湿式永磁强磁选机磁系研究及设备研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在永磁设备研制中,磁系设计是关键,对分析磁选设备性能,确定磁系结构参数、磁场性质、磁性颗粒受力情况及机械结构等起着重要作用。课题针对目前普通湿式永磁磁选机磁场强度不高,对弱磁性矿物粗选、尾矿抛尾以及非金属除铁效果不理想,提出了新的磁系机构,大大提高了作业空间内的磁场强度。同时对于磁选机磁系和机构优化设计综合运用多学科研究,包括磁性材料、复变函数、有限元磁场仿真、机械设计、有限元机构优化设计、系统开发、磁选技术、选矿工艺等,完成了对称圆角齿极磁场的理论研究和设备的实际制造工作,同时为同类磁选设备研究提供了理论依据,缩短了研发周期。
     课题主要从磁系材料选取,磁场理论计算和仿真模拟,设备研制,系统开发,试验五方面进行了研究与分析。
     (1)通过国内外磁性材料的对比分析,研究不同硬磁和软磁材料性能,选用NdFeB永磁材料,其表面磁感应强度为0.5T,磁感应矫顽力808KA/m,内禀矫顽力为1740KA/m,最大磁能积326-334KJ/m3。该磁性材料较高的磁感应强度、稳定的性能和适中的价格满足了强磁选机的设计要求。
     (2)运用复变函数解析解法,推导出了对称圆角齿极的磁场分布规律,磁场强度大小为磁场方向并绘出了圆齿齿极对磁场气隙空间的磁通分布。
     (3)运用高级有限元分析软件ANSYS对磁系的二维及三维模型进行了静态磁场分析,得到了磁系的磁力线分布、磁场强度、磁感应强度、指定路径磁感应强度分布规律以及三维模型的磁感应强度切片。并运用参数化语言APDL编译了优化设计程序,可对不同结构、几何参数及材料的磁系进行系统的仿真分析。通过不同的方案进行对比分析,得出最优的磁系结构形式及参数。在最优条件下,对称圆角齿尖表面理论磁感应强度达到2.31 T,满足设计要求。
     (4)设计制造出了湿式永磁强磁选机磁盘单元磁场测量机构及原理试验机,可对磁盘单元进行详细的磁场测量和进行选别试验;完成了湿式永磁强磁选机整机设计,对给矿箱、冲矿管、机架等主要机构进行了改进设计,使布料更均匀;在矿石接触的机体表面粘贴耐磨层,延长其使用寿命;改进磁盘设计,增加了分选面积;当极距为10mm时,表面磁感应强度达到2.25T;并运用COSMOS有限元软件对磁盘、主轴主要部件在受到最大磁场力情况下进行了结构受力分析,磁盘的安全系数达到了6.7,达到了较高的安全系数和可靠性,同时还节省了材料及加工费用,满足了设计要求,符合矿山实际生产的需要。
     (5)基于Visual Basic对ANSYS 12.0进行了永磁场仿真的二次开发,并结合SQL Sever 2000数据库技术开发了永磁磁选机磁系优化设计仿真系统,并开发了材料库、磁系优化设计及数据输出等模块。通过磁系虚拟优化设计,提高了永磁磁选机设计及优化效率,缩短了设计周期、节约了设计试验成本。
     (6)应用湿式永磁强磁选机对钾长石除铁进行试验研究,在最佳试验条件下,原矿中Fe203含量从0.52%下降到0.17%,精矿产率到达84.61%,除铁率达72.34%。结果表明该磁选机结构设计合理,选别指标和除铁效果良好。
In the decelopment of permanent magnet device, the magnet system design is the key point. They play an important role for analysis of magnetic device performance, structural parameters of magnetic system, magnetic properties, forces on magnetic particles and mechanical structure. There are not the best for weak magnetic minerals roughing, discarding useless mineral from tailings and removing iron from non-metallic minerals for general wet permanent magnetic separator. This paper proposed a new magnetic system structure to enhance the magnetic field intensity in the separation space. The research of magnetic system and structure optimization was based on multi-sublect. They contained magnetic material, complex function, magnetic filed simulation, mechanical design, FEM, system development and magnetic separation and so on. Theoretical research of magnetic field distribution of magnetic pole with symmetrical fillet angle and actual manufacture of the equipment had been completed. The research provided a theoretical basis and Shortened the development cycle for similar magnetic device development.
