卫星姿态控制智能算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫星在科学研究、国防建设和国民生产等领域发挥着重要作用。随着航天技术的发展,功能强大、技术复杂的大型卫星虽然满足了一定程度上的应用需求,但也存在投资大、风险高以及研制周期长等问题。微电子、微机械以及新材料等高新技术迅猛发展,为卫星技术提供了更广阔的发展空间。80年代中期以来,微小卫星的研制热潮在世界范围内迅速兴起,由于其具有重量轻、体积小、成本低以及研制周期短等一系列优点,可以在通讯、遥感、军事、行星探测、工程技术实验等领域发挥重要作用,具有潜在的战略价值和市场前景,同时微小卫星的研制毋需大型系统设施支撑,可分散于大学、科研所的实验室中进行,从而整体上有利于降低研发成本。微小卫星不仅受到航天大国的重视,也被许多中等发达和新兴发展中的国家作为发展航天技术的切入点。
     微小卫星任务的实现一方面依赖于所搭载仪器的性能,另一方面决定于卫星姿态控制的精度,所以高精度、高性能的姿态控制系统(ACS)是其高效工作的前提。从国际发展的趋势来看,ACS作为微小卫星的核心部分,其研制经费约占总费用的40%,是微小卫星发展中的最关键技术。微小卫星由于质量、功耗以及体积等限制,其高性能ACS的实现途径,一是要利用新技术,发展轻型化、高性能的姿态测量敏感器件与执行部件,二是要从系统设计的角度入手,进行整体优化,一物多用充分挖掘各器件的潜能,来提高微小卫星的功能密度,尤其是后者,研究新的姿态确定信息融合算法和控制方法,通过软件补偿来降低对硬件的需求,是有效而又更具有实际意义的措施。
     在卫星技术及应用领域,卫星的姿态控制问题得到了密切的关注和广泛的研究。卫星姿态控制系统是卫星系统的诸多分系统中的一个非常重要的子系统,是卫星的核心部分,在考虑使用相同传感器进行姿态确定的情况下,控制算法设计的好坏直接影响到其性能指标的优劣。随着对应用卫星高精度、长寿命、高可靠性的发展趋势,对姿态控制系统的要求也越来越高。卫星姿态控制系统是一个典型的复杂非线性系统,随着非线性控制理论的日渐成熟,越来越多的学者研究将非线性的一些控制方法应用到卫星的姿态控制系统中,不同程度地解决了卫星姿态控制任务。
     卫星姿态控制系统是卫星系统中的重要组成部分。卫星姿态控制的精度不仅取决于姿态控制系统硬件配置的性能与精度,还与所采用的姿态控制算法密切相关。本文针对卫星的姿态控制问题,从理论和应用的角度对姿态控制算法作了深入细致的研究。
     本文在相关课题的研究背景和相关项目的支持下,主要进行了基于智能算法的小卫星姿态控制算法的研究。主要工作与创新之处如下:
     (1)提出了自适应正交遗传算法,新算法通过截断选择和负相关配对结合的选择算子保证了正交交叉的全局搜索能力,简化的PBX交叉和重复个体剔除策略保证了种群的多样性,正交变异算子有保证了算法的自适应性,精英选择策略保证了算法的收敛速度,我们提出的算法混合使用了多个从性能上能够进行相互补充的算子,因而使算法在全局搜索能力上具有一定的优势;在此基础上,还提出了基于自适应正交遗传算法的卫星姿态控制算法,为三轴卫星姿态控制参数优化设计提供了新的思路。对提出的姿态控制算法进行了仿真实验,实验结果表明:所设计的卫星姿态控制算法是有效可行的;
     (2)对传统的粒子群优化算法进行了分析,在此基础上,提出了一种精英粒子群优化算法,相比于标准PSO算法,新算法做出了两方面改进:1、通过引入一个新的更新函数,使粒子向着与最好个体位置和最好粒子群位置相反的方向移动,因而扩大了全局搜索空间,并且降低了粒了陷入局部最优的可能性;2、通过引进精英选择策略,在保持较高收敛速度的同时,降低了陷入局部最优的可能性。和标准PSO算法相比较,新算法扩大了搜索空间,并且复杂度也不高。基于一些多峰基准函数的实验结果和之前记录的研究结果相比较,证明了新算法的有效性,高效率和鲁棒性;在此基础上,还提出了基于精英粒子群优化算法的卫星姿态控制算法,为三轴卫星姿态控制参数优化设计提供了新的思路。对提出的姿态控制算法进行了仿真实验,实验结果表明:所设计的卫星姿态控制算法是有效可行的:
     (3)提出了改进的文化算法,新算法主要对更新涵数进行了改进,并对最优个体单个基因进行了改变和微调。和标准文化算法相比较,新算法扩大了搜索空间。通过对一些基准涵数的实验结果和之前记录的研究结果相比较,证明了新算法的有效性,高效率和鲁棒性:在此基础上,还提出了基于改进文化算法的卫星姿态控制算法,为三轴卫星姿态控制参数优化设计提供了新的思路。对提出的姿态控制算法进行了仿真实验,实验结果表明:所设计的卫星姿态控制算法是有效可行的。
     综上所述,本文比较全面地研究了卫星姿态控制的原理、方法、性能评价和相关算法,并在深入研究的基础上提出了相关的智能算法,并通过大量的实验样例验证了所提出的这些新的方法的有效性,实验结果表明:提出的这些新方法具有良好的性能,这些方法的提出对以后的研究工作和工程应用都有积极的意义。
Satellites in scientific research, national defense and national production and other areas play an important role. With the development of space technology, powerful, technically complex large satellites although to some extent to meet the application requirements, but there are also large investment, high risks and long development cycle and other issues. Microelectronics, micro-mechanical as well as the rapid development of new materials such as high-tech as satellite technology to provide a broader space for development. Since the mid-1980s, small satellite development boom in the world is rising rapidly, due to its light weight, small size, low cost and short development cycle, a series of advantages, in communications, remote sensing, military, planetary exploration, engineering and technology experimental and other areas play an important role, with potential strategic value and market prospects, while small satellite development facility without large systems support, can be dispersed in universities, research laboratories, lab, which helps reduce overall development costs. Microsatellite attention not only by the space powers, but also by many medium-developed and emerging developing countries as an entry point for the development of space technology.
