人体心肌纤维磁共振扩散成像建模与仿真技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁共振扩散成像(Diffusion Magnetic Resonance Imaging, dMRI)作为目前唯一能够对活体纤维组织结构进行无损检测的成像技术,已成为当前研究三维离体及活体心肌纤维结构的主要手段,对探索心肌纤维的微观组成与活动机理、解释心血管疾病的成因和早期诊断具有重大的科学意义和临床应用价值。然而由于心肌自身结构和功能的特殊性,目前dMRI在心肌纤维研究领域仍存在以下几个主要问题:首先,受磁共振成像设备的限制,实际采集图像空间分辨率低、易受噪声影响,在缺少对真实心肌纤维结构认知的情况下,无法解释心肌纤维中水分子扩散各向异性变化的原因、评价dMRI测量心肌纤维方向的准确性以及分析心肌纤维微观结构与dMRI测量之间的关系。其次,优化dMRI扫描序列参数是获得高质量磁共振扩散加权图像和提高复杂心肌纤维结构分析准确率的关键。然而,目前dMRI序列参数的优化选择仅能通过大量的重复扫描实验获得,缺乏理论依据、实验过程复杂且成本高。最后,由于dMRI对运动信息敏感,在活体心肌纤维成像中,心脏跳动、病人移动、心率不齐等都会产生图像伪影并引起额外的扩散信号衰减,因此,难以实现完整心脏活体心肌纤维磁共振扩散成像表征参数的定量描述。
     为了解决上述问题,本课题从dMRI成像机理出发,针对心肌纤维自身结构特点,提出一种基于多种成像数据融合的离体及动态心肌纤维磁共振扩散成像仿真模型,为心肌纤维dMRI测量效果评价、dMRI表征参数与心肌纤维微观结构关系研究、dMRI扫描参数优化选择以及活体心肌纤维dMRI特性定量描述提供一种有效的分析手段。本文主要研究内容如下:
     (1)针对临床磁共振扩散成像技术分辨率低,无法解释心肌纤维中水分子扩散各向异性的原因以及评价dMRI测量心肌纤维方向的准确性问题,建立两种局部心肌纤维模型,利用蒙特卡罗方法模拟不同分辨率下心肌纤维模型的扩散加权和扩散张量图像,通过分析心肌纤维模型的生理和结构特征对扩散各向异性的影响,确定心肌纤维中引起水分子扩散各向异性的主要因素,同时给出不同分辨率下dMRI检测心肌纤维方向的准确性。
     (2)针对利用实际采集图像无法分析磁共振扩散成像表征参数与心肌纤维微观结构之间的关系问题,利用偏振光成像(Polarized Light Imaging, PLI)技术获得的高分辨率心肌纤维方向分布数据,建立完整心脏的三维心肌纤维几何结构模型,使用dMRI仿真模型定量地描述不同分辨率下磁共振扩散加权及张量图像特性。通过控制心肌纤维结构模型参数,分析心肌细胞结构变化对扩散图像表征参数的影响,为研究心肌纤维微观结构与磁共振扩散成像表征参数之间的关系以及心肌疾病病理分析与诊断提供一种辅助手段。
     (3)针对心肌纤维dMRI扫描序列参数优化问题,提出了一种改进的dMRI信号以及扩散张量成像仿真方法。该方法考虑实际成像序列中所有梯度对水分子扩散的加权作用,模拟真实的扩散加权成像过程。利用改进的仿真方法研究成像序列中所有梯度参数对扩散图像特性的影响以实现成像参数的优化选择。
     (4)针对dMRI对运动敏感,无法准确分析活体心肌纤维磁共振扩散图像特性的问题,结合心脏运动信息建立动态心肌纤维模型,利用仿真获得一个心脏周期内不同时刻的心肌纤维扩散加权和扩散张量图像,并研究动态心肌纤维扩散图像表征参数随心脏运动的变化,为活体心肌纤维成像分析奠定基础。
Diffusion magnetic resonance imaging (dMRI) is able to measure indirectly thetissue structures by detecting the diffusion of water molecules therein. It appearscurrently as the unique imaging technique to investigate noninvasively both ex vivoand in vivo three-dimensional fiber architectures of the human heart. However, dueto the specific structural and functional properties of the cardiac muscle, there arestill several main problems in the research of cardiac dMRI. Firstly, it is difficult toexplain the reason for the diffusion anisotropy of molecules in the cardiac fiber, toknow how well the diffusion properties calculated from diffusion images reflect themicrostructure of the myocardium and to analyze the relationship between the dMRImeasures and the microstructures of cardiac fiber, since there is no ground-truthinformation available and add to that the influence of various factors such as spatialresolution, noise and artifacts, etc. Secondly, optimizing the dMRI scanningparameters is very significant for obtaining the high-quality diffusion weightedimages and analyzing accurately the complex cardiac fiber structure. However, up tonow, the optimization of the imaging parameters can only be achieved by using therepeated scans, which is lack of the theoretical basis, such experiment process iscomplicated and expensive. Finally, since dMRI is very sensitive to the motion,during the in vivo dMRI scanning, the motion caused by the heart beating, patientmoving and arrhythmias will generate the artifacts and introduce additional signalattenuation, it is therefore difficult to describe quantitatively the properties ofdiffusion images of in vivo cardiac fibers.
     For solving the above problems, based on the nature of dMRI theory and takinginto account the cardiac fiber structure properties, this thesis develops a realisticmodel-based dMRI simulator to simulate diffusion-weighted images for both ex vivoand dynamic cardiac fibers by integrating different imaging modalities. Thissimulator provides an effective mean for evaluating the measurement accuracy ofdMRI for cardiac fiber structure, analyzing the relationship between dMRI measuresand the microstructure of cardiac fiber, optimizing dMRI scanning parameters anddescribing quantitatively dynamic cardiac fiber structure. The following are themain issues addressed in this thesis.
     The first part concerns the issue that the clinical dMRI is unable to explain thecauses of the diffusion anisotropy of water molecules in the cardiac fiber structureand to evaluate the accuracy of dMRI detection for cardiac fiber orientations due tothe limit of the spatial resolution. For solving this problem, two local cardiac fiberstructure models are firstly constructed, the corresponding diffusion weighted and tensor images with different spatial resolutions are then simulated using aMonte-Carlo method, the main cause for diffusion anisotropy is finally given byanalyzing the influence of cardiac fiber structural and physical characteristics on thediffusion anisotropy. Meanwhile, the dMRI detection accuracy at different scales isanalyzed.