     Six aspects had been completed, which contained magnetic materials, theoretical calculation of magnetic system, magnetic field simulation, design and manufacture of equipment, development of simulation system and iron removal experiment.
     (1) Through comparative analysis of magnetic materials at home and abroad to study the different properties of hard and soft magnetic material, the choice of NdFeB permanent magnet material was decided to apply in the new wet high intensity permanent magnetic separator. The magnetic induction intensity is 0.5T, coercive force of magnetic induction is 808KA/m, intrinsic coercive force is 1740KA/m and magnetic energy product is 326-334KJ/m3. The high magnetic flux density, stable performance and affordable prices meet the design requirements of wet high intensity permanent magnetic separator.
     (2) The magnetic field distribution rule of magnetic pole with symmetrical fillet angle was gotten by analytical solution of complex variable function. Formula of magnetic field intensity was Magnetic field orientation was Mean while the magnetic flux distribution of magnetic pole with symmetrical fillet angle in air gap was drawn.
     (3) Advance finite element analysis software ANSYS was applied to simulate the static magnetic field of magnetic system with 2D and 3D model. The post processing results were gotten, such as magnetic line of force distribution, magnetic field intensity, magnetic induction intensity, magnetic induction intensity distribution in special path and magnetic induction intensity cutting of 3D model. Then parametric language APDL was compiled to get optimal design program which could simulate different construction, geometry size and material of magnetic system. The optimal construction and parameter of magnetic system was gotten through the comparative analysis of different plans. The magnetic induction intensity of magnetic pole with symmetrical fillet angle was get up to 2.31T in optimal simulation condition.
     (4) Testing machine of wet high intensity permanent magnetic separator had been designed and manufactured to measure magnetic field of magnetic disk and do mineral processing test. The whole machine of wet high intensity permanent magnetic separator had been designed and some main parts were in improved design to make burden distribution more even. They were feed box, pipe for washing mine and framework. Anti-abrasion coatings were stuck to the surface of engine body in order to extend its service life. Magnetic disk was designed in advance to increase the useful area. Magnetic induction intensity could get up to 2.25T when the distance between magnetic disks was 10mm. The magnetic disk and central axis were analyzed under the condition of maximum magnetic field force by using COSMOS. Simulation results demonstrated that the safety factor was up to 6.7. It achieved a higher safety factor and reliability and meeted the design requirements of mine equipment.
     (5) ANSYS 12.0 was done second development for permanent magnetic field simulation based on Visual Basic. And database software SQL Sever 2000 was applied to develop permanent magnetic field simulation system. Some main models was developed, such as material database, ANSYS simulation and data output. Through virtual optimization design of magnetic system, the efficiency of design and optimization was improved efficiency.
     (6) Wet high intensity permanent magnetic separator was applied to remove iron from potash feldspar. The results under optimal experimental conditions were shown that structure design of magnetic separator was reasonable, mineral processing and iron removal effect was well. Fe2O3 in ore was decreased from 0.52% to 0.17%. Production rate of concentrate was up to 84.61% , and iron removal rate was 72.34%.
引文
[1]Nedelcu S, Watson J.H.P. Magnetic separator with transversally magnetised disk permanent magnets [J]. Minerals Eng,2002,15 (5):355-359.
    [2]Gerber R. Magnetic filtration of ultra-fine particles [J]. Dig intermag Conf,1984,20 (5):425.
    [3]Lungu M. Separation of small nonferrous particles using a two successive steps eddy-current separator with permanent magnets [J]. Int. J. Miner. Process,2009,93 (2):172-178.
    [4]Meier-Staude R, Schlett Z, Lungu M. A new possibility in Eddy-Current separation [J]. Minerals Eng,2002,15 (4):287-291.
    [5]P.A.奥古斯多.新型磁选机和磁分级机的改进特点[J].国外金属矿选矿,2001,38(7):2-7.
    [6]Song M, Kim S, Lee K. Development of a Magnetic Filter System Using Permanent Magnets for Separating Radioactive Corrosion Products from Nuclear Power Plants [J]. Sep. Sci. Technol,2004,39 (5):1037-1057.