     The realization of small satellite missions are equipped with one hand depends on the performance of the instrument, on the other hand depends on the accuracy of satellite attitude control, so the high-precision, high-performance attitude control system (ACS) is a prerequisite for its efficient work. From the international development trend, ACS as a core part of small satellites, and its development funding accounts for about40%of the total cost, small satellite development is the most critical technologies. Small satellites because of the quality, power and volume and other restrictions, ACS ways to realize its high performance, it is necessary to take advantage of new technologies, the development of lightweight, high-performance attitude measurement sensitive devices and execution units, and second, from the perspective of system design start, the overall optimization, a multi-purpose fully tap the potential of each device to increase functional density micro-satellite, especially the latter, study of new information fusion algorithm attitude determination and control methods, compensated by software to reduce hardware requirements is effective and more practical measures.
     Satellite attitude control system is the important part of the satellite system, the accuracy of attitude control system depends not only on the performance of the hardware of the measurement, but also on the attitude control algorithm. In this dissertation, the attitude control algorithms are deeply studied theoretically and practically for the attitude control of the satellite.
     In this paper, the relevant research background and related projects, supported mainly carried out based on intelligent algorithm for small satellite attitude control algorithm. Main work and innovations are as follows:
     (1) proposed adaptive orthogonal genetic algorithm, the new algorithm by truncating the selection and combination of negative selection operator pairing ensures orthogonal cross global search capability, simplified PBX excluded individuals overlap and duplication strategy ensures the diversity of the population sex, orthogonal mutation operator has to ensure the adaptive algorithm, elitist selection strategy ensures the convergence rate, we proposed hybrid algorithm using multiple from the performance can be mutually complementary operator, thereby algorithm global search capability has certain advantages; On this basis, also proposed a genetic algorithm based on adaptive orthogonal satellite attitude control algorithm for three-axis satellite attitude control parameter optimization design provides a new way of thinking. On the proposed attitude control algorithm for the simulation experiment results show that:the design of satellite attitude control algorithm is feasible and effective;
     (2) the traditional PSO analyzed, on this basis, we propose a particle swarm optimization elite, compared to the standard PSO algorithm, the new algorithm makes improvements in two aspects:one, by introducing a the new update function, so that the particles toward the individual with the best location and the best swarm position opposite direction, thus expanding the global search space, and reduces the possibility of local optimum particle;2, through the introduction of the elite selection strategy, while maintaining a high convergence speed, while reducing the likelihood of falling into local optimum. And compared with standard PSO algorithm, the new algorithm is to expand the search space, and the complexity is not high. Multimodal benchmark functions based on some experimental results and the results of previous studies comparing records to prove the effectiveness of the new algorithm, efficiency and robustness; On this basis, it was proposed based on particle swarm optimization elite satellite attitude control algorithm for three-axis satellite attitude control parameter optimization design provides a new way of thinking. On the proposed attitude control algorithm for the simulation experiment results show that:the design of satellite attitude control algorithm is feasible and effective;
     (3) propose an improved cultural algorithm, the new algorithm is mainly on the update function has been improved, and the best individual for a single gene changes and fine-tuning. And standard cultural algorithm compares the new algorithm to expand the search space. By some experimental results of benchmark functions and the findings recorded before comparison proved the effectiveness of the new algorithm, efficiency and robustness; On this basis, also presented cultural algorithm based on improved satellite attitude control algorithms, for the three-axis satellite attitude control parameter optimization design provides a new way of thinking. On the proposed attitude control algorithm for the simulation experiment results show that:the design of satellite attitude control algorithm is feasible and effective.
     In summary, this more comprehensive study of the satellite attitude control of the technical principles, methods, performance evaluation and related algorithms, and in-depth study based on the proposed associated with intelligent algorithm, and verified through a large number of experimental samples of the proposed methods the effectiveness of these new experimental results show that:the new proposed method has good performance, these methods are proposed for future research and for engineering applications of remote sensing image processing have a positive meaning.