     The second part addresses the problem of analyzing the relationship betweendMRI measures and the microstructures of the cardiac fiber. The3D cardiac fiberstructure model of an entire heart is firstly constructed using the high-resolutionpolarized light imaging data, and then the corresponding diffusion weighted andtensor images properties at multi-scales are described through the simulation, finally,by controlling the cardiac fiber modeling parameters, the influence of the cardiacmyocyte structure variation on the diffusion image properties is investigated, andthe results show that the proposed dMRI simulator can provide an auxiliary meanfor exploring the relationship between dMRI properties and cardiac fibermicrostructures, and also for cardiac disease analysis and diagnosis.
     The third part deals with the issue of optimizing the dMRI scanning parametersfor cardiac fibers. To realize the optimization, a novel improved dMRI signalanalysis and simulation method is proposed, which takes into account the weightsall the gradients used in the imaging sequence on the diffusion of water moleculesfor simulating the process of dMRI more realistically. By investigating the influenceof each parameter on the diffusion image properties, the optimization principle ofsuch parameter is finally given.
     The last part puts the emphasis on the modeling of dynamic cardiac fiberstructures and the simulation of the corresponding diffusion images. It also analyzesthe variation of the diffusion image properties of cardiac fibers with the heartmotion. This work provides a basis for the in vivo myocardial fiber image analysis.
引文
[1] GO, A. S., MOZAFFARIAN, D, ROGER, V. L., et al. Executive Summary:Heart Disease and Stroke Statistics—2013Update A Report From theAmerican Heart Association[J]. Circulation,2013,127(1):143-152.
    [2] HOYERT D, HERON M, MURPHY S, et al. Deaths: final data for2003[J].National Vital Statistics Reports,2009,57(14):135.
    [3] ROGER V L, GO A S, LLOYD-JONES D M, et al. Heart disease and strokestatistics--2011update: a report from the American Heart Association[J].Circulation,2011,123(4): e18–209.
    [4] RAYNER, M, ALLENDER, S, SCARBOROUGH, P, et al. Cardiovasculardisease in Europe[J]. European Journal of Cardiovascular Prevention&Rehabilitation,2009,16(2): S43-S47.
    [5] JOUK P S, MOURAD A, MILISIC V, et al. Analysis of the fiber architectureof the heart by quantitative polarized light microscopy. Accuracy, limitationsand contribution to the study of the fiber architecture of the ventricles duringfetal and neonatal life[J]. European journal of cardio-thoracic surgery,2007,31(5):915–921.
    [6] DELON A, USSON Y, DEROUARD J, et al. Continuous photobleaching invesicles and living cells: a measure of diffusion and compartmentation[J].Biophysical journal,2006,90(7):2548–2562.
    [7] COLLIN O, TRACQUI P, STEPHANOU A, et al. Spatiotemporal dynamicsof actin-rich adhesion microdomains: influence of substrate flexibility[J].Journal of cell science,2006,119(Pt9):1914–1925.
    [8] GRANT R P. Notes on the Muscular Architecture of the Left Ventricle[J].Circulation,1965,32(2):301–308.
    [9] STREETER D D, SPOTNITZ H M, PATEL D P, et al. Fiber Orientation inthe Canine Left Ventricle during Diastole and Systole[J]. CirculationResearch,1969,24(3):339–347.
    [10] STREETER D. Gross Morphology and Fiber Geometry of the Heart[G].//Inhandbook of physiology:The cardiovascular system. USA: Oxford UniversityPress,1979,1:61–112.
    [11] ROSS A, STREETER D. Myocardial fiber disarray[J]. Circulation,1979,60(6):1425–1426.
    [12] JOUK P S, USSON Y, MICHALOWICZ G, et al. Mapping of the orientationof myocardial cells by means of polarized light and confocal scanning lasermicroscopy[J]. Microscopy research and technique,1995,30(6):480–490.
    [13] KINGSLEY P B. Introduction to diffusion tensor imaging mathematics: PartII. Anisotropy, diffusion weighting factors, and gradient encodingschemes[J]. Concepts in Magnetic Resonance Part A,2006,28A(2):123–154.
    [14] KINGSLEY P B. Introduction to diffusion tensor imaging mathematics: Part I.Tensors, rotations, and eigenvectors[J]. Concepts in Magnetic Resonance PartA,2006,28A(2):101–122.
    [15] KINGSLEY P B. Introduction to Diffusion Tensor Imaging Mathematics&:Part III. Tensor Calculation, Noise, Simulations, and optimization[J].Concepts in Magnetic Resonance Part A,2006,28A(2):155–179.
    [16] TUCH D S. Q-ball imaging[J]. Magnetic resonance in medicine,2004,52(6):1358–1372.
    [17] TUCH D. Diffusion MRI of Complex Tissue Structure[D]. Massachusetts&:MIT,2002(1996):220.
    [18] WEDEEN V, HAGMANN P. Mapping complex tissue architecture withdiffusion spectrum magnetic resonance imaging[J]. Magnetic resonance inmedicine,2005,54:1377–1386.
    [19] ASSEMLAL H-E, TSCHUMPERLé D, BRUN L, et al. Recent advances indiffusion MRI modeling: Angular and radial reconstruction[J]. Medical imageanalysis,2011,15(4):369–396.
    [20] DESCOTEAUX M, DERICHE R, LE BIHAN D, et al. Multiple q-shelldiffusion propagator imaging[J]. Medical image analysis,2011,15(4):603–621.
    [21] DOUAUD G, JBABDI S, BEHRENS T E J, et al. DTI measures incrossing-fibre areas: increased diffusion anisotropy reveals early white matteralteration in MCI and mild Alzheimer’s disease[J]. NeuroImage,2011,55(3):880–890.
    [22] ASSAF Y, PASTERNAK O. Diffusion tensor imaging (DTI)-based whitematter mapping in brain research: a review[J]. Journal of molecularneuroscience,2008,34(1):51–61.
    [23] TUCH D., REESE T G, WIEGELL M R, et al. High angular resolutiondiffusion imaging reveals intravoxel white matter fiber heterogeneity[J].Magnetic resonance in medicine,2002,48(4):577–582.
    [24] TRISTáN-VEGA A, WESTIN C-F, AJA-FERNáNDEZ S. A newmethodology for the estimation of fiber populations in the white matter of thebrain with the Funk-Radon transform[J]. NeuroImage,2010,49(2):1301–1315.
    [25] ASSAF Y, BASSER P J. Composite hindered and restricted model ofdiffusion (CHARMED) MR imaging of the human brain[J]. NeuroImage,2005,27(1):48–58.
