambridge University Press, 1994
    [26] W. F. Brown, Jr. Thermal fluctuations of a single domain particle Phys. Rev. 1963, 130: 1677
    [27] L. Néel, Theorie du trainage magnetique des ferromagnetiques en grains fins avec applications aux terres cuites Ann. Géophys. 1949, 5: 99
    [28] Wang W and Shen H Mater. Sci. Technol. 2001 9: 81
    [29] C. J. Brinker, Y. Lu, A. Sellinger and H. Fan Evaporation-induced self-assembly: nanostructures made easy Adv. Mater. 1999 , 11: 579; J. Rybczynski, U. Ebels and M. giersig, Colloids and Surfaces A: physicochem. Eng . Aspects 2003, 219: 1
    [30] V. F. Puntes, P. Gorostiza,D. M. Aruguete,N. G. Bastus and A. P. Alivisatos Collective behaviour in two-dimensional cobalt nanoparticle assemblies observed by magnetic force microscopy Nature material. 2004, 3: 263
    [31] Y. lalatonne, J. Richardi and M. P. Pileni Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals Nature Mater. 2004 , 3: 121
    [32] J.L. Dormann, R. Cherkaoui, L. Spinu, M. Nogues, F. Lucari, F. D’Orazio, D. Fiorani, A. Garcia, E. Tronc, J.P. Jolivet J. Magn. Magn. Mater. 1998, 187: L139
    [33] J.L. Dormann, R. Cherkaoui, L. Spinu, M. Nogues, F. Lucari, F. D’Orazio, D. Fiorani, A. Garcia, E. Tronc, J.P. Jolivet From pure superparamagnetic regime to glass collective state of magnetic moments inγ-Fe2O3 nanoparticle assemblies J. Magn. Magn. Mater. 1998, 187: L139
    [34] S. M?rup, F. B?dker, P. V. Hendriksen, and S. Linderoth Spin-glass-like ordering of the magnetic moments of interacting nanosized maghemite particles Phys. Rev. B1995, 52: 287 ; O. Petracic, W. Kleemann, CH. Binek, G. N. Kakazei, YU. Pogorelov, J. B. Sousa, S. Cardoso, P. P. Freitas Superspin glass behavior of interacting ferromagnetic nanoparticles in discontinuous magnetic multilayers Phase Transitions 2002, 75: 73
    [35] M. R. Scheinfein, K. E. Schmidt, K. R. Heim, and G. G. Hembree Magnetic Order in Two-Dimensional Arrays of Nanometer-Sized Superparamagnets Phys. Rev. Lett. 1996, 76: 1541
    [36] S. Bedanta, T. Eimuller, W. Kleemann, J. Rhensius, F. Stromberg, E. Amaladass, S. Cardoso and P. P. Feitas Overcoming the Dipolar Disorder in Dense CoFe Nanoparticle Ensembles: Superferromagnetism Phys. Rev. Lett. 2007, 98: 176601
    [37] Chikazumi S Physics of Ferromagnetism (Oxford University Press) (1997)
    [38] E. C. Stoner an E. P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys Philos. Trans. R. Soc. Lodon, Ser. A1948, 240: 599 , reprinted n IEEE Trans. Magn. 1991, 27: 3475
    [39] C. Xu, Z. Y. Li and P. M. Hui Monte Carlo studies of hysteresis curves in magnetic compositeds with fine magnetic particles J. Appl. Phys. 2001 , 89: 3403
    [40] T. Jonsson, J. Mattsson; P. Nordblad; P. Svedlindh J. Magn. Magn. Mater. Energy barrier distribution of a noninteracting magnetic particle system 1997, 168: 269
    [41] G. F. Goya, F. C. Fonseca and r. F. Jardim, R. Muccillo, N. L. V. Carreno, E. Longo and E. R. Leite Magnetic dynamics of single domain Ni nanoparticles J. Appl. Phys. 2003, 93: 6531
    [42] Jinlong Zhang, C. Boyd, and Weili Luo Two Mechanisms and a Scaling Relation for Dynamics in Ferrofluids Phys. Rev. Lett. 1996, 77: 390
    [43] C. Djurberg, P. Svedlindh and P. Nordblad dynamics of an interacting particle system: Evidence of critical slowing down Phys. Rev. Lett. 1997, 79: 5154
    [44] H. Mamiya, I. Nakatani and T. Furubayashi Slow Dynamics for Spin-Glass-Like Phase of a Ferromagnetic Fine Particle System Phys. Rev. Lett. 1999, 82: 4332; M. Ulrich, J. Garcia-Otero, J. Rivas and A. Bunde Slow relaxation in ferromagnetic nanoparticles:Indication of spin-glass behavior Phys. Rev. B2003 , 67: 024416
    [45] H. Zhou Long-Range Frustration in a Spin-Glass Model of the Vertex-Cover Problem Phys. Rev. Lett. 2005, 94: 217203
    [46] H. Mamiya, I. Nakatani and T. Furubayashi Blocking and Freezing of Magnetic Moments for Iron Nitride Fine Particle Systems Phys. Rev. Lett. 1998, 80: 177
    [47] S. Sahoo, O. Petracic, Ch. Binck, W. Kleemann, J. B. Sousa, S. Cardoso and P. P. Freitas Superspin-glass nature of discontinuous Co80Fe20/Al2O3 multilayers Phys. Rev. B 2002, 65: 134406
    [48] S. Chakraverty, M. Bandyopadhyay, S. Chatterjee, S. Dattagupta, A. Frydman, S. Sengupta, and P. A. Sreeram Memory in a magnetic nanoparticle system: Polydispersity and interaction effects Phys. Rev. B 2005, 71: 054401
    [49] G. M. Tsoi, L. E. Wenger, U. Senaratne, R. J. Tackett, E. C. Bue, R. Naik, P. P. Vaishnava, V. Naik Memory effects in a superparamagneticγ-Fe2O3 system Phys. Rev. B2005 , 72: 014445
    [50] G. M. Tsoi, U. Senaratne, R. J. Tackett, E. C. Bue, r. Naik, P. P. Vaishnava, V. M. Naik, L. E. Wenger Memory effects and magnetic interactions in aγ-Fe2O3 nanoparticle system J. Appl. Phys 2005, 97: 10J507
    [51] R. K. Zheng, H. Gu, B. Xu, and X. X. Zhang Memory effects in a nanoparticle system: Low-field magnetization and ac susceptibility measurements Phys. Rev. B 2005, 72: 014416
    [52] M. Sasaki, P. E. Jonsson and H. Takayama, H. Mamiya Aging and memory effects in superparamagnets and superspin glasses Phys. Rev. B 2005, 71: 104405
    [53] M. Bandyopadhyay and S. Dattagupta Memory in nanomagnetic system: Superparamagnetism versus spin-glass behavior Phys. Rev. B2006 , 74: 214410
