重力梯度力矩姿控方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞行器姿态一直是航天航空领域研究一大热点和难点问题。随着卫星向小型化发展,特别是现代小卫星巨大的经济优势和令人注目的效果,牵引着现代小卫星、微小卫星走进新的天地,应用重力梯度作为小卫星、微小卫星的姿态控制系统,为卫星向小型化的开发和研究提供了得天独厚的条件。同时重力梯度也是太空空间领域研究的一大热点之一,因此本文围绕重力梯度力矩姿控方法的关键技术进行研究,为以后我国的小卫星及太空空间站的发展和实现奠定基础,具有一定的理论意义和军事价值。文中简要介绍了国内外重力梯度卫星的进展状况、应用前景;阐述了建立卫星姿态动力学模型的基本原理和方法;论述了目前主要测量卫星姿态的方法,详细推导了应用GPS确定卫星姿态的原理和方法。对GPS整周模糊度作深入的研究,确定了双差测量值中在基线长度有限条件下的整周模糊度值存在区间,对GPS姿态测量与GPS动态测量作出比较,分析出了GPS姿态测量的特点:并根据重力梯度力矩稳定卫星姿态的原理,建立了重力梯度力矩模型,进而应用预测滤波作为卫星姿态状态预报算法,与经典卡尔曼滤波进行了比较,并进行了相应的仿真。分析比较了目前卫星采用姿控的原理和方法,应用现代控制理论分析了重力梯度卫星姿控系统的性能及稳定性,得出了重力梯度卫星最佳的控制系统是采用控制力矩陀螺(CMG)和重力梯度作为控制力矩,并以三轴稳定作为它的控制系统。
The altitude determination of spacecraft has always been a hot problem in spaceflight and aero aviation. With the miniaturization of satellites, especially the huge economic benefits and outstanding impacts of modern mini-satellites, modern mini satellites have entered onto a new era. The application of gravity gradient in the attitude control system of mini-satellites provides an advantaged tool for the development and research of the miniaturization of satellites. At the same time, gravity gradient is also a hot problem in space research. Therefore, this thesis is focused on the key problem of the attitude control method using gravity gradient momentum, which can provide valuable reference for the development of space station of our country.
     This thesis makes a concise introduction on the research and development of gravity gradient satellites from an international viewpoint, and their application prospect, illustrates the principles and methods used in the dynamic modeling of satellite attitude, discusses the main methods for satellite attitude determination, and builds the methodology of the application of GPS in satellite attitude determination. The GPS ambiguity is especially paid attention to. The existence interval of the integral ambiguity on finite baseline length in double difference observations is determined. From the comparison of GPS attitude measurement and GPS kinematical surveying, the characteristics of GPS attitude measurement are discovered. The gravity gradient momentum model is set up from the principles of satellite attitude stabilization using gravity gradient momentum, and then the predicative filtering is applied in satellite attitude prediction and simulations are made. The principle and means in current satellite attitude control are analyzed and compared. With modern control theory, the performance and stability of gravity gradient attitude control system are analyzed, and the author finds that the best control system for gravity gradient satellite adopts the Control Momentum Gyro (CMG) and gravity gradient as the control momentum and three-axes stabilization as its control system.
引文
[1] Ward.L M. Spacecraft Attitude Determination Using GPS. Metbodolegy and Results[J]. USA: University of Colorado,1996,pp.813~825.
    
    [2] Bruce.Catl.C. An Integated GPS Attitude Determination System for Small Satellite[J]. USA: University of Colorado,1995,pp.545~554.
    [3] Lu,G,M.E.,Cannon(1994). Attitude determination using a multi-antenna GPS system for hydrogr aphicapplication[J]. Marine Geodesy,Vol.17,pp.237~250.
    [4] Lu,G.(1995). Development of a GPS Multi-Antenna System for Attitude Determination,[Ph D Thesis]. The University of Calgary,pp.185.
    [5] Haley D. Solar radiation pressure calculation in the Geodyn program. Eg&G Report[R]. Prepased for NASA Goddard Space Flight Center,1973,pp.8~73.
    [6] Strikwerda T E,Junkins J L,Tumer J D,et al. Real time spacecraft attitude determination by star pattern recognitio,further results [A]. American Institute Aeronautics and Astronautics AIAA-79-0254,1979:1-7.