引文
[1]余金培,杨根庆,梁旭文.现代小卫星技术与应用.上海:上海科学普及出版社,2004
    [2]詹亚锋,马正新,曹志刚.现代微小卫星技术发展趋势.电子学报,2000,28(7):102-106
    [3]石卫平,潘坚.微小卫星的发展.国际太空,2001,No.9:1-3
    [4]林来兴.小卫星将引起卫星应用和卫星技术的重大变革.现代小卫星技术第一集航天工业总公司小卫星论证组.1995
    [5]铃木秀人,关口毅.高性能姿态控制系统的研究.控制工程.2003,10(2):41-46
    [6]江燕.新盛世计划的第5颗卫星ST-5—“钠卫星星座开拓者”.国际太空,2003,No.4:19-23
    [7]李东.皮卫星姿态确定与控制技术研究[博士论文].中国科学院上海微系统与信息技术研究所,2005.6
    [8]Heidt H, Moored A, Nakasuka S, et al. CubeSat:AnewGeneration of Picosatellite for Education and Industry Low-Cost Space Experimentation. Proceedings of the 14th Annual AIAA/L1SU Small Satellite Conference, Logan, UT,2000
    [9]Bryan S G Attitude Control System Design for ION, The Illinois observing Nanosatellite [Master Thesis]. Graduate College of the University of Illinois at Urbana-Champaign,2004.
    [10]Daniel R P, Jacob D G, Jesper A L, et al. Attitude Control System for AAUSAT-Ⅱ [Design Report. Institude of electronic systems department, Aalborg University, Danmark,2004
    [11]Eli Jerpseth Overby. Attitude control for the Norwegian student satellite nCube[Master Thesis]. Norwegian University of Science and Technology. Trondheim Norway,2004
    [12]晓雨,欧空局的空间科学探测计划.中国航天,1998,No.1:19-21
    [13]我国一箭双星成功发射两颗科学实验小卫星.中国航天,2004, No.5:3-4
    [14]王振枫.某型微小卫星姿态控制系统设计及仿真研究[硕士论文].南京航空航天大学,2007.1
    [15]Toshiaki Yamashita, Naoto Ogura. Improved satellite attitude control using a disturbance compensater. Acta Astronautica.2004,15(25):15-25
    [16]X. Ye, N. Yajima, G. Ai. Attitude Control and High Precision Pointing Control System of a large Balloon Borne Solar Telescope. Advance Space Research.2000,26(9):1419-1422
    [17]J. K. Newton, J. L. Farrell. Natural Frequencies of a Flexible Gravity-Gradient Satellite. J of Spacecraft.1968,5(5):560-569
    [18]林来兴,何英姿.现代小卫星的重力梯度姿态稳定系统.控制工程.1994(5):19-23
    [19]Psiaki M.L.Three-Axis Attitude Determination Via Kalman Filter of Magnetometer Data, Journal of Guidance and Control,1990,13(3):506-514
    [20]Steyn, W.H. Full Satellite State Determination from Vector Observations, Automatic Control in Aerospace (Aerospace Control'94), A Post print Volume from the IFAC Symposium,1995: 195-200
    [21]Challa M., Natanson G., Wheeler C. Simultaneous Determination of Spacecraft Attitude And Rates Using Only A Magnetometer, AIAA Journal,1996,34(3):544-553
    [22]Keith L.Musser, Ward L.Ebert. Autonomous Spacecraft Attitude Control Using Magnetic Torquing Only. N90-13415
    [23]周健等.利用磁强计数据确定卫星三轴姿态的方法,宇航学报,2001,22(2):55-59
    [24]张锐,朱振才,张静等.基于磁强计的微小卫星姿态确定,宇航学报,2006,26(4):578-583
    [25]郑育红.一种用磁力矩器控制卫星姿态的新方法,宇航学报,2000,21(3):94-99
    [26]王平,李铁寿,吴宏鑫.一种用磁力矩器控制卫星姿态的新方法,控制工程,1999,7(1):7-13
    [27]杨大明.空间飞行器姿态控制系统,哈尔滨,哈尔滨工业大学出版社,2000:1-200
    [28]章仁为.卫星轨道姿态动力学与控制,北京,北京航空航天大学出版社,1998:1-300
    [29]Marc L. Renard. Command Laws for Magnetic Attitude Control of Spin-Stabilized Earth Satellites, J. Spacecraft,1967,4(2):156-163
    [30]Patrick J. Hawkins, James P.C. Clark. Autonomous Magnetic Attitude Control System of the Aem Base Module, AIAA,79-1770
    [31]屠善澄主编.卫星姿态动力学与控制(2),北京,宇航出版社,1999:1-400
    [32]荆武兴,韩品尧,王学孝,吴瑶华.丛于拟欧拉角信号的连续力矩姿态机动控制.宇航学报,1996,17(2):6-17
    [33]B. N. Agrawal, G. Song, N. V. Buck. Slew Maneuvers of Flexible Spacecraft Using Input Shaping and Pulse-Width Pulse-Frequency Modulated Thruster. Naval Postgraduate School, Monterey, CA939943, USA,38th International Astronautical Congress. Cct 6-10,1997/Turin, Italy, IFA-97-A.2.09:1-11
    [34]H. Bang, Y. park, J. Han, H. Hwangbo. Feedback Control for Slew Maneuver Using On-Off Thrusters. Journal of Guidance. Control and Dynamics.1999,11-12,22(6):816-822
    [35]周军.航天器控制原理.西北工业大学出版社,2001:71-73
    [36]A. Noble. Louis. A conceptual satellite attitude control system design. University of California, Los Angeles. January.2003:210-218
    [37]Stian S(?)ndersr(?)d Ose. Attitude determination for the Norwegian student satellite nCube [Mater Thesis]. Norwegian University of Science and Technology. Trondheim Norway,2004