    [26] BEAULIEU C. The basis of anisotropic water diffusion in the nervous system-a technical review[J]. NMR in biomedicine,2002,15(7-8):435–455.
    [27] HEALY L J, JIANG Y, HSU E W. Quantitative comparison of myocardialfiber structure between mice, rabbit, and sheep using diffusion tensorcardiovascular magnetic resonance[J]. Journal of cardiovascular magneticresonance, BioMed Central Ltd,2011,13(74):1–8.
    [28] HELM P A, TSENG H-J, YOUNES L, et al. Ex vivo3D diffusion tensorimaging and quantification of cardiac laminar structure[J]. Magneticresonance in medicine,2005,54(4):850–859.
    [29] ENGLUND E K, ELDER C P, XU Q, et al. Combined diffusion and straintensor MRI reveals a heterogeneous, planar pattern of strain developmentduring isometric muscle contraction[J]. American journal of physiology.Regulatory, integrative and comparative physiology,2011,300(5): R1079–1090.
    [30] TOUSSAINT N, SERMESANT M, STOECK C T, et al. In vivo human3Dcardiac fibre architecture: reconstruction using curvilinear interpolation ofdiffusion tensor images[C]//13rdMedical image computing andcomputer-assisted intervention&: MICCAI. Beijing: China: Springer LNCS6361,2010,13(Pt1):418–425.
    [31] NIELLES-VALLESPIN S, MEKKAOUI C, GATEHOUSE P, et al. In vivodiffusion tensor MRI of the human heart: Reproducibility of breath-hold andnavigator-based approaches[J]. Magnetic resonance in medicine,2012.
    [32] GAMPER U, BOESIGER P, KOZERKE S. Diffusion imaging of the in vivoheart using spin echoes--considerations on bulk motion sensitivity[J].Magnetic resonance in medicine,2007,57(2):331–337.
    [33] RAPACCHI S, CROISILLE P, VIALLON M, et al. In vivo cardiac NMRDiffusion Weighted Imaging (DWI) for the human heart&: tackling motionissue with temporal Maximum Intensity Projection (tMIP)-DWI and firstresults in humans[C]//Proc. Intl. Soc. Mag. Reson. Med. Hawaii, USA:2009(1):4718.
    [34] MEKKAOUI C, NIELLES-VALLESPIN S, GATEHOUSE P, et al. DiffusionMRI tractography of the human heart In Vivo at end-diastole andend-systole[J]. Journal of Cardiovascular Magnetic Resonance,2012,14(Suppl1): O49.
    [35] DELATTRE B M A, VIALLON M, WEI H, et al. In vivo cardiacdiffusion-weighted magnetic resonance imaging: quantification of normalperfusion and diffusion coefficients with intravoxel incoherent motionimaging[J]. Investigative radiology,2012,47(11):662–670.
    [36] JOCHIMSEN T H, SCH FER A, BAMMER R, et al. Efficient simulation ofmagnetic resonance imaging with Bloch-Torrey equations using intra-voxelmagnetization gradients[J]. Journal of magnetic resonance,2006,180(1):29–38.
    [37] HALL M G, ALEXANDER D C. Convergence and parameter choice forMonte-Carlo simulations of diffusion MRI[J]. IEEE transactions on medicalimaging,2009,28(9):1354–1364.
    [38] CARLO M, OF S. Monte carlo simulation of single-particle diffusion intwo-dimensional and three-dimensional crowded media[J].2007,17(1):21–32.
    [39] REGAN D G, KUCHEL P W. Simulations of molecular diffusion in latticesof cells: insights for NMR of red blood cells[J]. Biophysical journal,2002,83(1):161–171.
    [40] TORRENT-GUASP F. The cardiac muscle[M]. Madrid: Guadarrama,1973:15:134.
    [41] CORNO A F, KOCICA M J, TORRENT-GUASP F. The helical ventricularmyocardial band of Torrent-Guasp: potential implications in congenital heartdefects[J]. European journal of cardio-thoracic surgery,2006,29Suppl1:S61–68.
    [42] TORRENT-GUASP F, BUCKBERG G D, CLEMENTE C, et al. The structureand function of the helical heart and its buttress wrapping. I. The normalmacroscopic structure of the heart[C]//Seminars in thoracic andcardiovascular surgery.2001,13(4):301–319.
    [43] TORRENT-GUASP F, BALLESTER M, BUCKBERG G D, et al. Spatialorientation of the ventricular muscle band: Physiologic contribution andsurgical implications[J]. J. Thorac. Cardiovasc. Surg.,2001,122(2):389–392.
    [44] LEGRICE I J, HUNTER P J, SMAILL B H. Laminar structure of the heart: amathematical model[J]. Am J Physiol Heart Circ Physiol,1997,272(5):H2466–2476.
    [45] LEGRICE I J, SMAILL B H, CHAI L Z, et al. Laminar structure of the heart:ventricular myocyte arrangement and connective tissue architecture in thedog[J]. Am J Physiol Heart Circ Physiol,1995,269(2): H571–582.
    [46] VILLARREAL F. Interstitial Fibrosis in Heart Failure[M]. Springer-Verlag,2004:373.
    [47] SEVERS N J. The cardiac muscle cell[J]. BioEssays&: news and reviews inmolecular, cellular and developmental biology,2000,22(2):188–199.
    [48] DAMMERS J, BREUER L, AXER M, et al. Automatic identification of grayand white matter components in polarized light imaging[J]. NeuroImage,2012,59(2):1338–1347.
    [49] KRETSCHMANN H J. On the demonstration of myelinated nerve fibers by polarized light without extinction effects[J]. Journal fur Hirnforschung,1967,9(6):571-575.
    [50]FRAHER J P, MACCONAILL M A. Fibre bundles in the CNS revealed by polarized light[J]. Journal of anatomy,1970,106(Pt1):170.
    [51]MIKLOSSY J, VAN DER LOOS H. The long-distance effects of brain lesions: visualization of myelinated pathways in the human brain using polarizing and fluorescence microscopy[J]. Journal of neuropathology and experimental neurology,1991,50(1):1-15.
    [52]AXER H, KEYSERLINGK D G. Mapping of fiber orientation in human internal capsule by means of polarized light and confocal scanning laser microscopy[J]. Journal of neuroscience methods,2000,94(2):165-175.
    [53]AXER H, LIPPITZ B E, VON KEYSERLINGK D G. Morphological asymmetry in anterior limb of human internal capsule revealed by confocal laser and polarized light microscopy [J]. Psychiatry research,1999,91(3):141-154.