    [54] C. A. Viddal and R. M. Roshko Aging and memory effects in zero-field-cooled collections of two-level subsystems Phys. Rev. B 2006, 73: 172416
    [55] S. Sahoo, O. Petracic, W. Kleemann, P. Nordblad, S. Cardoso and P. P. Freitas Aging and memory in a superspin glass Phys. Rev. B 2003, 67: 214422
    [56] T. Jonsson, J. Mattsson, C. Djurberg, F. A. Khan, P. Nordblad and P. Svedlindh Aging in a Magnetic Particle System Phys. Rev. Lett. 1995, 75: 4138
    [57] Y. Sun, M. B. Salamon, K. Garnier and R. S. Averback Memory effects in an interacting magnetic nanoparticle system Phys. Rev. Lett. 2003, 91: 167206 ; Comments and Reply
    [58] F.X. Redl, C.T. Black, G.C. Papaefthymiou, R.L. Sandstrom, M. Yin, H. Zeng, C.B. Murray, S.P. O’Brien Magnetic, Electronic, and Structural Characterization of Nonstoichiometric Iron Oxides at the Nanoscale J. Am. Chem. Soc. 2004, 126: 14583
    [59] R. H. Kodama, A. E. Berkowitz, E. J. McNiff., Jr. And S. Foner Surface Spin Disorder in NiFe2O4 Nanoparticles Phys. Rev. Lett. 1996, 77 394
    [60] B. Martinez, X. Obradors, L. Baleells, A. Rouanet and C. Monty Low Temperature Surface Spin-Glass Transition inγ- Fe2O3 Nanoparticles Phys. Rev. Lett. 1998, 80: 181
    [61] H. Wang, T. Zhu, K. Zhao, W. N. Wang, C. S. Wang, Y. J. Wang, and W. S. Zhan Surface spin glass and exchange bias in Fe3O4 nanoparticles compacted under high pressure Phys. Rev. B 2004, 70: 092409
    [62] M. Hanson, C. Johansson, M. S. Pedersen, and S. M?rup, The influence of particle size and interactions on the magnetization and susceptibility of nanometre-size particles J. Phys.: Condens. Matter 1995, 7: 9269; M Hanson, C Johansson, and S M?rup, zero-field cooled magnetization of amorphous Fe1-2Cx particles field dependence of the maximum J. Phys.: Condens. Matter 1995, 7: 9263 .
    [63] R. Sappey, E. Vincent, N. Hadacek, F. Chaput, J. P. Boilot, and D. Zins, Nonmonotonic field dependence of the zero-field cooled magnetization peak in some system of magnetic nanoparticles Phys. Rev. B 1997, 56: 14551 .
    [64] H. Kachkachi, W. T. Coffer, D. S. F. Crothers, A. Ezzir, E. C. Kennedy, M. Noguès, and E. Tronc, Field dependence of the temperature at the peak of the zero-field-cooled magnetization J. Phys.: Condens. Matter 2000, 12:, 3077 .
    [65] C. Jr. Papusoi, A. Stancu and J. L. Dormann, The initial susceptibility in the FC and ZRC magnetisation processes J. Magn. Magn. Mater. 1997, 174:, 236 .
    [66] J. C. Denardin, A. L. Brandl, M. Knobel, P. Panissod, A. B. Pakhomov, H. Liu, and X. X. Zhang, Thermoremanence and zero-field-cooled/field-cooled magnetization study of Cox(SiO2)1-x granular films Phys. Rev. B 2002, 65:, 064422 .
    [67] H. Mamiya, M. Ohnuma, I. Nakatani, and T. Furubayashim, Extraction of blocking temperature distribution from zero-field-cooled and field-cooled magnetization curves IEEE Trans. Mag. 2005, 41:, 3394 .
    [68] H. Pfeiffer, and R. W. Chantrell, zero-field-cooled magnetization and initial susceptibility of magnetic particle systems J. Magn. Magn. Mater. 1993, 120: 203 .
    [69] Y. Shiratsuchi, and M. Yamamoto, Dominant factor of zero-field-cooled magnetization in discontinuous Fe films Phys. Rev. B 2007, 76:, 144432 .
    [70] L. G. Jacobsohn, M. F. Hundley, J. D. Thompson, R. M. Dickerson, and M. Nastasi, J. Vac. Sci. Technol. B 2006, 24(1): 321 .
    [71] J. J. Lu, H. Y. Deng, and H. L. Huang, Thermal relaxtion of interacting fine magnetic particle field-cooled and zero-field-cooled magnetization variation J. Magn. Magn. Mater. 2000, 209: 37 .
    [72] P. P. Vaishnava, U. Senaratne, E. C. Buc, R. Naik, V. M. Naik, G. M. Tsoi, and L. E. Wenger Investigation of the magnetic susceptibility of nanocompositeds obtained in zero-field-cooled conditions Phys. Rev. B 2007, 76: 024413 .
    [73] J. M. Vargas, L. M. Socolovsky, M. Knobel, and D. Zanchet, Dipolar interaction and size effects in powder samples of colloidal iron oxide nanoparticles Nanotechnology 2005, 16: S285 .
    [74] R. K. Rakshit, and R. C. Budhani, Magnetic relaxation and superparamagnetism of non-interacting disordered CoPt nanoparticles J. Phys. D. Appl. Phys. 2006, 39: 1743 .
    [75] T. Bitoh, K. Ohba, M. Takamatsu, T. Shirane, and S. Chikazawa, Field-cooled and zero-field-cooled magnetization of superparamagnetic fine particles in Cu97Co3 alloy: Comparison with Spin-glass Au96Fe4 Alloy J. Phys. Soc. Japan 1995, 64: 1305 .
    [76] R. H. Victora, Predicted time dependence of the switching field for magnetic materials Phys. Rev. Lett. 1989, 63: 457.
    [77] Ll. Balcells, O. Iglesias and A. Labarta Normalization factors for magnetic relaxation of small-particles systems in a nonzero magnetic field Phys. Rev. B 1997, 55: 8940
    [78] M. El-Hilo, R. W. Chantrell and K. O’Grady Model of interaction effects in grandular magnetic solids J. Appl. Phys. 1998, 84: 5114
    [79] M. P. Pileni Self-organization of inorganic nanocrystals J. Phys. Condens. Matter 2006, 18: S67
    [1] S. Odenbach Ferrofluids Magnetically controllable fluids and their applications, Germany: Springer 2002
    [2] C. Holm and J.–J. Weis The structure of ferrofluids: A status report Curr. Opin. Colloid Interface Sci. 2005, 10: 133
    [3] A-T Ngo, and M. P. Pileni, Nanoparticles of Cobalt ferrite: influence of the applied field on the organization of the nanocrystals on a substrate and on their magnetic properties Adv. Mater. 2000, 12: 276 .