    [38]Kristian Svartveit. Attitude determination of the NCUBE satellite[Mater Thesis].Norwegian University of Science and Technology. Trondheim Norway.2003
    [39]Herbert Eric W. NPSAT1 Magnetic Attitude Control System Algorithm Verification, Validation, and Air-Bearing Tests[Master Thesis]. Naval Postgraduate School, Monterey, California.2004
    [40]Barry S. Leonard. NPSAT1 Magnetic Attitude Control System.16th annual AIAA SmallSat Conference, Logan Utah,2001:105-108
    [41]Zirkle T A. Analysis of Magnetic Three-axis stabilization Attitude Control System for The NPSAT1 Spacecraft[Master Thesis]. Naval Postgraduate School, Monterey, California.2001
    [42]Prater Gary L. NPSAT1 Missile System Prelaunch Safety Package (MSPSP)[Master Thesis]. Naval Postgraduate School, Monterey, California.2004
    [43]Stras L N, Kekez D D, Wells G J, et al. The design and operation of the Canadian advanced nanospace eXperiment (CanX-1), Proceedings of the AMSAT-NA 21st Space Symposium Toronto, Canada,2003:150-160
    [44]Daniel R. The CanX-2 Nonosatellite:Expranding the science abilities of nanosatellites. The 55th International Astronautical Congress, Vancouver,Canada,2004:1-9
    [45]Carroll K A. Arc-Minute Nanosatellite Attitude Control:Enabling Technology for the BRITE Stellar Photometry Mission. The 18th Annual AIAA/USU Conference on Small Satellites, Logan, Utah,2004:1-20
    [46]Eric P, Caillibot C. Cordell Grant, and Daniel D. Kekez. Formation Flying Demonstration Missions Enabled by CanX Nanosatellite Technology.19th Annual AIAA/USU Conference on Small Satellites,2005:1-9
    [47]Kim S J, Lee B H, Choi J W, et al. Attitude Determination and Control Subsystem[Design Report]. HAUSAT-2 Preliminary Design Review. South Korea.2005
    [48]Chang Y K, Lee B H, Kim H J, et al. HAUSAT-2 Nanosatellite ADCS Performance Analysis and Commissioning. Proceedings of 2nd International Conference on Recent Advances in Space Technologies, Goyang-City, South Korea.2005:180-184
    [49]Chang Y K, Lee B H, Kim S J. Momentum wheel start-up method for HAUSAT-2 ultra-small satellite[J]. Aerospace Science and Technology,2006, No.10:168-174
    [50]Richard W L. The SSETI Express Handbook. SSETI Express and Amsat-UK documentation, Published by AMSAT-UK,2005
    [51](?)yvind Hegrenaes, Jan T G, Petter T. Attitude Control by means of Explicit Model Predictive Control, via Multi-parametric Quadratic Programming. Proceedings of the American Control Conference, IEEE Press,2005:901-906
    [52]柏林.三轴稳定卫星姿态确定和姿态控制系统研究[硕士学位论文].西北工业大学.2004:10-15
    [53]杨嘉犀.卫星姿态动力学与控制(2).宇航出版社.1998:77-79
    [54]韩聪颖.小型天文卫星高精度姿态确定和控制技术研究[硕士学位论文].西北工业大学.2001:20-22
    [55]Jonathan Lawton, Randal W. Bread, Tim Mclain. Successive Galerkin Approximation of Nonlinear Optimal Attitude Control. ACC99-IEEE0220,2005:50-55
    [56]L. Makovec, Kristin. A Magnetic Controller for Tree-Axis Stability of Nanosatellites. Thesis. July 23,2001:30-33
    [57]李勇,吴宏鑫.一类挠性航天器的变结构控制.控制工程.1996(1):55-59
    [58]A. P. Bukley. Hubble Space Telescope Pointing Control System Design Improvement Study. Guidance. Control and Dynamics.1995,18(2):194-199
    [59]S. Grocott, J. How, D. Miller, D.MacMartin, K. Liu. Robust Control Design and Implementation on the Middeck Active Control Experiment. Guidance, Control and Dynamic. 1994,17(6):1163-1170
    [60]T. Kida, I. Yamaguchi, Y. Chida, Sekiguchi T. On-Orbit Robust Control of Flexible Spacecraft ETS-VI. Thesis. Guidance, Control and Dynamic.1997,20(5):865-872
    [61]吴宏鑫.航天控制的发展方向——航天器智能自主控制.控制工程.2001(5):20-28
    [62]解永春,牟小刚,吴宏鑫,李季苏.挠性航天器大角度机动的全系数自适应控制.控制工程.1997(2):45-51
    [63]H. K. Khalil著.非线性系统.朱义胜,董辉,李作洲等译.电子工业出版社,2005:78-80
    [64]J. J. E. Slotine, W. P. Li,应用非线性控制.程代展等译.机械工业出版社,2006:56-58
    [65]李殿璞.非线性控制系统理论基础.哈尔滨工程大学出版社,2006:92-95
    [66]K. Zhou, J. C. Doyle, K. Glover. Robust and Optimal Control. New Jersey, Prentice-Hall, 1996:46-47