    [7]Rayner J.G, Napier-Munn T.J. Mechanism of magnetics capture in the wet drum magnetic separator [J]. Minerals Eng,2000,13 (3):277-285.
    [8]Kohnlechner R, Schlett Z, Lungu M et al. A new wet Eddy-current separator [J]. Resources. Conserv. Recycl,2002,37 (1):55-60.
    [9]Hantil F, Mihai M, Popescu C. Performances of a waste recycling separator with permanent magnets [J]. J Mater Process Technol,2007,181 (1):246-248.
    [10]夏红峰.国内磁选设备的研究现状及发展趋势[J].金属矿山,2010,(9):111-114.
    [11]Lungu M, Schlett z. Vertical drum eddy-current separator with permanent magnets [J]. Int. J. Miner. Process,2001,63 (4):207-216.
    [12]冯旭滨.国外矿用磁选设备的现状与性能分析[J].煤矿机械,1999,(1):4-5.
    [13]曹志良.永磁磁选技术的新进展[J].金属矿山,1997,(6):15-17.
    [14]冯定五,孙仲元.永磁磁选机的现状与发展[J].国外金属矿选矿,1992,(12):1-5.
    [15]Zhang S, Rem P.C, Forssberg.E. Particle trajectory simulation of two-drum eddy current separators [J]. Resour Conserv Recycl,1999,26 (2):71-90.
    [16]M.D. LI, T LI, M.W. Development of Crimm roll-type high intensity magnetic separators with rare-earth permanent magnets [J]. Kuangye Gongcheng,1993,13 (1):34.
    [17]陈建生,杨钢,裘宝泉.磁选机的现状和发展趋势㈠[J].矿山机械,2009,37(17):75-79.
    [18]刘鹏,焦红光,陈清如.永磁高梯度磁选机的发展现状及解析[J].矿山机械,2008,36(21):116-118.
    [19]陈建生,杨钢,裘宝泉.磁选机的现状和发展趋势㈡[J].矿山机械,2009,37(17):75-79.
    [20]张田.湿式半逆流磁选机的新改进[J].矿业快报,2000,343(13):7-9.
    [21]Bikbov M.A, Karmazin V.V, Bikbov A.A. Low-intensity magnetic separation:Principal stages of a separator development-What is the next step? [J], Phys. Sep. Sci. Eng,2004,13 (2):53-67.
    [22]Lungu M, Rem P. Eddy-Current Separation of Small Nonferrous Particles By a Single-Disk Separator With Permanent Magnets [J]. IEEE Trans Magn,2003,39 (4):2062-2067.
    [23]Jiao G, Rahn C.D. Field Weakening for Radial Force Reduction in Brushless Permanent-Magnet DC Motors [J]. IEEE Trans Magn,2004,40 (5):3286-3292.
    [24]Lorenzen H.W, Zickermann R, Schafer D. Homogenization of the Magnetic Field in the Air-Gap of a Permanent Magnet Superconductor Bearing [J]. IEEE Trans Appl Supercond, 2001,11 (1):1793-1796.
    [25]Merayo J.M.G, Primdahl F, Brauer P. The orthogonalization of magnetic systems [J]. Sens Actuators A Phys,2001,89 (3):185-196.
    [26]戴惠新.选矿技术问答[M].北京:化学工业出版社,2008:112-113.
    [27]张裕发.DPMS湿式永磁磁选机在福建省连城锰矿的应用[J].中国锰业,2008,26(3):42-43.
    [28]洪家凯.湿式强磁选机选别钛铁矿的研究应用[J].金属矿山,1997,258(12):39-40.
    [29]曹志良,徐永仁,詹海青等.湿式永磁强磁选机分选赤铁矿石试验研究[J].金属矿山,2007,375(9):94-96.
    [30]宋斌燕,周清雷.对CTB型永磁筒式磁选机冲散水管的改进[J].矿山机械,2008,36(23):116.
    [31]赵瑞敏,董恩海.永磁辊式强磁磁选机研制及应用[J].非金属矿,2009,32(1):64-66.
    [32]彭会清,余玲,蔡启林等.湿式永磁带式强磁选机磁场分布研究[J].金属矿山,1997,258(12):341-345.
    [33]蒋美仙,彭会清.稀土湿式永磁带式强磁选机的优化设计[J].南方冶金学院学报,2002,23(1):76-78.