    [4] J Legrand, A. T. Ngo, C Petit, M. P. Pileni, Domain shapes and superlattieces made of cobalt nanocrystals Adv. Mater. 2001, 13: 58
    [5] C.-Y. Hong, I. J. Jang, H. E. Horng, C. J. Hsu, Y. D. Yao, and H. C. Yang, Ordered structures in Fe3O4 kerosene-based ferrofluids J. Appl. Phys. 1997, 81: 4275 .
    [6] C.-Y. Hong, C.-H. Lin, C.-H. Chen, Y. P. Chiu, S. Y. Yang, H. E. Horng, and H. C. Yang Field-dependent phase diagram of the structural pattern in a ferrofluid film under perpendicular magnetic field J. Magn. Magn. Mater. 2001, 226: 1881 .
    [7] H. E. Horng, C-Y Hong, S. Y. Yang, and H. C. Yang Novel properties and applications in magnetic fluids J. Phys. Chem. Soli. 2001, 62: 1749
    [8] S. Y. Yang, H. E. Horng, C. Y. Hong, H. C. Yang, M. C. Chou, C. T. Pan, and Y. H. Chao, control method for the tunable ordered structures in magnetic fluid microstrips J. Appl. Phys. 2003, 93: 3457 .
    [9] Y.-W. Huang, S.-T Hu, S.-Y Yang, H.-E. Horng, J.-C. hung, C.-Y. Hong, H.-C. Yang, C.-H. Chao, and C.-F. Lin, Tunable diffraction of magnetic fluid films and its potential application in coarse wavelength-division multiplexing Opti. Lett. 2004, 29: 1867 .
    [10] S. Y. Yang, Y. H. Chao, H. E. Horng and C. Y. Hong, Tunable one-dimensional ordered structure in a magnetic fluid microstrip under parallel magnetic fields J. Appl. Phys. 2005, 97: 093907 .
    [11] S. Y. Yang, Y. F. Chen, Y. H. Ke, W. S. Tse, H. E. Horng, C-Y Hong, H. C. Yang, Effect of temperature on the structure formation in the magnetic fluid film subjected to perpendicular magnetic field J. Magn. Magn. Mater. 2002, 252: 290
    [12] C-Y Hong, Y. H. Ke, H. E. Horng, S. Y. Yang, H. C. Yang Thermal activated variation in the ordered structures in magnetic fluids films J. Magn. Magn. Mater. 2005, 289: 93
    [13] P. Taboada-Serrano, C.–J. Chin, S. Yiacoumi and C. Tsouris Modeling aggregation of colloidal particles Curr. Opin. Colloid Interface Sci. 2005, 10: 123
    [14] A. Satoh, R. W. Chantrell, S-I Kamiyama, and G. N. Coverdale, Two-dimensional Monte Carlo simulations to capture thick chainlike clusters of ferromagnetic particles in colloidal dispersions J. Coll. Int. Sci. 1996, 178: 620 ; Three dimensional Monte Carlo simulations of thick chainlike clusters composed of ferromagnetic fine particles J. Coll. Int. Sci. 1996, 181: 422
    [15] H Morimoto, and T Maekawa, Cluster structures and cluster-cluster aggregations in a two-dimensional ferromagnetic colloidal system J. Phys. A: Math. Gen. 2000, 33: 247
    [16] V. S. Mendelev and A. O. Ivanov Ferrofluid aggregation in chains under the influence of a magnetic field Phys. Rev. E 2004, 70: 051502 ; and series of works by A. Y. Zubarev
    [17] A. Y. Zubarev and L. Y. Iskakova Structural transformations in ferrofluids Phys. Rev. E 2003, 68:061203
    [18] A. Y. Zubarev and L. Y. Iskakova Effect of chainlike aggregations on dynamical properties of magnetic liquids Phys. Rev. E 2000, 61: 5415
    [19] J. Richardi and M. P. Pileni Towards efficient method for the study of pattern formation in ferrofluid films Eur. Phys. J. E 2004, 13: 99
    [20] J. Richardi, D. Ingert and M. P. Pileni Theoretical study of the field-induced pattern formation in magnetic liquids Phys. Rev. E 2002, 66: 046306
    [21] F. M. Ytreberg and S. R. Mckay Calculated properties of field-induced aggregates in ferrolfuids Phys. Rev. E 2000, 61: 4107
    [22] V. Germain, J. Richardi, D. Ingert and M. P. Pileni Mesostructures of Cobalt nanocrystals. 1 Experiment and theory J. Phys. Chem. 2005, 109: 5541
    [23] J. Liu, E. M. Lawrence, A. Wu, M. L. Ivey, G. A. Flores, K. Javier, J. Bibette and J. Richard Field-induced structures in ferrofluid emulsions Phys. Rev. Lett. 1995, 74: 2828
    [24] Y. LaLatonne, J. Richardi and M. P. Pileni Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals Nature Material 200, 43: 121
    [25] W.–X. Fang, Z.–H. He, X.–Q. Xu, Z.–Q. Mao and H. Shen Magnetic-field-induced chain-like assembly structures of Fe3O4 nanoparticles Europhy. Lett. 2007,77: 68004 ; W.–X. Fang, Z.–H. He, X.–Q. Xu and H. Shen Aligned structures of Fe3O4 nanoparticles in a curable polymer carrier induced y a magnetic field Chin. Phys. Lett. 2005, 22: 2386
    [26]方文啸,《可固化高分子载体中纳米磁性颗粒(Fe3O4)的场诱导组装研究》,中山大学,指导老师何振辉,2005
    [27] R. K. Pathria Statistical Mechanics, Elsevier Singapore Pte Ltd (2001)
    [28] S. Chikazumi Physics of Ferromagnetism, Oxford University Press (1997)
    [29] P. C. Scholaten How magnetic can a magnetic fluid be? J. Magn. Magn. Mater. 1983, 39: 99
    [1] E. C. Stoner and E. P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys Philos. Trans. R. Soc. Lodon, Ser. A 1948, 240: 599 , reprinted in IEEE Trans. Magn. 1991, 27: 3475
    [2] W. F. Brown, Jr. Thermal fluctuations of a single domain particle Phys. Rev. 1963, 130: 1677
    [3] W. F. Brown, Jr. Thermal fluctuations of fine ferromagnetic particles IEEE Trans. Magn. 1979, 15: 1196
    [4] R. K. Pathria Statistical Mechanics, Elsevier Singapore Pte Ltd (2001)
    [5] JoséL. García-Palacios and Francisco J. Lázaro Anisotropy effectson the nonlinear magnetic susceptibility of superparamagnetic particles Phys. Rev. B 1997, 55: 1006
    [6] M. Bandyopadhyay and J. Bhattacharya Magnetic and caloric properties of magnetic nanoparticles: an equilibrium study J. Phys.: Condens. Matter 2006, 18: 11309