    [67]W. Kang. Control of Spacecraft via Nonlinear H∞ Method. Proceedings of the 33rd Conference on Decision and Control, Lake Buena Vista, FL,1994:921-926
    [68]W. Kang. Nonlinear H∞ Control and Its Application to Rigid Spacecraft. IEEE Transanctions on Automatic Control.1995,40(7):1281-1285
    [69]S. R. Vadali. Variable-structure Control of Spacecraft Large-angle Maneuvers. Journal of Guidance, Control and Dynamics.1986,9(2):235-239
    [70]B. Q. Wang, K. Gong, D. Yang, J. F. Li. Fine Attitude Control by Reaction Wheels using Variable-Structure Controller. Acta Astronautica.2003,52:613-618
    [71]S. H. Ding, S. H. Li. Sliding Mode Control of Spacecraft Attitude with Finite-Time Convergence. Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China.2006:830-834
    [72]V. I. Utkin. Variable Structure Systems with Sliding Modes. IEEE Transactions on Automatic Control.1997,22(2):212-222
    [73]M. Lovera, A. Astolfi. Spacecraft Attitude Control Using Magnetic Actuators. Automatica. 2004,40(8):1405-1414
    [74]M. Lovera, A. Astolfi. Global Magnetic Attitude Control of Inertially Pointing Spacecraft. Journal of Guidance, Control and Dynamics.2005,28(5):1065-1067
    [75]K. Subbarao. The Attitude Control Problem. Re-visited. Advances in the Astronautical Sciences.2003,115:86-101
    [76]A. Ailon, R. Segev, B. Grinberg, M. Gil. Velocity-Free Controllers for Spacecraft Attitude Regulation Some Further Applications and Results. Proceedings of the 2001. IEEE International Conference on Control Applications, Mexico City, Mexico.2001:799-804
    [77]段广仁.线性系统理论(第2版).哈尔滨,哈尔滨工业大学出版社.2004:156-162
    [78]B. Wie, J. Lu. Feedback Control Logic for Spacecraft Eigenaxis Rotations Under Slew Rate and Control Constraints. Journal of Guidance, Control and Dynamics.1995,18(6):1372-1379
    [79]B. Wie, C. Heiberg, D. Bailey. Rapid Multi-target acquisition and pointing control of agile spacecraft. Journal of Guidance, Control and Dynamics.2002,25(1):96-104
    [80]Y.Park, M.J. Tahk. A new optimal controller synthesis for fuzzy systems with input constraint and its application to spacecraft control. AIAA Guidance Navigation, and Control Conference and Exhibit. August 6-9,2001,1-9
    [81]李传江.基于Lyapunov方法的航天器非线性姿态控制问题研究[博士学位论文].哈尔滨工业大学.2006
    [82]Y. Kim, M. Mesbahi, G. Singh. On the Constrained Attitude Control Problem. AIAA Guidance Navigation, and Control Conference and Exhibit. August 16-19,2004,1-27
    [83]H. Bang, M.-J. Tahk, H.-D. Choi. Large angle attitude control of spacecraft with actuator saturation. Control Engineering Practice.2003,11(9):989-997
    [84]R. Hanu, M. Kinnaert, J. L. Henrotte. Conditioning Technique, a General Anti-windup and Bumpless transfer method. Automatica.1987,23(6):729-739
    [85]M. V. Kothare, P. J. Campo, M. Morari, C. N. Nett. A Unified Framework for the Study of Anti-windup Designs. Automatica.1994,30(12):1869-1883
    [86]H. D. Choi, H. Bang, Z. C. Kim. Design Methods for Rocket Attitude Control Systems Subject to Actuator Saturation. Journal of Guidance, Control and Dynamics.1998,21:183-185
    [87]N. J. Krikelis. State Feedback Integral Control with Intelligent Integrators. International Journal of Control.1980,32(3):465-473
    [88]L. Show; J. Juang; Y.-W. Jan, C.-T. Lin. Spacecraft Robust Attitude Control with Saturation Nonlinearity. AIAA Guidance, Navigation and Control Conference and Exhibit.2002
    [89]L.-L. Show, J.-C. Juang, Y.-W. Jan, C.-T. Lin. Quaternion Feedback Attitude Control Design: A Nonlinear H∞ Approach. Asian Journal of Control.2003,5(3):406-411
    [90]C.-D. Yang, C.-C. Kung. Nonlinear H∞ Flight Control of General Six-degree-of-freedom Motions. Journal of Guidance, Control and Dynamics.2000,23(2):278-288
    [91]M. AliAbbasi, H. A. Talebi, M. Karrari. A Satellite Attitude Controller Using Nonlinear H∞ Approach. Proceedings of 41st IEEE Conference on Decision and Control.2002,4078-4083