    [34]冯定五.干式永磁高梯度磁选机的研制[J].矿冶,1997,6(2):35-38.
    [35]徐冬林.简化齐大山选矿厂浮选车间工艺流程的试验研究[J].金属矿山,2001,(6):34-36.
    [36]许建民.湿式永磁筒式磁选机卸矿装置的研制[J].金属矿山,2003,321(3):57.
    [37]WANG Q, DAI Y, ZHAO B. Development of high magnetic field superconducting magnet technology and applications in China [J]. Cryogenics,2007,47 (7):364-379.
    [38]林其壬,赵佑民.磁路设计原理[M].北京:机械工业出版社,1983:95-99.
    [39]邹继斌,刘宝廷,崔淑梅等.磁路与磁场[M].四川:成都电讯工程学院出版社,1987:43-46.
    [40]王常任,孙仲元,郑龙熙.磁选设备磁系设计基础[M].北京:冶金工业出版社,1990:102-136.
    [41]徐建成,徐建民.齿尖齿极相对的磁场求解中几个问题的探讨[J].有色金属,2004,56(1):80-82.
    [42]Ding Guoping, Hu Yefa, Zhou Zude. Effects of magnetic pole arrangement on magnetic field and force in radial magnetic bearings [J]. Zhongguo Jixie Gongcheng.2008,19(19): 2364-2367.
    [43]郭天纲,潘德强,郑广智.浅析磁选机磁路结构设计及磁场特性[J].矿山机械,2010,38(16):76-77.
    [44]王美华,吴祥林.新磁路永磁筒式磁选机的特点及应用[J].金属矿山,2001,298(4):28-30.
    [45]赵昱东.分选弱磁性矿磁选机的技术进展[J].江西冶金,2000,20(3):22-26.
    [46]Vedmedenko E.Y, Wiesendanger R. Modulated multipolar structures in magnetic arrays [J]. Philos Mag,2008,88 (18):2683-2697.
    [47]Xu Yanliang, Yao Fu'an, Fang Jiancheng. Halbach array permanent magnet machine and performance comparison with the normal array one (I) Halbach array structure and comparison of different magnet array machines [J]. Diangong Jishu Xuebao.2004,19 (2): 79-83.
    [48]王晓远,赵方,丁亚明等.Halbach阵列用于盘式无铁心永磁同步电动机的结构仿真研究[J].微电机,2006,39(9):22-25.
    [49]陶果,邱阿瑞,李大雷.新型聚磁式横向磁场永磁推进同步电动机[J].清华大学学报,2007,47(10):1562-1565.
    [50]王志国,王晓明,刘承帅.现代磁选理论及技术的发展与应用[J].矿冶,2009,18(2):27-29.
    [51]彭会清.磁选机磁场解析法研究及应用[D].武汉:武汉理工大学,2006:90-99.
    [52]冯慈璋.静态电磁场[M].西安:西安交通大学出版社,1985:7-9.
    [53]毕德显.电磁场理论[M].北京:电子工业出版社,1985:268-272.
    [54]彭会清.复变函数法在磁选机磁场边值问题中的应用[J].南方冶金学院学报,1993,14(3):206-213.
    [55]Tavana N. R, Shoulaie A. Analysis and design of magnetic pole shape in linear permanent-magnet machine [J]. IEEE Trans Magn,2010,46 (4):1000-1006.
    [56]彭会清,余永富,熊晨曦等.复变函数法在平面磁系磁场分布研究中的应用[J].金属矿山,2006,364(10):38-40.
    [57]Rong M.Z, Lou J.Y, Wang X.H, Simulation analysis and experimental research of operating characteristic for moving contact of contactor with permanent magnet actuator [J]. Zhongguo Dianji Gongcheng Xuebao,2005,25 (1):109-113.
    [58]宛剑业,赵存根.ANSYS有限元软件在永磁磁路中的应用[J].辽宁工学院学报,1999,19(4): 31-33.
    [59]王常任.磁电选矿[M].北京:冶金工业出版社,2005:142-164.
    [60]陶果,邱阿瑞,柴建云等.永磁同步伺服电动机的磁场分析与参数计算[J].清华大学学报(自然科学版),2004,44(10):1317-1320.