    [54]AXER H, AXER M, KRINGS T, et al. Quantitative estimation of3-D fiber course in gross histological sections of the human brain using polarized light[J]. Journal of neuroscience methods,2001,105(2):121-131.
    [55]LARSEN L, GRIFFIN L. Polarized light imaging of white matter architecture [J]. Microscopy research and technique,2007,70:851-863.
    [56]AXER M, GRASSEL D, KLEINER M, et al. High-resolution fiber tract reconstruction in the human brain by means of three-dimensional polarized light imaging[J]. Frontiers in neuroinformatics,2011,5:34.
    [57]PALM C, AXER M, GRASSE D, et al. Towards Ultra-High Resolution Fibre Tract Mapping of the Human Brain-Registration of Polarised Light Images and Reorientation of Fibre Vectors[J]. Frontiers in human neuroscience,2010,4:1-16.
    [58]徐新,张镇西,湛垦华.激光作用于肌肉的部分偏振现象及探测[J].激光技术,1990,6:13.
    [59]张镇西,蒋大宗.肌肉衍射及偏振现象的研究[J].生物医学工程学杂志,1993,10(2):127—133.
    [60]陈家森.椭圆偏振技术及其在横纹肌收缩机理研究中的应用[J].物理,1998,27(4):238-240.
    [61]于纪东.胶原纤维夹角的计算机图像处理与分析[D].北京工业大学,2002.
    [62]蒋啸宇,曾柄,何永红,等.基于旋转偏振角的线偏振扫描成像方法研究[J].生物化学与生物物理进展,2007,34(6):659-663.
    [63]杜娥,曾楠,何宏辉,等.各向异性介质Mueller矩阵的定量分析[C]//中 国光学学会2011年学术大会摘要集,2011.
    [64]曾楠,李伟,马辉.各向异性生物组织中偏振光传输的模拟与实验[J].光学学报,2009,29(7):1926-1929.
    [65]LEVITT M H. Spin dynamics:basics of nuclear magnetic resonance[M]. Magnetic Resonance in Chemistry, Wiley,2002,40(12):744.
    [66]BLOCH F. Nuclear Induction[J]. Physical review,1946,70(7):460-474.
    [67]BROWN, M. A, SEMELKA, R. C. MRI:basic principles and applications[M]. Wiley-Blackwell,2011:264.
    [68]WESTBROOK C, ROTH C K, TALBOT J. MRI in Practice[M]. American Journal of Roentgenology, Wiley-Blackwell,2011,198(5):456.
    [69]BROWN R. A brief account of microscopical observations made on the particles contained in the pollen of plants-Wikisource, the free online library[J]. Philosophical Magazine,1866,4:161-173.
    [70]GOEL S N, RICHTER-DYN N. Stochastic Models in Biology[M]. New York: Academic Press,1974:284.
    [71]CALLAGHAN P. Principles of Nuclear Magnetic Resonance Microscopy[M]. USA:Oxford University Press,1994:516.
    [72]EINSTEIN A. Investigations on the theory Brownian movement[M].1956:1-19.
    [73]LEBIHAN D, BRETON E, LALLEMAND D, et al. MR imaging of intravoxel incoherent motions:application to diffusion and perfusion in neurologic disorders[J]. Radiology,1986,161(2):401-407.
    [74]CHEN J, SONG S-K, LIU W, et al. Remodeling of cardiac fiber structure after infarction in rats quantified with diffusion tensor MRI[J]. American journal of physiology. Heart and circulatory physiology,2003,285(3):H946-954.
    [75]LIU K-F, LI F, TATLISUMAK T, et al. Regional Variations in the Apparent Diffusion Coefficient and the Intracellular Distribution of Water in Rat Brain During Acute Focal Ischemia[J]. Stroke,2001,32(8):1897-1905.
    [76]TORREY H. Bloch Equations with Diffusion Terms[J]. Physical Review,1956,104(3):563-565.
    [77]MORI S, BARKER P B. Diffusion Magnetic Resonance Imaging:its principle and applications[J]. The anatomical record.,1999,257:102-109.
    [78]KOPF M, CORINTH C, HAFERKAMP O, et al. Anomalous diffusion of water in biological tissues[J]. Biophysical journal,1996,70(6):2950-2958.
    [79]BASSER P J, MATTIELLO J, LEBIHAN D. MR diffusion tensor spectroscopy and imaging[J]. Biophysical journal,1994,66(1):259-267.
    [80]HAHN E. Spin Echoes[J]. Physical Review,1950,80(4):580-594.
    [81] STEJSKAL E O, TANNER J E. Spin Diffusion Measurements: Spin Echoesin the Presence of a Time-Dependent Field Gradient[J]. The Journal ofChemical Physics,1965,42(1):288–293.
    [82] MERBOLDT K-D, HANICKE W, FRAHM J. Self-diffusion NMR imagingusing stimulated echoes[J]. Journal of Magnetic Resonance,1985,64(3):479–486.
    [83] LE BIHAN D, BRETON E. Imagerie de diffusion in-vivo par résonancemagnétique nucléaire[J]. C R Acad Sci,1985,301(15):1109–1112.
    [84] TAYLOR D G, BUSHELL M C. The spatial mapping of translationaldiffusion coefficients by the NMR imaging technique[J]. Physics in Medicineand Biology,1985,30(4):345–349.
    [85] MOSELEY M E, COHEN Y, KUCHARCZYK J, et al. Diffusion-weightedMR imaging of anisotropic water diffusion in cat central nervous system[J].Radiology,1990,176(2):439–445.
    [86] DOUEK P, TURNER R, PEKAR J, et al. MR color mapping of myelin fiberorientation[J]. Journal of computer assisted tomography,1991,15(6):923–929.
    [87] BASSER P J, PIERPAOLI C. Microstructural and Physiological Features ofTissues Elucidated by Quantitative-Diffusion-Tensor MRI[J]. Journal ofMagnetic Resonance, Series B,1996,111(3):209–219.
    [88] PIERPAOLI C, BASSER P J. Toward a quantitative assessment of diffusionanisotropy[J]. Magnetic Resonance in Medicine,1996,36(6):893–906.
    [89] MATTIELLO J, BASSER P J, LE BIHAN D. The b matrix in diffusion tensorecho-planar imaging[J]. Magnetic resonance in medicine,1997,37(2):292–300.
    [90] LE BIHAN D, MANGIN J F, POUPON C, et al. Diffusion tensor imaging:concepts and applications[J]. Journal of magnetic resonance imaging&,2001,13(4):534–546.
    [91] WARD P, COUNSELL S, ALLSOP J, et al. Reduced fractional anisotropy ondiffusion tensor magnetic resonance imaging after hypoxic-ischemicencephalopathy[J]. Pediatrics,2006,117(4): e619–630.