    [92]M. Krstic, P. Tsiotras. Inverse Optimal Stabilization of a Rigid Spacecraft. IEEE Transactions on Automatic Control.1999,44(5):1042-1049
    [93]W. Luo, Y.-C. Chu, K.-V. Ling. Inverse Optimal Adaptive Control for Attitude Tracking of Spacecraft. IEEE Transactions on Automatic Control.2005,50(11):1639-1654
    [94]M. R. Akella, A. Valdivia, G. R. Kotamraju. Velocity-free Attitude Controllers Subject to Actuator Magnitude and Rate Saturations. Journal of Guidance, Control and Dynamics.2005, 28(4):659-666
    [95]J. D. Boskovic, S.-M. Li, R. K. Mehra. Robust Tracking Control Design for Spacecraft under Control Input Saturation. Journal of Guidance, Control and Dynamics.2004,27(4): 627-633
    [96]R. J. Wallsgrove, M. R. Akella. Globally Stabilizing Saturated Attitude Control in the Presence of Bounded Unknown Disturbances. Journal of Guidance, Control and Dynamics. 2005,28(5):957-963
    [97]M. R. Akella. Rigid Body Attitude Tracking without Angular Velocity Feedback. Systems and Control Letters.2001,42(4):321-326
    [98]F. Lizarralde, J. T. Wen. Attitude Control without Angular Velocity Measurement:A Passivity Approach. IEEE Transactions on Automatic Control.1996,41(3):468-472
    [99]S. N. Singh. Nonlinear Adaptive Attitude Control of Spacecraft. IEEE Transactions on Aerospace Electronic Systems.1987,23(3):371-379
    [100]J.-J. E. Slotine, M. D. Di Benedetto. Hamiltonian Adaptive Control of Spacecraft. IEEE Transactions on Automatic Control.1990,35(7):848-852
    [101]K. Yamada, H. Yonechi, M. Wakao, Y. Fujiwara, S. Kosugi. Adaptive Attitude Control of the Data Relay Test Satellite. International Communications Satellite Systems Conference and Exhibit.2003
    [102]Y. P. Chen, S. C. Lo. Sliding-Mode Controller Design for Spacecraft Attitude Tracking Maneuvers. IEEE Transactions on Aerospace and Electronic Systems.1993,29(4):1328-1333
    [103]R. D. Robinett, G. G. Parker. Least Squares Sliding Mode Control Tracking of Spacecraft Large Angle Maneuvers. Journal of Astronautical Sciences.1997,45(4):433-450
    [104]Y. J. Cheon. Sliding Mode for Attitude Tracking of Thruster-Controlled Spacecraft. Transactions on Control, Automation, and Systems Engineering.2001,3(4):257-261
    [105]廖晖,周凤岐,周军.三轴轮控小卫星大角度机动变结构控制研究.航天控制.1999,(4):11-15
    [106]胡庆雷.挠性航天器姿态机动的主动抑制控制[博士学位论文].哈尔滨工业大学.2006:
    [107]贺东雷,曹喜滨.一种轮控卫星姿态机动变结构控制器.空间科学学报.2005,25(6):558-563
    [108]P. Tsiotras. Further Passivity Results for the Attitude Control Problem. IEEE Transactions on Automatic Control.1998,43(11):1597-1600
    [109]F. Caccavale, L. Villani. Output Feedback Control for Attitude Tracking. Systems and Control Letters.1999,38(2):91-98
    [110]S. Di Gennaro. Passive Attitude Control of Flexible Spacecraft from Quaternion Measurements. Journal of Optimization Theory and Applications.2003,116(1):41-60
    [111]K. Subbarao, M. R. Akella. Differentiator-free Nonlinear Proportional-Integral Controllers for Rigid-Body Attitude Stabilization. Journal of Guidance, Control and Dynamics.2004,27(6): 1092-1096
    [112]B. T. Costic, D. M. Dawson, M. S. de Queiroz, V. Kapila. Quaternion-based Adaptive Attitude Tracking Controller without Velocity Measurements. Journal of Guidance, Control and Dynamics.2001,24(6):1214-1222
    [113]B. Wie, K. W. Byun, V. W. Warren, D. Geller, D. Long, J. Sunkel. New Approach to Attitude/Momentum Control for the Space Station. Journal of Guidance, Control and Dynamics. 1989,12(5):714-722
    [114]J. W. Sunkel, L.S.Shieh. Multistage Design of an Optimal Momentum management Controller for the Space Station. Journal of Guidance, Control andDynamics.1991, (14): 492-502
    [115]I. Rhee, J.L. Speyer. Robust Momentum management and Attitude Control System for the Space Station. Journal of Guidance, Control and Dynamics.1992, (15):342-351
    [116]B. Wie, Q. Liu, F. Bauer. Classical and Robust Control Redesign for the Hubble Space Telescope. Journal of Guidance, Control and Dynamics.1993,16(6):1069-1077