    [7] P. Vargas, D. Laroze Thermodynamics of three-dimensional magnetic nanoparticles J. Magn. Magn. Mater. 2004, 272-276: e1345
    [8] P. Vargas, D. Altbir, M. Knobel and D. Laroze Thermodynamics of two-dimensional magnetic nanoparticles EuroPhys. Lett. 2002, 58(1): 603
    [9] D. C. Jiles, S. J. Lee, Kenkel, and K. L. Metlov Superparamagnetic magnetization equation in two dimensions Appl. Phys. Lett. 2000, 77: 1029
    [10] K. Müller and F. Thurley Influence of anisotropy on the magnetisation curves of superparamagnetic particles Int. J. Magn. 1973, 5: 203
    [11] M. Respaud Magnetization process of noninteracting ferromagnetic cobalt nanoparticles in the superparamagnetic regime: Deviation from Langevin law J. Appl. Phys. 1999, 86: 556
    [12] H. Mamiya, I. Nakatani, and T. Furubayashi Blocking and Freezing of Magnetic Moments for Iron Nitride Fine Particle Systems Phys. Rev. Lett. 1998, 80: 177
    [13] C. Djurberg, P. Svedlindh and P. Nordblad dynamics of an interacting particle system: Evidence of critical slowing down, Phys. Rev. Lett. 1997, 97: 5154
    [14] T. Bitoh, K. Ohba, M. Takamatsu, T. Shirane, S. Chikazawa Linear and nonlinear susceptibilities in Cu97Co3 alloy for ferromagnetic fine particles in metallic matrix: comparison with spin glass Au96Fe4 alloy J. Phys. Soc. Jpn. 1993, 62: 2583
    [15] N. Hegman, L.F. Kiss and T. Kemény Broad peak of the non-linear susceptibility at the spin-glass temperature of amorphous Fe93Zr7 J. Phys: Condens. Matter1994, 6: L427
    [16] M. Jamet, W. Wernsdorfer, C. Thirion, D. Mailly, V. Dupuis, P. Mélinon and A. Pérez Magnetic Anisotropy of a Single Cobalt Nanocluster Phys. Rev. Lett. 2001, 86: 4676
    [17] M. Cormier, J. Ferré, A. Mougin, J.-P. Cromières and V. Klein High resolution polar Kerr magnetometer for nanomagnetism and nanospintronics Rev. Sci. Instrum. 2008, 79: 033706
    [19] L. M. Douglas, Specific heat of dilute Cu-Mn alloys in the region of the spin-glass freezing temperature Phys. Rev. B 1985, 32: 371 ; L. E. Wenger and P. H. Keesom, Calorimetric investigation of a spin-glass alloy: CuMn Phys. Rev. B 1976,13: 4053 ; D. Meschede, F. Steglich, W. Felsch, H. Maletta and W. Zinn Specific heat of insulating spin-glasses (Eu, Sr)S near the onset of ferromagnetism Phys. Rev. Lett. 1980, 44: 102 .
    [20] K. H. Fischer and J. A. Hertz, Spin Glasses (Cambridge University Press, Cambridge, England, 1991).
    [21] M. Górska, A. ?usakowski, A. J?drzejczak, Z. Go?acki, R. R. Ga??zka, J. R. Anderson and H. Balci Magnetic contribution to the specific heat of Pb1-xEuxTe (x=0.027, 0.073) Phys. Rev. B 2006, 73: 125201 .
    [22] W. Kleemann, O. Petracic, Ch. Binek, G. N. Kakazei, Yu. G. Pogorelov, J. B. Sousa, S. Cardoso and P. P. Freitas interacting ferromagnetic nanoparticles in discontinuous Co80Fe20/Al2O3 multilayers: From superspin glass to reentrant superferromagnetism Phys. Rev. B 2001, 63: 134423 .
    [23] W. Figueiredo and W. Schwarzacher Magnetic relaxation and thermal properties of a two-dimensional array of dipolar-coupled nanoparticles, J. Phys.: Condens. Matter 2007, 19: 276203
    [1]姜寿亭,李卫,凝聚态磁性物理科学出版社2005
    [2]高元桂,蔡幼铨,蔡祖龙,磁共振成像诊断学,人民军医出版社1993
    [3] C. Dennis Mee, Eric D. Daniel, Magnetic Recording Technology, McGraw-Hill Professional, 1996; H. Neal Bertram, Theory of magnetic Recording, Cambridge University Press, 1994
    [4]焦正宽,曹光旱,磁电子学浙江大学出版社2005
    [5] M. Hanson, C. Johansson, and S. M?rup, Macroscopic Resonant Tunneling of Magnetization in Ferritin Phys. Rev. Lett 1998, 81: 735 .
    [6] M. Hanson, C. Johansson, M. S. Pedersen, and S. M?rup, The influence of particle size and interactions on the magnetization and susceptibility of nanometre-size particles J. Phys.: Condens. Matter 199, 57: 9269 ; M Hanson, C Johansson, and S M?rup, zero-field cooled magnetization of amorphous Fe1-2Cx particles field dependence of the maximum J. Phys.: Condens. Matter 1995, 7: 9263 .
    [7] R. Sappey, E. Vincent, N. Hadacek, F. Chaput, J. P. Boilot, and D. Zins, Nonmonotonic field dependence of the zero-field cooled magnetization peak in some system of magnetic nanoparticles Phys. Rev. B 1997, 56: 14551 .
    [8] M. Azeggagh, and H. Kachkachi, Effects of dipolar interactions on the zero-field-cooled magnetization of a nanoparticle assembly Phys. Rev. B 20077, 5: 174410 .
    [9] H. Kachkachi, W. T. Coffer, D. S. F. Crothers, A. Ezzir, E. C. Kennedy, M. Noguès, and E. Tronc, Field dependence of the temperature at the peak of the zero-field-cooled magnetization J. Phys.: Condens. Matter 2000, 12: 3077 .
    [10] R. K. Zheng, H. W. Gu, B. Xu, and X. X. Zhang, The origin of the non-monotonic field dependence of the blocking temperature in magnetic nanoparticle J. Phys.: Condens. Matter 2006, 18: 5905 .
    [11] R. W. Chantrell, N. Walmsley, J. Gore, and M. Maylin, Calculations of the susceptibility of the interacting superparamagnetic particle Phys. Rev. B 2000, 63: 024410 .
    [12] C. Jr. Papusoi, A. Stancu and J. L. Dormann, The initial susceptibility in the FC and ZRC magnetisation processes J. Magn. Magn. Mater. 1997, 174: 236 .
    [13] O. Michele, J. Hesse, and H. Bremers, Magnetization measurements on frozen ferrofluid: an attempt to seprate interaction and anisotropy J. Phys.: Condens. Matter 2006, 18: 4921 .