    [92] MUKHERJEE P, CHUNG S W, BERMAN J I, et al. Diffusion tensor MRimaging and fiber tractography: technical considerations[J]. American journalof neuroradiology,2008,29(5):843–852.
    [93] DE GROOF G, VERHOYE M, VAN MEIR V, et al. In vivo diffusion tensorimaging (DTI) of brain subdivisions and vocal pathways in songbirds[J].NeuroImage,2006,29(3):754–763.
    [94] DONG Q, WELSH R C, CHENEVERT T L, et al. Clinical applications ofdiffusion tensor imaging[J]. Journal of magnetic resonance imaging&,2004,19(1):6–18.
    [95] SUNDGREN P C, DONG Q, GóMEZ-HASSAN D, et al. Diffusion tensorimaging of the brain: review of clinical applications[J]. Neuroradiology,2004,46(5):339–350.
    [96] GUPTA R, TRIVEDI R, RATHORE R. Review: Clinical application ofdiffusion tensor imaging[J]. Indian Journal of Radiology and Imaging,2008,18(1):45.
    [97] JIANG S, LIU W, ZHANG M. Update Clinical Application of DiffusionTensor Imaging[J]. Current Medical Imaging Reviews,2012,8(4):9.
    [98] FRINDEL C, ROBINI M, SCHAERER J, et al. A graph-based approach forautomatic cardiac tractography[J]. Magnetic resonance in medicine,2010,64(4):1215–1229.
    [99] STRIJKERS G J, BOUTS A, BLANKESTEIJN W M, et al. Diffusion tensorimaging of left ventricular remodeling in response to myocardial infarction inthe mouse[J]. NMR in biomedicine,2009,22(2):182–190.
    [100] LOMBAERT, H, PEYRAT, J, CROISILLE, P, et al. Statistical analysis of thehuman cardiac fiber architecture from DT-MRI[C]//Functional Imaging andModeling of the Heart, Springer Berlin Heidelberg,2011,171-179.
    [101] SONG X, ZHU Y-M, YANG F, et al. Quantitative study of fiber trackingresults in human cardiac DTI[C]//IEEE10thINTERNATIONALCONFERENCE ON SIGNAL PROCESSING PROCEEDINGS. IEEE,2010:724–727.
    [102] RAPACCHI S, WEN H, VIALLON M, et al. Low b-value diffusion-weightedcardiac magnetic resonance imaging: initial results in humans using anoptimal time-window imaging approach[J]. Investigative radiology,2011,46(12):751–758.
    [103] LI H, ROBINI M, YANG F, et al. A neighborhood-based probabilisticapproach for fiber tracking in human cardiac DTI[C]//9thIEEE InternationalSymposium on Biomedical Imaging (ISBI). IEEE,2012:9–13.
    [104] LOMBAERT H, PEYRAT J-M, CROISILLE P, et al. Human atlas of thecardiac fiber architecture: study on a healthy population[J]. IEEE transactionson medical imaging,2012,31(7):1436–1447.
    [105] SCOLLAN D F, HOLMES A, WINSLOW R, et al. Histological validation ofmyocardial microstructure obtained from diffusion tensor magnetic resonanceimaging[J]. The American journal of physiology,1998,275(6): H2308–2318.
    [106] WU Y, TSE H-F, WU E X. Diffusion tensor MRI study of myocardiumstructural remodeling after infarction in porcine model[C]//Conferenceproceedings&: Annual International Conference of the IEEE Engineering inMedicine and Biology Society. IEEE Engineering in Medicine and Biology
    [107] ZHUKOV L, BARR A H. Heart-muscle fiber reconstruction from diffusiontensor MRI[C]//14thIEEE visualization conference. Washington: IEEE,2003(4):597–602.
    [108] ROHMER D, SITEK A, GULLBERG G T. Reconstruction and visualizationof fiber and laminar structure in the normal human heart from ex vivodiffusion tensor magnetic resonance imaging (DTMRI) data[J]. Investigativeradiology,2007,42(11):777–789.
    [109] FRINDEL C, ROBINI M, CROISILLE P, et al. Comparison of regularizationmethods for human cardiac diffusion tensor MRI[J]. Medical image analysis,2009,13(3):405–418.
    [110] YANG F, ZHU Y-M, MAGNIN I E, et al. Feature-based interpolation ofdiffusion tensor fields and application to human cardiac DT-MRI[J]. Medicalimage analysis,2012,16(2):459–481.
    [111] YANG F, ZHU Y, RAPACCHI S, et al. Interpolation of vector fields fromhuman cardiac DT-MRI[J]. Physics in medicine and biology,2011,56(5):1415–1430.
    [112] LOMBAERT, Herve et PEYRAT, Jean-Marc. Joint Statistics on CardiacShape and Fiber Architecture[C]//MICCAI2013, accept.
    [113] WU M-T, TSENG W I, SU M M, et al. Diffuse tensor cardiac MRI evaluationof fiber architecture of athlete hypertrophic heart in vivo[J]. Journal ofCardiovascular Magnetic Resonance,2012,14(Suppl1):170–171.
    [114] SAVADJIEV P, CAMPBELL J SW, DESCOTEAUX M, et al. Labeling ofambiguous subvoxel fibre bundle configurations in high angular resolutiondiffusion MRI[J]. NeuroImage,2008,41(1):58-68.
    [115] TRISTáN-VEGA A, WESTIN C-F, AJA-FERNáNDEZ S. Estimation offiber orientation probability density functions in high angular resolutiondiffusion imaging[J]. NeuroImage,2009,47(2):638–650.
    [116] DESCOTEAUX M. High Angular Resolution Diffusion MRI&: from LocalEstimation to Segmentation and Tractography[D]. Antipolis, Inria Sophia,2008.
    [117] POUPON C, RIEUL B, KEZELE I, et al. New diffusion phantoms dedicatedto the study and validation of high-angular-resolution diffusion imaging(HARDI) models[J]. Magnetic Resonance in Medicine,2008,60(6):1276-1283.
    [118] DESCOTEAUX M. High angular resolution diffusion MRI: from localestimation to segmentation and tractography[D]. Max Planck Institute,Germany,2010.
    [119] SEUNARINE K, ALEXANDER D. Multiple fibers: beyond the diffusion tensor[J]. Academic Press,2009:55-72.
    [120]RATHI Y, KUBICKI M, BOUIX S, et al. Statistical analysis of fiber bundles using multi-tensor tractography:application to first-episode schizophrenia[J]. Magnetic resonance imaging,2011,29(4):507-515.