    [7] Walter Wrigley,Walter M. Hollister,and William G. Denhard. Gyroscopic Theory Design and Instrumentation[M]. The Massachusetts Institute of Technology Press,chap. 12,1969, pp.241-242.
    [8] DiNapoli, L. D. The Measurement of Angular Velocities without the Use of Gyros M. S. Thesis. The Moore school of Elec. Engineering University of Pennsylvania[D],1965, pp.34~41.
    [9] Padogonakar,A. J.,Kerieger,K.W.,King. I. Measurement of Angular Acceleration of a Rigid Body Using Linear Acceleration,Applied Mechanic[J],1975,pp.552~556.
    [10] Chen,J, Lee,S.C,and DeBra,D.B. Gyroscope Free Strapdown Inertial Measurement Unit by Six Linear Accelerometers[A]Journal of Guidance. Control and Dynamics AIAA.Vol.l7,No.2, March -April, 1994,pp.2.86~290.
    
    [11] Miltal,N.K., and King,A.I. Computation of Rigid Body Rotation in Three Dimensional Space Fr om Body Fixed Linear Acceleration Measurement[J]. Transactions of Aermericans Society of M echanical Engineers,Vol.46,1979,pp.925~930.
    [12] Bulmash,G.,Loucks.R,Muller.P.,Pearson,R. Dynamics of The Nine Linear Accelerometer System for Measuring Blast Induced Target Displacements Computers in Engineering[C]. Proceedings of The International Computers in Engineering Conference and Exihibit, 1989,pp. 179— 182.
    [13] Franco BOLDRINI,Elisabetta Monnini. The Officine Galileo Digital Sun Sensor. US-PATENT-4874977,1989.
    [14] Jaroslav Chum,Jaroslav Vojat. Wide Angle Digital Slit Sun Sensor Using CCD Linear Array.US -PATENT-4874977,1989.
    [15] Tsuguhiko Okamoto. Sensor for Detecting Two DIM Ensional Angle of Incidence of The Sun,US-PATENT- 4874977,1989.
    [16] Yang Jiachi,Zhang Guofu,Sun Chengqi. Three Axis Stabilization Attitude Control System for Chi nese Near Earth Orbit Satellite. 12th FAC-Symposium On Automatic Control in Aerospace Cont rol'92 ottorumm,Fed Rep of Gemony[C],Beijing,2001,(1);9-12.
    [17]Schuler.A.R,Grammatickos.A.and Fegler.K.A.Measuring Rotational Motion with Linear Accel erometer.IEEE Transactions on Aerospace and Electronic Systems[J],Vol.AES-3.No.3,May.1967,pp.465-471.
    [18]Podgrski W A,et al.Gyroless Attitude Determination and Control System for Advanced Envir onmental Satellites.AIAA- 82-1614,1982.
    [19]Gai Eliezer,et al.Star- Sensor- Based Satellite Attitude/Attitude Rate Estimator[J].Journal of Guidance,Control and Dynamics,1985,8(5);560-565.
    [20]Crassidis JL,Markley F L.Predictive Filtering for Attitude Estimation without Rate Sensor[J].Joumal of Guidance,Control,and Dynamics,1997,20(3);522-527.
    [21]Crassidis JL,Markley F L.Predictive Filtering for Nonlinear Systems[J].Joumal of Guidance,Control,and Dynamics,1997,20(3);566-572.
    [22]Lu Ping.Nonlinear Predictive Controllers for Continuous Systems.Journal of Guidance,Contro 1,and Dynamics,1994,17(3);553-559.
    [23]Mook D J,Junkins JL.Minimum Model Error Estimation for Poorly Modeled Dynamic Syste ms[J].Journal of Guidance,Control,and Dynamics,1988,11(3);256-261.
    [24]刘大杰,施一民,过静珺.全球定位系统(GPS)的原理与数据处理[M].上海;同济大学出版社 1996.
    [25]许其凤.GPS卫星导航与精密定位[M].郑州;解放军出版社,1994.12.
    [26]汤锡生.精密定轨用地球大气模型误差的补偿方法[J].北京;天文学报,1997,38(3).
    [27](苏)柯夫杜年科著1.轨道宇宙飞行器空气动力学1,张燕林译1[M].北京;国防工业出版社,19791.