    [14] J. García-Otero, M. Porto, J. Rivas, and A. Bunde, Influence of dipolar interaction on magnetic properties of ultrafine ferromagnetic particle Phys. Rev. Lett. 2000, 84: 167 .
    [15] L. Wang, J. Ding, H. Z. Kong, Y. Li, and Y. P. Feng, Monte Carlo simulation of a cluster system with strong interaction and random anisotropy Phys. Rev. B 2001, 64: 214410 .
    [16] C. Binns, M. J. Maher, Q. A. Pankhurst, D. Kechrakos, and K. N. Trohidou, Magnetic behavior of nanostructured films assembled from preformed Fe clusters embedded in Ag Phys. Rev. B 2002, 66: 184413 .
    [17] J. C. Denardin, A. L. Brandl, M. Knobel, P. Panissod, A. B. Pakhomov, H. Liu, and X. X. Zhang, Thermoremanence and zero-field-cooled/field-cooled magnetization study of Cox(SiO2)1-x granularfilms Phys. Rev. B 2002, 65: 064422 .
    [18] H. Mamiya, M. Ohnuma, I. Nakatani, and T. Furubayashim, Extraction of blocking temperature distribution from zero-field-cooled and field-cooled magnetization curves EEE Trans. Mag. 2005, 41: 3394 .
    [19] H. Pfeiffer, and R. W. Chantrell, zero-field-cooled magnetization and initial susceptibility of magnetic particle systems J. Magn. Magn. Mater. 1993, 120: 203 .
    [20] Y. Shiratsuchi, and M. Yamamoto, Dominant factor of zero-field-cooled magnetization in discontinuous Fe films Phys. Rev. B 20077, 6: 144432 .
    [21] L. G. Jacobsohn, M. F. Hundley, J. D. Thompson, R. M. Dickerson, and M. Nastasi, Investigation of the magnetic susceptibility of nanocompositeds obtained in zero-field-cooled conditions J. Vac. Sci. Technol. B 2006, 24(1): 321 .
    [22] J. J. Lu, H. Y. Deng, and H. L. Huang, Thermal relaxtion of interacting fine magnetic particle field-cooled and zero-field-cooled magnetization variation J. Magn. Magn. Mater. 2000, 209: 37 .
    [23] P. P. Vaishnava, U. Senaratne, E. C. Buc, R. Naik, V. M. Naik, G. M. Tsoi, and L. E. Wenger Magnetic properties ofγ-Fe2O3 nanoparticles incorporated in a polystyrene rsin matrix Phys. Rev. B 2007, 76: 024413 .
    [24] J. M. Vargas, L. M. Socolovsky, M. Knobel, and D. Zanchet, Dipolar interaction and size effects in powder samples of colloidal iron oxide nanoparticles Nanotechnology 2005, 16: S285 .
    [25] R. K. Rakshit, and R. C. Budhani, Magnetic relaxation and superparamagnetism of non-interacting disordered CoPt nanoparticles J. Phys. D. Appl. Phys. 2006, 39: 1743 .
    [26] T. Bitoh, K. Ohba, M. Takamatsu, T. Shirane, and S. Chikazawa, Field-cooled and zero-field-cooled magnetization of superparamagnetic fine particles in Cu97Co3 alloy: Comparison with Spin-glass Au96Fe4 Alloy J. Phys. Soc. Japan 1995, 64: 1305 .
    [27] M. Knobel, W. C. Nuner, H. Winnischofer, T. C. R. Rocha, L. M. Socolovsky, C. L. Mayorga, and D. Zanchet, Effects of magnetic interparticle coupling on the blocking temperature of ferromagnetic nanoparticle arrays J. Non-Cryst. Solids 2007, 353: 743 .
    [28] J. Tejada, X. X. Zhang, E. del Barco, and E. M. Chudnovsky, Macroscopic Resonant Tunneling of Magnetization in Ferritin Phys. Rev. Lett. 1997, 79: 1754 .
    [29] D. J. Sellmyer, Y. Liu, D. Shindo, Handbook of Advanced Magnetic Materials, VolumeⅠ, Advanced Manetic Materials: Nanostructural Effects (Tsinghua University Press, 2005).
    [30] W. C. Nunes, L. M. Socolovsky, J. C. Denardin, F. Cebollada, A. L. Brandl and M. Knobel, Role of magnetic interparticle coupling on the field dependence of the superparamagnetic relaxation time Phys. Rev. B 2005, 72: 212413 .
    [31] J. I. Gittleman, B. Abeles, and S. Bozowski, Superparamagnetism and relaxation effects in granular Ni-SiO2 and Ni-Al2O3 films Phys. Rev. B 1974, 9: 3891 .
    [32] E. P. Wohlfarth Spin glasses exhibit rock magnetism Physica 1977, 86-88B: 852 .
    [33] L. Néel Theorie du trainage magnetique des ferromagnetiques en grains fins avec applications aux terres cuites Ann. Geophys. 1949, 5: 99 .
    [34] C. M. P. Russell, and K. M. Unruh, Effects of Monte Carlo parameters on the simulated magneticproperties of Stoner-Wolhfarth particles J. Appl. Phys. 2006, 99: 08H909 .
    [35] R. W. Chantrell, and E. P. Wholfarth, Rate dependence of the field-cooled magnetization of a fine particle system Phys. Stat. sol. (a) 1985, 91: 619 .
    [36] J. P. P. Nunes, M. Bahiana, and C. S. M. Bastos, Magnetization curves as probes of Monte Carlo simulation of nonequilibirium state Phys. Rev. E 2004, 69: 056703 ; M. Porto, Relative significance of particle anisotropy In systems of ultrafine ferromagnetic particles J. Appl. Phys. 2002, 92: 6057 ; D. A. Dimitrov, and G. M. Wysin, Magnetic properties of superparamagnetic particles by a Monte Carlo method Phys. Rev. B 1996, 54: 9237 .
    [37] Z. Q. Mao et al to be submitted
    [38] U. Nowak, R. W. Chantrell, and E. C. Kennedy, Monte Carlo Simulation with Time Step Quantification in Terms of Langevin Dynamics Phys. Rev. Lett. 2000, 84: 163 ; X. Z. Cheng, M. B. A. Jalil, H. K. Lee, and Y. Okabe, Mapping the Monte Carlo Scheme to Langevin Dynamics: A Fokker-Planck Approach Phys. Rev. Lett. 2006, 96: 067208 .
    [39] Y. Sun, M. B. Salamon, K. Garnier, and R. S. Averback, Memory effects in an interacting magnetic nanoparticle system Phys. Rev. Lett. 2003, 91: 167206 .
    [40] R. H. Victora, Predicted time dependence of the switching field for magnetic materials Phys. Rev. Lett. 1989, 63: 457 .