    [121]HESS C P, MUKHERJEE P, HAN E T, et al. Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis[J]. Magnetic resonance in medicine,2006,56(1):104-117.
    [122]PONTABRY J, ROUSSEAU F, OUBEL E, et al. Probabilistic tractography using Q-ball imaging and particle filtering:Application to adult and in-utero fetal brain studies. Medical image analysis[J].2013,17(3):297-310.
    [123]WEDEEN V J, WANG R P, SCHMAHMANN J D, et al. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers[J]. NeuroImage,2008,41(4):1267-1277.
    [124]洪楠,杜湘珂,唐听,等.扩散张量MR成像研究[J].中国医学物理学杂志,2003,20(4):227-231.
    [125]曾洪武,王培军.磁共振扩散加权与弥散张量成像原理分析及比较[J].中国医学影像技术,2005,21(12):1945-1947.
    [126]何光武,沈天真,陈星荣.大脑白质纤维磁共振弥散张量纤维束成像初步研究[J].中华医学杂志,2005,85(39):2775-2779.
    [127]WANG B, FAN Y, LU M, et al. Brain anatomical networks in world class gymnasts:a DTI tractography study[J]. NeuroImage,2013,65:476-487.
    [128]NICKL-JOCKSCHAT T, STOCKER T, MARKOV V, et al. The impact of a Dysbindin schizophrenia susceptibility variant on fiber tract integrity in healthy individuals:a TBSS-based diffusion tensor imaging study[J]. NeuroImage,2012,60(2):847-853.
    [129]洪楠,孙治国,蒋全胜,等.脑干白质纤维束磁共振扩散张量成像研究[J].中国医学影像技术,2002,18(8):749-751.
    [130]张苗,卢洁,李坤成,等.纵向研究脑干梗死的磁共振扩散张量成像与临床预后的相关性[J].中国医学影像技术,2010,26(12):2247-2250.
    [131]柏天军,于龙,王涛,等.3.0T磁共振扩散张量成像FA值在新生儿HIE早期诊断中的研究[J].医学影像学杂志,2012,22(4):514-518.
    [132]赵欣,汪曣,高伟,等.使用扩散张量成像数据重建脑白质纤维的新算法[J].天津大学学报,2006,39(8):1001-1007.
    [133]陆虹,马林,徐贤,等.弥漫性胶质瘤3.0T磁共振扩散张量成像及纤维束成像的初步研究[J].中国医学影像技术,2007,23(8):1139-1142.
    [134]赵欣,王明时,高伟,等.基于扩散张量的脑白质内神经纤维束的可视化技术[J].生物医学工程学杂志,2006,23(4):899-902.
    [135]侯欣,杨健.磁共振扩散张量成像在新生儿脑发育的应用及展望[J].磁共振成像,2012,3(1):74-78.
    [136]胡兴荣,陈军.磁共振弥散成像在肝纤维化中的研究进展[J].世界华人消化杂志,2009,17(3):288-292.
    [137]张冬艳,薛雁山.肝纤维化与磁共振扩散成像ADC值的相关性研究现状[J].国际医学放射学杂志ISTIC,2011,34(4):339-341.
    [138]周卫兵,龚良庚,任海波,等.磁共振扩散张量成像在肝硬化诊断中的临床应用[J].实用放射学杂志,2012,28(12):1907-1909.
    [139]张澍杰,饶圣祥,李轫晨,等.1.5T与3.0T MR正常肝脏扩散成像的比较研究[J].中国医学计算机成像杂志,2012,18(6):501-503.
    [140]WU E X, WU Y, TANG H, et al. Study of myocardial fiber pathway using magnetic resonance diffusion tensor imaging[J]. Magnetic resonance imaging,2007,25(7):1048-1057.
    [141]WU E X, WU Y, NICHOLLS J M, et al. MR diffusion tensor imaging study of postinfarct myocardium structural remodeling in a porcine model [J]. Magnetic resonance in medicine,2007,58(4):687-695.
    [142]WU Y, ZHANG L-J, ZOU C, et al. Transmural heterogeneity of left ventricular myocardium remodeling in postinfarct porcine model revealed by MR diffusion tensor imaging[J]. Journal of magnetic resonance imaging,2011,34(1):43-49.
    [143]ASSAF Y, FREIDLIN R Z, ROHDE G K, et al. New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter[J]. Magnetic resonance in medicine,2004,52(5):965-978.
    [144]AGANJ I, LENGLET C, SAPIRO G, et al. Multiple Q-shell ODF reconstruction in Q-ball imaging.[C]//12ed. Medical Image Computing and Computer-Assisted Intervention:MICCAI. London, England:LNCS,2009,5761(Pt2):423-431.
    [145]PICKALOV V, BASSER P J. Reconstruction of the average propagator from mri data[C]//3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, Arlington:2006:710-713.
    [146]SZAFER a, ZHONG J, GORE J C. Theoretical model for water diffusion in tissues[J]. Magnetic resonance in medicine,1995,33(5):697-712.
    [147]BENOIT-CATTIN H, COLLEWET G, BELAROUSSI B, et al. The SIMRI project:a versatile and interactive MRI simulator[J]. Journal of magnetic resonance,2005,173(1):97-115.
    [148]JOCHIMSEN T H, SCHAFER A, BAMMER R, et al. Efficient simulation of magnetic resonance imaging with Bloch-Torrey equations using intra-voxelmagnetization gradients[J]. Journal of magnetic resonance,2006,180(1):29–38.
    [149] LATTA P, GRUWEL M L H, JELLúS V, et al. Bloch simulations withintra-voxel spin dephasing[J]. Journal of magnetic resonance,2010,203(1):44–51.
    [150] RHOMER D, GULLBERG G T. A Bloch-Torrey Equation for Diffusion in aDeforming Media[J]. Lawrence Berkeley National Laboratory,2006:1-19.
    [151] AWOJOYOGBE O B, BOUBAKER K. A solution to Bloch NMR flowequations for the analysis of hemodynamic functions of blood flow systemusing m-Boubaker polynomials[J]. Current Applied Physics,2009,9(1):278–283.
    [152] LI J. Efficient numerical method to solve the multiple compartmentBloch-Torrey equation Two or three compartment Bloch Torrey PDEmodel[J].2011, di:1–18.
    [153] REGIER M, SCHUCHMANN H P. Monte Carlo Simulations of ObservationTime-Dependent Self-Diffusion in Porous Media Models[J]. Transport inPorous Media,2005,59(1):115–126.