    [117]B. Wie, Q. Liu, J. Sunkel.Robust Stabilization of the Space Station in the Presence of Inertia Matrix Uncertainty. Journal of Guidance, Control and Dynamics.1995,18(3):611-617
    [118]Y. Chida, Y. Yamaguchi, H. Soga. Attitude Control of an Artificial Satellite using H∞ and Two Degree of Freedom Control — On Orbit Experiments using ETS-VI.13th Triennial World Congress, San Francisco, USA.1996,189-194
    [119]S. L. Ballois, G Duc. H∞ Control of an Earth Observation Satellite. Journal of Guidance, Control and Dynamics.1996,19(3):628-635
    [120]C. Valentine-Charbonnel, G. Duc, S. Le Ballois. Low-order Robust Attitude Control of an Earth Observation Satellite. Control Engineering Practice.1999,7(4):493-506
    [121]D. S. Bernstein, W. M. Haddad. LQG Control with an H∞ Performance Bound:A Riccati Equation Approach. IEEE Transactions on Automatic Control.1989,34(3):293-305
    [122]B. Frapard, C. Champetier. H2/H∞ Techniques:from Research to Industrial Applications. 3th ESA International Conference on Spacecraft Guidance, Navigation and Control System. 1996:16-21
    [123]C.-H. Won. Comparative Study of Various Control Methods for Attitude Control of a LEO Satellite. Aerospace Science and Technology.1999,3(5):323-333
    [124]B. S. Chen, C. S. Wu, Y. W. Jan. Adaptive Fuzzy Mixed H2/H∞ Attitude Control of Spacecraft. IEEE Transactions on Aerospace and Electronic Systems.2000,36(4):1343-1359
    [125]Y. P. Sun, C. D. Yang. Mixed H∞/H2 Attitude Control of a LEO Microsatellite in the Prensence of Inertia Matrix Uncertainty. Proceedings of the American Control Conference. 2002,1354-1359
    [126]C. S. Wu, B. S. Chen. Adaptive Attitude Control of Spacecraft:Mixed H2/H∞Approach. Journal of Guidance, Control and Dynamics.2001,24(4):755-766
    [127]K. Subbarao. The Attitude Control Problem, Re-visited. Advances in the Astronautical Sciences.2003,115:86-101
    [128]S. R. Vadali. Variable-structure Control of Spacecraft Large-angle Maneuvers. Journal of Guidance, Control and Dynamics.1986,9(2):235-239
    [129]J. D. Boskovic, S.-M. Li, R. K. Mehra. Robust Adaptive Variable Structure Control of Spacecraft under Control Input Saturation. Journal of Guidance, Control and Dynamics.2001, 24(1):14-22
    [130]A. T. Zaremba. An Adaptive Scheme with Parameter Identification for Spacecraft Attitude Control. Proceedings of the American Control Conference.1997,552-556
    [131]L.-L. Show, J.-C. Juang, C.-T. Lin, Y.-W. Jan. Spacecraft Robust Attitude Tracking Design: PID Control Approach. American Control Conference.2002,2:1360-1365
    [132]Y. Park. Robust and Optimal Attitude Stabilization of Spacecraft with ExternalDisturbances. Aerospace Science and Technology.2005,9(3):253-259
    [133]S. Di Gennaro. Stabilization of Rigid Spacecraft with Uncertainties and Input Saturation in a Central Gravitational Field. Proceedings of 36th Conference on Decision and Control.1997, 4204-4209
    [134]J. D. Boskovic, S.-M. Li, R. K. Mehra. Robust Tracking Control Design for Spacecraft under Control Input Saturation. Journal of Guidance, Control and Dynamics.2004,27(4): 627-633
    [135]T. Yamashita, N. Ogura, T. Kurii, T. Hashimoto. Improved Satellite Attitude Control using a Disturbance Compensator. Acta Astronautica.2004,55(1):15-25
    [136]屠善澄,陈义庆,邹广瑞等.卫星姿态动力学与控制.北京:宇航出版社,2001
    [137]黄圳卡.航天器姿态动力学.长沙:国防科技大学出版社,2006
    [138]章仁为.卫星轨道姿态动力学与控制.北京:北京航空航天大学出版社,1998
    [139]M. D. Shuster. A Survey of Attitude Representations. The Journal of the Astronautical Sciences.1993,41(4):439-517
    [140]J.R.Wertz. Spacecraft Orbit and Sttitude Systems, Mission Geometry, Orbit and Constellation Design and Management. Boston, Kluwer Academic Publisher,2001:148-152
    [141]中国现场统计研究会三次设计组.正交法和三次设计.科学出版社,1987
    [142]Srinvas M,Patnaik L M. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms.IEEE Trans on Systems,Man and Cybernetics,1994,24(4):656-667
    [143]吴柯.一类高效的混合遗传算法.计算机与数字工程.2006,34(10):43-46.