    [41] J. L. García-Palacios, and F. J. Lázaro, Anisotropy effectson the nonlinear magnetic susceptibility of superparamagnetic particles Phys. Rev. B 1997, 55: 1006 ; M. Bandyopadhyay, and J. Bhattacharya, Magnetic and caloric properties of magnetic nanoparticles: an equilibrium study J. Phys.: Condens. Matter 2006, 18: 11309 .
    [42] L. Landau, and E. Lifshitz, On the Theory of the Dispersion of Magnetic Permeability in Ferromagnetic Bodies Phys. Z. Sowjetunion 19358, 153 ; T. L. Gilbert, Lagrangian formulation of the gyromagnetic equation of the magnetic field Phys. Rev. 1955, 100: 1243 .
    [43] M. Respaud, Magnetization process of noninteracting ferromagnetic cobalt nanoparticles in the superparamagnetic regime: Deviation from Langevin law J. Appl. Phys. 1999, 86: 556 .
    [44] R. Gans, Regarding the magnetic behaviour of isotropic. Ferromagnetics Annalen der Physik 193215, 28 .
    [45] R. Iglesias, H. Rubio Approach to saturation in nanomagnetic systems J. Appl. Phys. 2002, 92: 7696
    [46] W. F. Brown, Thermal fluctuations of a single domain particle Phys. Rev. 1963, 130: 1677 .
    [47] M. El-Hilo, K. O’Grady, and R W Chantrell, Susceptibility phenomena in a fine particle system J. Magn. Magn. Mater. 1992, 114: 307 .
    [48] L. E. Wenger, and J. A. Mydosh, Nonuniqueness H2/3 and H2 field-temperature transition lines in spin glass Phys. Rev. B 1984, 29: 4156 .
    [49] R. W. Chantrell, M. El-Hilo and K. O’Grady, Spin-glass behavior in a fine particle system IEEE Trans. Magn. 1991, 27: 3570 .
    [50] S. D. Tiwari, and K. P. Rajeev, Signatures of spin-glass freezing in NiO nanoparticles Phys. Rev. B 2005, 72: 104433 .
    [51] P. H?nggi, P. Talkner, and M. Borkovec, Reaction-rate theory: fifty years after Kramers Rev. Mod. Phys. 1990, 62: 251 .
    [52] W. Wernsdorfer, E. B. Orozco, K. Hasselbach, A. Benoit, B. Barbara, N. Demoncy, A. Loiseau, H. Pascard, and D. Mailly, Experimental evidence of the Néel-Brown model of magnetization reversal Phys. Rev. Lett. 1997, 78: 1791 .
    [53] F. Luis, F. Petroff, J. M. Torres, L. M. García, J. Bartolomé, J. Carrey, and A. Vaurès, Magnetic relaxation of interacting Co clusters: crossover from two- to three-dimensional lattice Phys. Rev. Lett. 2002, 88: 217205 .
    [54] H. Mamiya, I. Nakatani, and T. Furubayashi Blocking and Freezing of Magnetic Moments for Iron Nitride Fine Particle Systems Phys. Rev. Lett. 1998, 80: 177
    [55] S. Chikazumi 1997 Physics of Ferromagnetism (Oxford University Press)
    [56] F. S.克劳福德,《波动学伯克利物理学教程》第三册科学出版社1981
    [57] F. Bloch, Generalized Theory of Relaxation Phys. Rev. 1957105 1206 ; F. Bloch and A. Seigert, Magnetic Resonance for Nonrotating Fields Phys. Rev. 1940, 57: 522
    [58] A. T. Ogielski, Dynamics of three-dimensional Ising spin glasses in thermal equilibrium Phys. Rev. B 198532 7384 ; K. Gunnarsson, P. Svedlindh, P. Nordblad, L. Lundgren, H. Aruga and A. Ito, Dynamics of an Ising Spin-Glass in the Vicinity of the Spin-Glass Temperature Phys. Rev. Lett 1988, 61: 754
    [59] J. J. Préjean and J. Souletie, Two-level-systems in spin glasses: a dynamical study of the magnetizations below TG, application to CuMn systems J. Phys. (Paris) 1980, 41: 1335; R. Omari, J. J. Préjean and J. Souletie, The extra-dimension W=kTln(t/τ0) of phase space below the spin glass transition: an experimental study of the relaxation of the magnetization at constant field in CuMn J.Phys. (Paris) 1984,45: 1809
    [60] R. W. Chantrell, A. Lyberatos, M. El-Hilo and K. O’Grady, Models of slow relaxation in particulate and thin film materilas(invited) J. Appl. Phys. 199476 6407
    [61] A. Labarta, O. Iglesias, Ll. Balcells and F. Badia Magnetic relaxation in small-particle systems: Tln(t/τ0) scaling Phys. Rev. B 1993, 48: 10240
    [62] O. Iglesias and A. Labarta Magnetic field scaling of relaxation curves in small particle systems J. Appl. Phys. 2002,91: 4409
    [63] O. Iglesias and A. Labarta Magnetic relaxation in terms of microscopic energy barriers in a model of dipolar interacting nanoparticles Phys. Rev. B 2004, 70: 144401
    [64] Ll. Balcells, O. Iglesias and A. Labarta Normalization factors for magnetic relaxation of small-particles systems in a nonzero magnetic field Phys. Rev. B 1997, 55: 8940
    [65] O. Iglesias, F. Badia, A. Labarta and Ll. Balcells Tln(t/τ0)scaling in small-particle systems: low-termperature behavior J. Magn. Magn. Mater. 1995, 140-144: 399
    [66] M. García del Muro, X. Batlle, A. Labarta, J. M. González and M. I. Montero Tln(t/τ0) scaling approach and fluctuation field analysis in interacting particulate systems J. Appl. Phys. 1997, 81(11): 7427
    [67] X. Batlle, M. Garcia del Muro and A. Laarta interaction effects and energy barrier distribution onthe magnetic relaxation of nanocrystalline hexagonal ferrites Phys. Rev. B 1997, 55: 6440
    [68] R. Ribas and A. Labarta magnetic relaxation of a one-dimensional model for small particle systems with dipolar interaction: Monte Carlo simulation J. Appl. Phys. 1996, 80: 5192
    [69] E. Vincent, J. Hammann and M. Ocio in Recent Progress in Random Magnets edited by D. H. Ryan (World Scientific, Singapore, 1992)
    [70] P. Nordlad and P. Svedlindh, in Spin Glasses and Random Fields, edited by A. P. Young (World Scientific, Singapore, 1998)