    [154] FARNELL L, GIBSON W G. Monte Carlo simulation of diffusion in aspatially nonhomogeneous medium: correction to the Gaussian steplength[J].Journal of Computational Physics,2004,198(1):65–79.
    [155] CHEN J, ELIMELECH M, KIM A. Monte Carlo simulation of colloidalmembrane filtration: Model development with application to characterizationof colloid phase transition[J]. Journal of Membrane Science,2005,255(1-2):291–305.
    [156] CHERN S-S, CáRDENAS A E, COALSON R D. Three-dimensional dynamicMonte Carlo simulations of driven polymer transport through a hole in awall[J]. The Journal of Chemical Physics,2001,115(16):7772.
    [157] GROSSMAN J, MITAS L. Efficient Quantum Monte Carlo Energies forMolecular Dynamics Simulations[J]. Physical Review Letters,2005,94(5):056403.
    [158] ASSARAF R, CAFFAREL M, KHELIF A. Diffusion monte carlo methodswith a fixed number of walkers[J]. Physical review. E, Statistical physics,plasmas, fluids, and related interdisciplinary topics,2000,61(4Pt B):4566–4575.
    [159] HWANG S N, CHIN C-L, WEHRLI F W, et al. An image-based finitedifference model for simulating restricted diffusion[J]. Magnetic resonance inmedicine,2003,50(2):373–382.
    [160] XU J, DOES M D, GORE J C. Numerical study of water diffusion inbiological tissues using an improved finite difference method[J]. Physics in medicine and biology,2007,52(7):N111-126.
    [161]ZHAN W, JIANG L, LOEW M H, et al. Mapping spatiotemporal diffusion inside the human brain using a numerical solution of the diffusion equation[J]. Magnetic resonance imaging,2008,26(5):694-702.
    [162]DUH A, MOHORIC A, STEPISNIK J. Computer simulation of the spin-echo spatial distribution in the case of restricted self-diffusion[J]. Journal of magnetic resonance,2001,148(2):257-266.
    [163]CAI C, CHEN Z, CAI S, et al. Propagator formalism and computer simulation of restricted diffusion behaviors of inter-molecular multiple-quantum coherences[J]. Physica B:Condensed Matter,2005,366(1-4):127-137.
    [164]陈巧龙.多孔介质中液体受限扩散的Monte Carlo计算机模拟[D].厦门大学,2007.
    [165]ALEXANDER D C, BARKER G J. Optimal imaging parameters for fiber-orientation estimation in diffusion MRI[J]. NeuroImage,2005,27(2):357-367.
    [166]PRICE W S. Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion:Part1. Basic theory [J]. Concepts in Magnetic Resonance,1997,9(5):299-336.
    [167]HALL M G, ALEXANDER D C. Convergence and parameter choice for Monte-Carlo simulations of diffusion MRI[J]. IEEE transactions on medical imaging,2009,28(9):1354-1364.
    [168]FIEREMANS E, DE DEENE Y, DELPUTTE S, et al. Simulation and experimental verification of the diffusion in an anisotropic fiber phantom[J]. Journal of magnetic resonance,2008,190(2):189-199.
    [169]PRICE W S, PRICE W S. Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion. Part2. Experimental aspects[J]. Concepts in Magnetic Resonance,1998,10(4):197-237.
    [170]ZHENG K. Rapid diffusion in the brain extracellular space-biophysical constraints and physiological implications[D]. University College London,2009:118.
    [171]PFEUFFER J, TKAC I, GRUETTER R. Extracllular-Intracelluar distribution of Glocose and lactate in the rat bain assessed noninvasively by diffusion-weighted1H nuclear magnetic resonance spectroscopy in vivo[J]. Journal of cerebral blood flow and metabolism,2000,20:736-746.
    [172]SCHAEFER M, GROSS W, PREUSS M, et al. Monitoring of water content and water distribution in ischemic hearts[J]. Bioelectrochemistry,2003,61(1-2):85-92.
    [173]LE BIHAN D. The "wet mind":water and functional neuroimaging[J]. Physics in medicine and biology,2007,52(7):R57-90.
    [174] IAIZZO P A. Handbook of Cardiac Anatomy, Physiology, and Devices[M].2ed. Humana Press Inc.,2009:710.
    [175] ALIEV M K, DOS SANTOS P, HOERTER J A, et al. Water content and itsintracellular distribution in intact and saline perfused rat hearts revisited[J].Cardiovascular research,2002,53(1):48–58.
    [176] IMAE T, SHINOHARA H, SEKINO M, et al. Estimation of cell membranepermeability and intracellular diffusion coefficient of human gray matter[J].Magnetic resonance in medical sciences,2009,8(1):1–7.
    [177] SEHY J V, BANKS A a, ACKERMAN J J H, et al. Importance ofintracellular water apparent diffusion to the measurement of membranepermeability[J]. Biophysical journal,2002,83(5):2856–2863.
    [178] SUKSTANSKII a L, YABLONSKIY D a, ACKERMAN J J H. Effects ofpermeable boundaries on the diffusion-attenuated MR signal: insights from aone-dimensional model[J]. Journal of magnetic resonance,2004,170(1):56–66.
    [179] OGURA T, IMANISHI S, SHIBAMOTO T. Osmometric andwater-transporting properties of guinea pig cardiac myocytes[J]. The Japanesejournal of physiology,2002,52(4):333–342.
    [180] MILICA R I, VUNJAK-NOVAKOVI G. Cardiac tissue engineering[J]. J.Serb. Chem. Soc.,2005,70(3):541–556.
    [181] BAR-SHIR A, AVRAM L, OZARSLAN E, et al. The effect of the diffusiontime and pulse gradient duration ratio on the diffraction pattern and thestructural information estimated from q-space diffusion MR: experiments andsimulations[J]. Journal of magnetic resonance,2008,194(2):230–236.
    [182] NADAL-GINARD B. Myocyte Death, Growth, and Regeneration in CardiacHypertrophy and Failure[J]. Circulation Research,2003,92(2):139–150.
    [183] LAKS M M., MORADY F, ADOMIAN G. E, et al. Presence of Widened andMultiple Intercalated Discs in the Hypertrophied Canine Heart[J]. CirculationResearch,1970,27:391–402.
    [184] KIM H E, DALAL S S, YOUNG E, et al. Disruption of the myocardialextracellular matrix leads to cardiac dysfunction[J]. The Journal of clinicalinvestigation,2000,106(7):857–866.
    [185] TER K, HENk EDJ. Macroscopic and Microscopic Aspects of CardiacDysfunction in Congestive Heart Failure, In: Molecular Defects inCardiovascular Disease[M]. Springer New York,2011:95-107.