    [144]薛明志,钟伟才,刘静,焦李成.用于函数优化的正交Multi-Agent遗传算法.系统工程与电了技术.2004,26(9):1305-1311
    [145]刘清,廖忠.沈祖诒.王柏林.多点正交的遗传算法.计算机工程.2005.12(31):151-158
    [146]H.-P. Schwefel. Evolution and Optimum Seeking. Wiley,1995
    [147]J. Kennedy and R. C.Eberhart. Particle Swarm Optimization. IEEE International Conference on Neural Networks, pp.1942-1948,1995
    [148]Clare M, Kennedy J. The Particle Swarm-Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Trans, on Evolution2ary Computation, vol.6(1), pp.58-73,2002
    [149]C. A. Coello and M. S. Lechuga, Mopso. A proposal for multiple objective particle swarm optimization. In IEEE Proceedings World Congress on Computational Intelligence, pp.1051-1056,2002
    [150]J. Kennedy. The particle swarm:social adaptation of knowledge. In Proc. IEEE int.Conf.on evolutionary computation, pp.3003-3008,1997
    [151]E. Oscan and C. K.Mohan. Analysis of A Simple Particle Swarm Optimization System. Intelligence Engineering Systems Through Artificial Neural Networks, pp.253-258,1998
    [152]X.S.Yan, Qing Hua Wu. A New Optimizaiton Algorithm for Function Optimization. Proceedings of the 3rd International Symposium on Intelligence Computation & Applications, pp.144-150,2009
    [353]Xue Song Yan, Qing Hua Wu, Cheng Yu Hu, Qing Zhong Liang. Circuit Design Based on Particle Swarm Optimization Algorithms. Key Engineering Materials, Vols.474-476, pp.1093-1098,2011
    [154]Reynolds R G, Al-Shehri H.The use of cultural algorithms with evolutionary programming to control the data mining of large -scale spatio-temporal databases. IEEE International Conferenceon Systems, Man and Cybernetics,1997,5:4098-4103
    [155]REYNOLDS R G. An introduction to cultural algorithms. Proceedings of the Third Annual Conference on Evolutionary Programming, February 24-26,1994, San Diego, California,1994;131-139
    [156]REYNOLDS R G. On modeling the evolution of hunter-gatherer decision-making systems, Geographical Analysis,1978,10(1):31-46
    [157]REYNOLDS R G. An adaptive computer model of the evolution of agriculture for hunter-gatherers in the valley of Oaxaca. Mexico, Doctoral dissertation, Univ.of Michigan, Ann Arbor,1979
    [158]REYNOLDS R G., MICHALEWICZ Z, CAVARETTA M.Using cultural algorithms for constraint handling in GENOCOP. Proceedings of the Fourth Annual Conference on Evolutionary Programming, MIT Press, Cambridge,Massachusetts,1995:298-305
    [159]CHUNG C, REYNOLDS R G. A testbed for solving optimization problems Evolutionary Programming. MIT Press, Cambridge, Massachusetts,1996, Proceedings of the Fifth Annual Conference on Iacoban R, Reynolds R G, Brewster J.Cultural swarms:assessingthe impact of culture on social interaction and problem solving//IEEE Swarm Intelligence Symposium,2003: 212-219
    [160]CHUNG C. Knowledge-based approaches to self-adaptation in cultural algorithms. Ph.D. Thesis, Wayne State University, Detroit. Michigan,May 1997
    [161]JIN X, REYNOLDS R G. Using knowledge-based evolutionary computation to solve nonlinear constraint optimization problems:a cultural algorithm approach. In 1999 Congress on Evolutionary Computation, Washington, D C, IEEE Service Center,1999:1672-1678
    [162]JIN X, REYNOLDS R G. Data mining using cultural algorithms and regional Schemata. In: Proc. of the 14th IEEE Intl. Conf.on Tools with Artificial Intelligence,2002:33-40
    [163]STERNBERG M, REYNOLDS R. Using cultural algorithms to support re-engineering of rule-based expert systems in Dnamic performance environments. A case study in fraud detection. IEEE Transactions on Evolutionary Computation, 1997,1(4):225-243
    [164]SALEEM S, REYNOLDS R. Using evolutionary computation. San Diego, cultural algorithms in dynamic environments, Congress on CA,2000:1513-1521
    [165]BECERRA R I, COELLO C A. Culturizing differential evolution for constrained optimization. In Proceedings of the Fifth Mexican International Conference. Computer Science, 2004:304-311
    [167]BECERRA R 1, COELLO C A. Evolutionary multiobjective optimization using a cultural algorithm. In:2003 IEEE Swarm Intelligence Symposium, Indianapolis, Indiana, IEEE Service Center,2003:6-13
    [168]杨海英,黄皓,窦全胜.基于文化算法的负载均衡自适应机制.计算机工程与应用,2005,41(21):146-148
    [169]艾景波.文化粒子群优化算法及其在布局设计中的应用研究[硕士论文].大连:大连理工大学,2005
    [170]REYNOLDS R G. Using cultural algorithms to improve performance semantic networks. In:Proc.1999 IEEE Congress on EvolutionaComputation, Washington, D C,1999: 1651-1656
    [171]刘亚静.三轴稳定卫星姿态控制方法研究[硕上论文].哈尔滨:哈尔滨工业大学,2008
    [172]谢祥华.微小卫星姿态控制系统研究[硕士论文].南京:南京航空航天大学,2007
    [173]吕建婷.三轴稳定卫星姿态控制算法研究[博上论文].哈尔滨:哈尔滨工业大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700