    [71] K. Jonason, E. Vincent, J. Hammann, J. P. Bouchaud and P. Nordblad, Memory and Chaos Effects in Spin Glasses Phys. Rev. Lett. 1998, 81: 3243 ; V. Dupuis, E. Vincent, J.–P. Bouchaud, J. Hamman, A. Ito and H. A. Katori, Temperature cycles in the Heisenberg spin glass Phys. Rev. B2000, 64: 174204
    [72] R. Mathieu, P. J?nsson, D. N. H. Nam and P. Nordblad Memory and superposition in a spin glass Phys. Rev. B 2001, 63: 092401
    [73] Weili Luo, Sidney R. Nagel, T. F. Rosenbaum and R. E. Rosensweig Dipolar interactions with random anisotropy in a frozen ferrofluid Phys. Rev. Lett. 1991, 67: 2721
    [74] T. Jonsson, J. Mattsson, C. Djurberg, F. A. Khan, P. Nordblad and P. Svedlindh Aging in magnetic particle system Phys. Rev. Lett. 1995, 75: 4138
    [75] S. Sahoo, O. Petracic, W. Kleemann, P. Nordblad, S. Cardoso and P. P. Freitas Aging and memory in a superspin glass Phys. Rev. B 2003, 67: 214422
    [76] Y. Sun, M. B. Salamon, K. Garnier and R. S. Averback Memory effects in an interacting magnetic nanoparticle system Phys. Rev. Lett. 2003, 91: 167206 ; Comments and Reply
    [77] J. Du, B. Zhang, R. K. Zheng and X. X. Zhang Memory effect and spin-glass-like behavior in Co-Ag granular films Phys. Rev. B 2007, 75: 014415
    [78] C. A. Viddal and R. M. Roshko Aging and memory effects in zero-field-cooled collections of two-level subsystems Phys. Rev. B 2006, 73: 172416
    [79] M. Bandyopadhyay and S. Dattagupta Memory in nanomagetic systems: superparamagnetism versus spin-glass behavior Phys. Rev. B 2006, 74: 214410
    [80] M. Sasaki, P. E. Jonsson, H. Takayama and H. Mamiya Aging and memory effects in superparamagnets and superspin glasses Phys. Rev. B 2005 71: 104405
    [81] G. M. Tsoi, U. Senaratne, R. J. Tackett, E. C. Buc and R. Naik, P. P. Vaishnava, V. M. Naik, L. E. Wenger Memory effects and magnetic interactions in aγ-Fe2O3 nanoparticle system J. Appl. Phys. 2005, 97: 101507
    [82] G. M. Tsoi, L. E. Wenger, U. Senaratne, R. J. Tackett, E. C. Buc and R. Naik, P. P. Vaishnava, V. Naik Memory effects in a superparamagneticγ-Fe2O3 system Phys. Rev. B 2005, 72: 014445
    [83] S. Chakraverty, M. Bandyopadhyay, S. Chatterjee, S. Dattagupta, A. Frydman, S. Sengupta and P. A. Sreeram Memory in a magnetic nanoparticle system: Polydispersity and interaction effects Phys. Rev. B 2005, 71: 054401
    [1] J. D. Jackson classical electrodynamics高等教育出版社2004
    [2] R. W. Chantrell, N. Walmsley, J. Gore, and M. Maylin, Calculation of the susceptibility of interaction superparamagnetic particle Phys. Rev. B 2000, 63: 024410 .
    [3] J. García-Otero, M. Porto, J. Rivas, and A. Bunde, influence of dipolar interaction on magnetic properties of ultrafine ferromagnetic particle Phys. Rev. Lett. 2000, 84: 167 .
    [4] L. Wang, J. Ding, H. Z. Kong, Y. Li, and Y. P. Feng, Monte Carlo simulation of a cluster system with strong interaction and random anisotropy Phys. Rev. B 2001, 64: 214410 .
    [5] S. M?rup and E. Tronc, Superparamagnetic relaxation of weakly interacting particles Phys. Rev. Lett. 1994, 723278 .
    [6] M. Ulrich, J. García-Otero, J. Rivas, and A. Bunde1 slow relaxation in ferromagnetic nanoparticles: Indication of spin-glass behavior Phys. Rev. B 2003, 67: 024416
    [7] J. I. Gittleman, B. Abeles, and S. Bozowski, Superparamagnetism and relaxation effects in granular Ni-SiO2 and Ni-Al2O3 films Phys. Rev. B 1974, 93: 891 .
    [8] H. Kachkachi, W. T. Coffer, D. S. F. Crothers, A. Ezzir, E. C. Kennedy, M. Noguès, and E. Tronc, field dependence of the temperature at the peak of the zero-field-cooled magnetization J. Phys.: Condens. Matter 2000, 12: 3077 .
    [9] M. Azeggagh and H. Kachkachi Effects of dipolar interactions on the zero-field-cooled magnetization of a nanoparticle assembly Phys. Rev. B 2007, 75: 174410
    [10] O. Iglesias and A. Labarta, Magnetic relaxation in a model of interacting nanoparticles in terms of microscopic energy barriers, Phys. Rev. B 2004, 70: 144401
    [11] W. Figueiredo and W. Schwarzacher Magnetic relaxation and thermal properties of a two-dimensional array of dipolar-coupled nanoparticles, J. Phys.: Condens. Matter 2007, 19: 276203
    [12] R. Ribas and A. Labarta Magnetic relaxation of a one-dimensional model for small particle systems with dipolar interaction: Monte Carlo simulation J. Appl. Phys. 1996, 80(9): 5129
    [13] S. I. Denisov, K. N. Trohidou Fluctuation theory of magnetic relaxation for two-dimensional ensembles of dipolar interacting nanoparticles Phys. Rev. B 2001, 64: 184433
    [14] S. I. Denisov, K. Sakmann, P. Talkner and P. Hanggi Rapidly driven nanoparticles: Mean first passage times and relaxation of the magnetic moment Phys. Rev. B 2007, 75: 184432
    [15] S. I. Denisov, T. V. Lyutyy, K. N. Trohidou dipolar interaction effects on the thermally activated magnetic relaxation of two-dimensional nanoparticle ensembles Appl. Phys. Lett. 2004, 84: 4672
    [16] S. I. Denisov, T. V. Lyutyy, K. N. Trohidou, Magnetic relaxation in finite two-dimensional nanoparticle ensembles, Phys. Rev. B 2003, 67: 014410
    [17] E. Vincent, J. Hammann and M. Ocio in Recent Progress in Random Magnets edited by D. H. Ryan. World Scientific, Singapore, 1992
    [18] P. Nordlad and P. Svedlindh. in Spin Glasses and Random Fields, edited by A. P. Young. World Scientific, Singapore, 1998
    [19] K. Jonason, E. Vincent, J. Hammann, J. -P. Bouchaud and P. Nordblad, Memory and Chaos Effects in Spin Glasses Phys. Rev. Lett. 1998, 81: 3243; V. Dupuis, E. Vincent, J.–P. Bouchaud, J. Hamman, A.Ito and H. A. Katori, Aging, rejuvenation, and memory effects in Ising and Heisenberg spin glasses Phys. Rev. B 2000, 64: 174204