    [61]Campbell P, Chari M.V.K, Angeio J.D. Tree-dimensional Finite Element Solution of Permanent Magnet Machines [J]. IEEE Trans on MAG,1981,17 (6):2997-2999.
    [62]Wang. J., Chau.K.T., Iiang.J.Z. Design and analysis of a transverse flux permanent-magnet machine using three-dimensional scalar magnetic potential finite element method[J]. J Appl Phys,2008,103(7):107-110.
    [63]Arudchelvam T, Rodger D, Hoole S.R.H. An enhanced multigrid method for fast numerical computation of the magnetic vector potential [J]. Mater. Sci. Forum,2011,67 (10):311-317.
    [64]Bottauscio O, Chiampi M, Manzin A. An edge element approach for dynamic micromagnetic modeling [J]. J Appl Phys,2008,103 (7):911-916.
    [65]李卫,朱明刚.高性能金属永磁材料的探索和研究进展[J].中国材料进展,2009,28(9):62-72.
    [66]周寿增,董清飞.超强永磁体-稀土铁系永磁材料[M].北京:冶金工业出版社,2004:48-70.
    [67]Jin H.M, Wang, Xue F.Z, Su F. Anisotropic characteristics of demagnetization curve for nanocrystalline Nd-Fe-B magnet calculated by micromagnetics [J]. Chin Phys,2001,10 (9): 862-868.
    [68]邹欣伟,张敏刚,孙刚等.稀土永磁材料的研究进展[J].科技情报开发与经济,2008,18(12):113-116.
    [69]林莘.永磁机构与真空断路器[M].北京:机械工业出版社,2002:85-102.
    [70]Liu X.B, Altounian Z. Magnetic moments and exchange interaction in Sm(Co, Fe)5 from first-principles [J]. Comput Mater Sci,2011,50 (3):841-846.
    [71]李春梅,张宗华,高利坤.稀土永磁材料(NdFeB)的现状及发展趋势[J].云南冶金,2003,32(3):12-15.
    [72]Hinz D, Wirth S, Eckert D. Determination of biaxial texture and intrinsic magnetic properties of hot rolled NdFeB samples [J]. J Magn Magn Mater,1996,157 (2):43-44.
    [73]徐建铭.永磁磁体设计的新进展[J].原子能科学技术,1988,22(1):77-81.
    [74]Lee.J, Yoo.J. Topology optimization of the permanent magnet type MRI considering the magnetic field homogeneity [J]. J Magn Magn Mater,2010,322 (9):1651-1654.
    [75]Dahe Xiong, Shuyi Liu, Jin Chen. New technology of pulsating high gradient magnetic separation [J]. Int. J. Miner. Process.1998,54 (2):111-127.
    [76]Huang, L., Zheng. Y., Li.X.Y. Preparation technology of the bonded NdFeB magnet[J]. Fuhe Cailiao Xuebao,2006,23 (4):180-184.
    [77]张修海,熊惟皓,李燕芳等.烧结钕铁硼永磁材料的研究进展[J].机械工程材料,2008,32(11)5-9.
    [78]Mao S.D, Yang H.Q. Corrosion behaviour of sintered NdFeB coated with Al/A12O3 multilayers by magnetron sputtering [J]. Appl Surf Sci,2011,257 (9):3980-3984.
    [79]Hu Z.H, Li J. Effect of hot deformation temperature on the magnetic and mechanical properties of NdFeB magnets prepared by spark plasma sintering [J]. J Magn Magn Mater, 2011,323(1):104-107.
    [80]Kou X.C. Coercivity of SmFeN permanent magnets produced by various techniques [J]. J Alloys Compd,1998,281 (1):41-45.
    [81]林河成.稀土永磁材料的现状及发展[J].粉末冶金工业,2010,20(2):47-51.
    [82]李卫,朱明刚.高性能稀土永磁材料及其关键制备技术[J].中国有色金属学报,2004,14(1):332-336.
    [83]杨应昌,张晓东,孔麟书等.新型RE-Fe-N系金属间化合物的结构与磁性[J].中国稀土学报,1990,8(4):376-377.
    [84]应去非,崔祜林.常用电工材料及其选用[M].北京:机械工业出版社,2003:157-160.
    [85]杨江尧.电工纯铁矫顽力的测试及应注意的问题[J].磁性材料及器件,1983,14(4):40-42.