    [186] WEISS D L, KELLER D U J, SEEMANN G, et al. The influence of fibreorientation, extracted from different segments of the human left ventricle, onthe activation and repolarization sequence: a simulation study[J]. Europace,2007,9Suppl6: vi96–104.
    [187] SALAT D H, TUCH D S, VAN DER KOUWE a J W, et al. White matterpathology isolates the hippocampal formation in Alzheimer’s disease[J].Neurobiology of aging,2010,31(2):244–256.
    [188] GERDES A M, CAPASSO J M. Structural remodeling and mechanicaldysfunction of cardiac myocytes in heart failure[J]. Journal of molecular andcellular cardiology,1995,27(3):849–856.
    [189] NEZAMZADEH M. Diffusion time dependence of magnetic resonancediffusion signal decays: an investigation of water exchange in human brain invivo[J]. Magn Reson Mater Phy,2012,25(4):285–296.
    [190] WU M-T, TSENG W-Y I, SU M-Y M, et al. Diffusion tensor magneticresonance imaging mapping the fiber architecture remodeling in humanmyocardium after infarction: correlation with viability and wall motion[J].Circulation,2006,114(10):1036–1045.
    [191] ZERHOUNI E A, PARISH D M, ROGERS W J, et al. Human heart: taggingwith MR imaging--a method for noninvasive assessment of myocardialmotion[J]. Radiology,1988,169(1):59–63.
    [192] PAI V M, AXEL L. Advances in MRI tagging techniques for determiningregional myocardial strain[J]. Current cardiology reports,2006,8(1):53–58.
    [193]PETITJEAN C, ROUGON N, CLUZEL P. Assessment of myocardial function:a review of quantification methods and results using tagged MRI[J]. Journalof cardiovascular magnetic resonance&,2005,7(2):501–516.
    [194] WANG V, LAM H I, ENNIS D B, et al. Modelling passive diastolicmechanics with quantitative MRI of cardiac structure and function[J]. Medicalimage analysis,2009,13(5):773–784.
    [195] SHEHATA M L, CHENG S, OSMAN N F, et al. Myocardial tissue taggingwith cardiovascular magnetic resonance[J]. Journal of cardiovascularmagnetic resonance,2009,11(55):1–12.
    [196] WANG H, AMINI A A. Cardiac motion and deformation recovery from MRI:a review[J]. IEEE transactions on medical imaging,2012,31(2):487–503.
    [197] MARKL M, SCHNEIDER B, HENNIG J. Fast phase contrast cardiacmagnetic resonance imaging: improved assessment and analysis of leftventricular wall motion[J]. Journal of magnetic resonance imaging&,2002,15(6):642–653.
    [198] REESE T, WEDEEN V, WEISSKOFF R. Measuring Diffusion in thePresence of Material Strain[J]. Journal of magnetic resonance. Series B,1996,112(3):253–258.
    [199] ALETRAS a H, BALABAN R S, WEN H. High-resolution strain analysis ofthe human heart with fast-DENSE[J]. Journal of magnetic resonance,1999,140(1):41–57.
    [200] HADDAD R. Un modèle numérique anthropomorphique et dynamique duthorax respirant et du c ur battant[D]. Lyon: INSA-LYON,2007:172.
    [201] REGRAIN B, BOIX E, ODET C, et al. DaVaW: a python library for medicalimage processing applications[C]//IEEE International Conference on ImageProcessing2005. IEEE,2005:1004.
    [202] RUECKERT D, SONODA L I, HAYES C, et al. Nonrigid registration usingfree-form deformations: application to breast MR images[J]. IEEEtransactions on medical imaging,1999,18(8):712–721.
    [203] ROHR K, STIEHL H S, SPRENGEL R, et al. Landmark-based elasticregistration using approximating thin-plate splines[J]. IEEE transactions onmedical imaging,2001,20(6):526–534.
    [204] CHRISTENSEN G E, JOHNSON H J. Consistent image registration[J]. IEEEtransactions on medical imaging,2001,20(7):568–582.
    [205] ASHBURNER J. A fast diffeomorphic image registration algorithm[J].NeuroImage,2007,38(1):95–113.
    [206] BROIT C. Optimal registration of deformed images[D]. University ofPennsylvania,1981.
    [207] D’AGOSTINO E, MAES F, VANDERMEULEN D, et al. A viscous fluidmodel for multimodal non-rigid image registration using mutualinformation[J]. Medical image analysis,2003,7(4):565–575.
    [208] CHRISTENSEN G E, RABBITT R D, MILLER M I. Deformable templatesusing large deformation kinematics[J]. IEEE transactions on image processing,1996,5(10):1435–1447.
    [209] CRUM W R, TANNER C, HAWKES D J. Anisotropic multi-scale fluidregistration: evaluation in magnetic resonance breast imaging[J]. Physics inmedicine and biology,2005,50(21):5153–5174.
    [210] THIRION J. Image matching as a diffusion process: an analogy withMaxwell’s demons[J]. Medical image analysis,1998,2(3):243–260.
    [211] VERCAUTEREN T, PENNEC X, PERCHANT A, et al. Diffeomorphicdemons: efficient non-parametric image registration[J]. NeuroImage,2009,45(1Suppl): S61–72.
    [212] YEO B T T, SABUNCU M R, VERCAUTEREN T, et al. Spherical demons:fast diffeomorphic landmark-free surface registration[J]. IEEE transactions onmedical imaging,2010,29(3):650–668.
    [213] LU H, REYES M, SERIFOVIC A, et al. Multi-modal diffeomorphic demonsregistration based on point-wise mutual information[C]//7th2010IEEEInternational Symposium on Biomedical Imaging: From Nano to Macro.Rotterdam: Netherlands: IEEE,2010:372–375.
    [214] SZELISKI R, COUGHLAN J. Spline-based image registration[J].International Journal of Computer Vision,1997,22(3):199–218.
    [215] HOLDEN M. A review of geometric transformations for nonrigid bodyregistration[J]. IEEE transactions on medical imaging,2008,27(1):111–128.
    [216] LENGLET C, FAUGERAS O, PAPADOPOULO T, et al. Diffeomorphicmatching of symmetric positive definite matrix field[C]//2ed.Congrès Nationalde Mathématiques Appliquées et Industrielles. Evian&: France:2005.
    [217] LEGRICE I J, TAKAYAMA Y, COVELL J W. Transverse shear alongmyocardial cleavage planes provides a mechanism for normal systolic wallthickening[J]. Circulation research,1995,77(1):182–193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700