    [20] R. Mathieu, P. J?nsson, D. N. H. Nam and P. Nordblad Memory and superposition in a spin glass Phys. Rev. B 2001, 63: 092401
    [21] S. Sahoo, O. Petracic, W. Kleemann, P. Nordblad, S. Cardoso and P. P. Freitas Aging and memory in a superspin glass Phys. Rev. B 2003, 67: 214422
    [22] Y. Sun, M. B. Salamon, K. Garnier and R. S. Averback Memory effects in an interacting magnetic nanoparticle system Phys. Rev. Lett. 2003, 91: 167206 ; Comments and Reply
    [23] J. Du, B. Zhang, R. K. Zheng and X. X. Zhang Memroy effect and spin-glass-like behavior in Co-Ag granular film Phys. Rev. B 2007, 75: 014415
    [24] C. A. Viddal and R. M. Roshko Aging and memory effects in zero-field-cooled collections of two-level subsystems Phys. Rev. B 2006, 73: 172416
    [25] M. Bandyopadhyay and S. Dattagupta Memory in nanomagnetic system: Superparamagnetism versus spin-glass behavior Phys. Rev. B 2006, 74: 214410
    [26] M. Sasaki, P. E. Jonsson and H. Takayama Aging and memory effects in superparamagnets and superspin glasses Phys. Rev. B 2005, 71: 104405
    [27] G. M. Tsoi, U. Senaratne, R. J. Tackett, E. C. Buc and R. Naik, P. P. Vaishnava, V. M. Naik, L. E. Wenger Memory effects and magnetic interactions in aγ-Fe2O3 particle system J. Appl. Phys. 2005, 97: 101507
    [28] G. M. Tsoi, L. E. Wenger, U. Senaratne, R. J. Tackett, E. C. Buc and R. Naik, P. P. Vaishnava, V. Naik Memory effects in a superparamagneticγ-Fe2O3 system Phys. Rev. B 2005, 72: 014445
    [29] S. Chakraverty, M. Bandyopadhyay, S. Chatterjee, S. Dattagupta, A. Frydman, S. Sengupta and P. A. Sreeram Memory in a magnetic nanoparticle system: polydispersity and interaction effects Phys. Rev. B 2005, 71: 054401
    [30]C. Xu, Y. Q. Ma, P. M. Hui Monte Carlo studies of hysteresis curves in magnetic compositeds with fine magnetic particles J. Appl. Phys. 2001, 89: 3403
    [31] C. Xu, Y. Q. Ma, P. M. Hui Equilibrium magnetic moment configurations in magnetic nanoparticl films: effects of anisotropy, dipolar interaction, and Zeeman energy J. Appl. Phys. 2005, 98 084303
    [32] M. El-Hilo, R. W. Chantrelll and K. O’Grady Model of interaction effects in grandular magnetic solids, J. Appl. Phys. 1998, 84: 5114
    [33] V. Russier, C. Petit, J. Legrand and M. P. Pileni Collective magnetic properties of cobalt nanocrystals selfassembled in a hexagonal network: Theoretical model supported by experiments Phys. Rev. B 2000, 62: 3910
    [34] V. Russier Calculated magnetic properties of two-dimensional arrays of nanoparticles at vanishing temperature J. Appl. Phys. 2001, 89: 1287
    [35] F. S.克劳福德.波动学《伯克利物理学教程》第三册.科学出版社, 1981
    [36]姜寿亭,李卫.凝聚态磁性物理科学出版社, 2005
    [37] JoséLuis Garcí-Palacios and Francisco J. Lázaro, Langevin-dynamics study of the dynamical properties of small manetic particles Phys. Rev. B 1998, 58: 14937
    [38] D. V. Berkov, , N. L. Gorn and P. G?rnert, The Langevin-dynamics simulation of interacting fine magnetic particle systems, J. Magn. Magn. Mater. 2001, 226-230: 1936
    [39] S. I. Deniso, T. V. Lyutyy and P. Hanggi, Magnetization of nanoparticle systems in a rotating magnetic field, Phys. Rev. Lett. 2006, 97: 227202
    [40] F. Lui, J. Bartolome, F. Petroff, L. M. Garcia, A. Vaures and J. Carrey, Competitive effects of dipolar interactions and a bias magnetic field on the magnetic relaxation times of Co clusters J. Appl. Phys. 2003, 93: 7032
    [41] G. F. Goya, F. C. Fonseca, R. F. Jardim, R. Muccillo, N. L. V. Carreno, E. Longo and E. R. Leite Magnetic dynamics of single-domain Ni nanoparticle J. Appl. Phys. 2003, 93: 6531
    [42] Jinlong Zhang, C. Boyd and Weili Luo Two Mechanisms and a Scaling Relation for Dynamics in Ferrofluids, Phy. Rev. Lett. 1996, 77: 390
    [43] C. Djurberg, P. Svedlindh and P. Nordblad dynamics of an interacting particle system: Evidence of critical slowing down, Phys. Rev. Lett. 1997, 97: 5154
    [44] D. V. Berkov Density of Energy Barriers in fine magnetic particle systems IEEE Trans. Magn 2002, 38(5): 2637
    [45] R. W. Chantrell, M. El-Hilo and K. O’Grady, Spin-glass behavior in a fine particle system IEEE Trans. Magn. 1991, 27: 3570 .
    [46] M. P. Pileni Self-organization of inorganic nanocrystals J. Phys.: Condens. Matter 2006, 18: S67
    [47] D. Jones Micromagnetics Nature 1990, 348: 588 ; W. Williams, D. J. Dunlop Three-dimensional micromagnetic modelling of ferromagnetic domain structure, Nature1989, 337: 634
    [48]廖绍彬.《铁磁学》下册,科学出版社,1988
    [49] L. Landau and E. Lifshitz, On the Theory of the Dispersion of Magnetic Permeability in Ferromagnetic Bodies Phys. Z. Sowjetunion 1953, 8, 153 ; T. L. Gilbert Lagrangian formulation of the gyromagnetic equation of the magnetic field Phys. Rev. 1955, 100: 1243
    [50] Z. Z. Sun and X. R. Wang, Fast magnetization switching of Stoner particles: A nonlinear dynamics picture, Phys. Rev. B 2005, 71: 174430
    [51] P. E. J?nsson, S. Felton, P. Svedlindh, and P. Nordblad and M. F. Hansen Fragility of the spin-glass-like collective state to a magnetic field in an interacting Fe-C nanoparticle system Phys. Rev. B 2001, 64: 212402
    [52] M. García del Muro, X. Batlle and A. Labarta Erasing the glassy state in magnetic fine particles Phys. Rev. B 1999, 59: 13584

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700