    [86]Hu S.T, Kong X.H, Wang X.X. Surface treatment and its influence on iron loss of grain-oriented silicon steel [J]. Cailiao Rechuli Xuebao,2010,31 (4):137-140.
    [87]岳建峰,湛清,张传福等.准一维铁镍合金材料的制备研究进展及应用展望[J].硬质合金,2010,27(2):124-12.
    [88]Roshen W.A. High-frequency tunneling magnetic loss in soft ferrites [J]. IEEE Trans Magn. 2007,101 (9):968-973.
    [89]John G. Rayner, T. J. Napier-Munn. A mathematical model of concentrate solids content for the wet drum magnetic separator [J]. Int J Miner Process,2008,70 (1):53-65.
    [90]Nakai Y, Mishima F, Akiyama Y. Development of Magnetic Separation System for Powder Separation [J]. IEEE Trans Appl Supercond,2010,20 (3):941-944.
    [91]Sanz S, Garcia Tabares L, Ivan M. Evaluation of Magnetic Forces in Permanent Magnets [J]. IEEE Trans Appl Supercond,2010,20 (3):846-850.
    [92]徐建民,徐建成.圆柱形多级磁选机磁场分布和场强梯度的解析计算[J].有色金属,2001,53(4):66-69.
    [93]孙仲元.磁选理论[M].长沙:中南工业大学出版社,1987: 68-78.
    [94]Klevets N.L. Optimal design of magnetic systems [J]. J Magn Magn Mater,2006,306 (2): 281-291.
    [95]苏俊宏.直接积分法计算磁场分布[J].西安工业学院学报,1994,14(2):103-109.
    [96]John G, Rayner T.J, Napier-Munn. A mathematical model of recovery of dense medium magnetics in the wet drum magnetic separator [J]. Int. J. Miner. Process.2003, (69):157-173.
    [97]徐建民,李润.对辊式强磁选机分选空间磁场分布和场强梯度的解析计算[J].矿冶,2001,10(3):43-46.
    [98](英)宾斯(K.J.Binns),(英)劳伦松(P.J.Lawrenson).电场与磁场问题的分析与计算[M].北京:人民教育出版社,1980:90-99.
    [99]M.A.拉夫连季耶夫,(?).B.沙巴特.复变函数论方法[M].北京:高等教育出版社,2006:103-197.
    [100]张倩,胡仁喜,康士廷.ANSYS12.0电磁学有限元分析从入门到精髓[M].北京:机械工业出版社,2010:17-32.
    [101]张朝晖,李树奎.ANSYS11.0有限元分析理论及工程应用[M].北京:电子工业出版社,2008:97-100.
    [102]Ma C.G, Zuo S.G, He R. Application of ANSYS secondary development in magnetic density analysis of permanent magnet synchronous motor [J]. Adv. Mater. Res.,2011,199 (2): 1140-1144.
    [103]Zhang D, Gao D.R, Wang Y.J. Numerical calculation and analysis of electro-magnetic field of axial piston hydraulic motor pump based on ANSYS [J]. Jixie Gongcheng Xuebao, 2008,44 (12):69-74.
    [104]高明炜,王常任,杨秀媛.齿板型磁介质的磁场特性及其工艺参数的研究[J].金属矿山,1985,(1):32-37.
    [105]Yamzaki.Y, Moyuru Ochiai.M, Holz.A. Toshito Hara. Application of neural network algorithm to CAD of magnetic systems [J]. Neurocomputing,1996,13(2):217-230.
    [106]龚曙光,谢桂兰,黄云清.ANSYS参数化编程与命令手册[M].北京:机械工业出版社,2009:157-200.
    [107]Li J S, Hu W H, Lin H T. Simulation analysis on static performance of EP solenoid valves based on ANSYS [J]. Zhongguo Tiedao Kexue.2005,26 (5):72-75.
    [108]叶先磊,史亚杰.ANSYS工程分析软件应用实例[M].北京:清华大学出版社,2003:97-100.
    [109]Yamada R, Marscin E, Lee A,3D ANSYS quench simulation of cosine theta Nb3Sn high field dipole magnets [M]. IEEE Trans Appl Supercond,2004,14 (2):291-294.
    [110]胡明振,彭会清.新型湿式永磁磁选机的研制及对赤铁矿提铁试验研究[J].矿山机械,2011,39(2):102-105.