    [28]李太玉,张育林.气动力矩和重力梯度矩实现微小卫星三轴姿态控制[J].北京;中国空间科学技术,2001,21(4);64-70.
    [29]刘林.航天器轨道理论[M].北京;国防工业出版设,2000.
    [30]章仁为.卫星轨道姿态动力学与控制[M].北京;航空航天大学出版社,1998.
    [31]王旭东等.卫星GPS组合姿态确定系统方案研究[J].北京;控制工程,1999;12-17.
    [32]李俊毅.GPS姿态测量及相关技术的研究[D].郑州;解放军信息工程大学,2004.
    [33]张辉.恒星敏感器,河池学院学报[J].广西;河池师范高等专科学校,第24卷第4期,2004.10.
    [34]于来法.陀螺定向测量[M].郑州;解放军出版社,1988.
    [35]王志胜,周军,周风歧.GPS/陀螺组合对小卫星姿态的最优估计[J].西安;西北工业大学学报,Vol.20 No.1,2002.
    [36]张传定.卫星重力测量——基础、模型化方法与数据处理算法[D].郑州;解放军信息工程大学,2000.
    [37]施少范.国外对地观测卫星高精度姿态控制系统研究[J].上海;上海航天,N0.6,2000;49.
    [38]时宇,张贤达,定光成.王旭东用航天器姿态角敏感器信息估算姿态角速度算法研究[M].黄山;全国第八届空间及运动控制技术学术会议论文集,1998;7-11.
    [39]http;//www.optecs.ru.
    [40]http;//www.knowsky.co1/7811.html.
    [41]王旭东,定光成杨嘉墀.卫星GPS组台姿态确定系统方案研究[C].黄山;全国第八届空间及运动控制技术学术会议论文集,1998;12-18.
    [42]何海波.高精度GPS动态测量及质量控制[D].郑州;解放军信息工程大学,2002.
    [43]于长官.现代控制理论及应用[M].哈尔滨;哈尔滨工业大学出版社,2005.
    [44]刘暾,赵均.空间飞行器动力学[M].哈尔滨;哈尔滨工业大学出版社,2003.
    [45]林原,李俊峰.重力梯度稳定卫星伸展动力学研究工程力学[J].2002,19(5);135-138.
    [46]廖晖,周风岐.三轴轮控小卫星大角度机动变结构控制研究[J].航天控制,1999,17(4);11-15.
    [47]侯悦民,季林红等.动平衡对小卫星姿态的影响及配重优化[J].航天制造技术,2002,(3);21-26.
    [48]孙兆伟,耿云海.微小卫星高精度三轴稳定控制算法研究[J].上海航天,2000,17(2);1-6.
    [49]林来兴.小卫星的重力梯度控制方法[J].宇航学报,1998,19(1);77-83.
    [50]郑育红,王平.一种用磁力矩器控制卫星姿态的新方法[J].宇航学报,2000,21(3);94-99.
    [51]田春华,马广富等.三轴稳定卫星姿控系统的一般性问题[J].自动化技术与应用,2001(1);9-12.
    [52]雷穆禄,郁永熙.卫星转动动力学[M].上海;上海交通大学出版社,1996.24.
    [53]杨大明.空间飞行器姿态控制系统[M].哈尔滨;哈尔滨工业大学出版社,2000,61-62.
    [54]罗文成,刘良.整星零动量小卫星偏置飞行姿态解耦控制[J].航天控制,1999,17(1);11-18.
    [55]邵长胜,邓正隆.卫星姿控仿真系统中的力矩传感器[J].宇航学报,2000,21(4);90-94.
    [56]周军.航天器控制原理[M].西安;西北工业大学出版社,2001.01.
    [57]周忠谟等.GPS卫星测量原理与应用[M].北京;测绘出版社,1995.
    [58]廖晖,周凤岐,周军.利用预测滤波法估计小卫星姿态角速度[J].西安;西北工业大学学报,2001,19(1);84-87.
    [59]http;//tsinghua.edu.cn.
    [60]Robert J.Schilling,Sandra L.Harris.数字信号处理基础—MATLAB实现[M].西安;西北工业大学出版社,2005.09.
    [61]于长官.现代控制理论及应用[M].哈尔滨;哈尔滨工业大学出版社,2004.10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700