    [111]朱敏聪,朱中红,李京芳.从低品位铁尾矿中磁选回收铁的试验研究[J].矿冶,2008,17(2):27-29.
    [112]李泽.YCJ型高梯度永磁强磁磁选机的应用[J].非金属矿,2008,31(4):75-78,
    [113]杨元芳,杨兵.固定磁系永磁盘式回收机[J].矿业快报,2001,(21):19-20.
    [114]许建民.湿式永磁筒式磁选机卸矿装置的研制[J].金属矿山,2003,321(3):57.
    [115]许建民.CXY稀土永磁摇摆磁系筒式磁选机的研制[J].金刚石与磨料磨具工程,2003,134(2):36-40.
    [116]胡明振,彭会清.基于COSMOS的永磁盘式强磁选机磁盘结构优化设计[J].矿山机械,2011,39(2):92-95.
    [117]Solidworks公司.COSMOSworks professional [M].北京:机械工业出版社,2007:18-24.
    [118]包洁,刘佐民.高温滚动轴承参数化建模及其热变形研究[J].武汉理工大学学报,2009,31(2):87-90.
    [119]Nishijima S. Magnetic force control technique in industrial application [J]. Phys C Supercond Appl,2010,470 (20):1795-1798.
    [120]Fukui S, Abe R, Ogawa J. Study on optimization design of superconducting magnet for magnetic force assisted drug delivery system [J]. Phys C Supercond Appl,2007,463 (1): 1315-1318.
    [121]Michaeli W, Thornagel M. Mechanical design of plastics injection moulds by means of FEA [J]. J Polym Eng,24(1):1-14.
    [122]毛小馨,刘贵明.基于COSMOS的皮革压花机机架应力分析及改进设计[J].机械设计,2009,26(7):75-77.
    [123]张振明,贾晓明.磁选机驱动功率计算公式的建立及应用[J].河北理工学院学报,2001,23(3):6-8.
    [124]熊红荣.永磁筒式磁选机的中心轴结构研究[J].云南冶金,2010,39(3):23-24.
    [125]谢淑兰.磁选机高场强磁系装配方法研究[J].矿冶,2008,17(2):97-99.
    [126]谢淑兰.永磁磁选机筒体加工工艺[J].有色金属,2009,61(94):116-118.
    [127]Jou M, Shiaub J.K, Sun C.C. Design of a magnetic braking system [J]. J Magn Magn Mater, 2006,304 (1):234-236.
    [128]易敬曾.磁场计算与磁路设计[M].四川:成都电讯工程学院出版社,1987:87-99.
    [129]田文胜,刘阳,学勤等.Visual Basic编程指南[M].北京:清华大学出版社,2003:287-308.
    [130]郭年琴,黄国平,王海宁.矿井通风网络三维仿真系统的开发[J].中国钨业,2005,20(5):42-45.
    [131]沈澐,郭年琴.图档信息提取与工程数据管理系统的设计与实现[J].矿山机械,2008,36(6):47-50.
    [132]顿月芹,孔宇.基于VB调用ANSYS与MATLAB的电机电磁场计算[J].微特电机,2006,(2):11-13.
    [133]彭会清,李明富,余玲.基于VB的磁选机优化设计系统研究[J].金属矿山,2003,326(8):36-38.
    [134]Sun Z.L, Yan Y.T. Three dimensional modeling of mechanical parts and integration of reliability software [J]. Zhongguo Jixie Gongcheng,2006,17 (4):376-379.
    [135]彭会清,刘艳杰,胡明振.新型湿式永磁强磁选机结构分析及对钾长石除铁试验研究[J].矿山机械,2010,38(23):88-90.
    [136]Svoboda J, Fujita T. Recent developments in magnetic methods of material separation [J]. Minerals Engineering,2003,16 (9):785-792.
    [137]赵洪力,郑世阳,张万庆.强磁选机用于石英砂除铁效果的比较[J].非金属矿,2005,28(3):39-41.
    [138]Kupriyanov A.P. Magnetic separation of spent sand [J]. Liteinoe Proizvod,1998, (6):21-22.
    [139]赵瑞敏,董恩海.永磁辊式强磁选机研制及应用[J].非金属矿,2009,32(1):64-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700