挠性航天器建模与姿态控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天技术的发展,越来越多的航天器上开始使用大型挠性结构,如大尺度挠性天线、太阳帆板和大型空间桁架等。在轨运行的挠性航天器的刚体运动将激发柔性附件的弹性变形运动,且两种运动相互耦合,导致航天器的刚柔耦合动力学行为非常复杂。因此研究挠性航天器的动力学模型并设计其姿态控制系统具有重要的意义。本文结合航天科技集团“十五”基础预研项目“复杂机构卫星智能自适应逆控制技术的研究”和国家自然科学基金“一类复杂系统中无源化近似自适应逆控制研究”,以含柔性关节的挠性航天器为对象,对此类航天器的建模、姿态控制及附件振动抑制等问题展开了深入的研究,其研究内容主要包括以下几个方面:
     一、在分析刚体模型和固支悬臂梁附件航天器模型的基础上,利用拉格朗日动力学方程建立了柔性关节链接悬臂梁附件的挠性航天器动力学模型。并采用假设模态–混合坐标方法,推导了梁式附件的振动方程,将挠性航天器的耦合动力学方程规范化,使之适用于姿态控制系统的分析和设计。进一步的,本文建立了带多个悬臂梁式附件的挠性航天器和带链式多悬臂梁附件的挠性航天器动力学模型。最后简要的分析了航天器执行机构的特性,并根据对象模型设计了PWPF调制器的参数。
     二、目前被广泛应用的输出反馈姿态控制方法具有结构简单的优点。为了进一步抑制挠性航天器的低频振动,在传统输出反馈控制思想的基础上引入了输入成形方法,并根据输出跟踪控制模型设计了变结构控制器。将该控制器和传统的PD控制策略进行了对比仿真,结果表明所设计控制器的姿态控制精度具有明显的优势,达到了抑制了航天器本体机动所激发的附件振动的设计要求。
     三、设计了模态状态观测器,使用较少的传感器来估计附件振动的模态。在此基础上,根据最优输出跟踪理论和保性能控制理论,分析并设计了控制受限情况下的参数不确定系统的最优保性能反馈控制控制律。该控制律易通过求解线性矩阵不等式组及其极值优化问题得到,具有较高的控制精度和较好的鲁棒性。
     四、将智能压电结构应用到附件的主动振动抑制上,此时系统模型变成了多输入系统。首先研究了集中控制方法,在上一部分成果的基础上设计了控制受限的多输入系统的最优保性能反馈控制控制律。其次按照分散控制的局部状态反馈设计思想,设计了状态观测器和局部状态反馈控制律。仿真结果表明两种方法都可以达到姿态控制精度要求并有效的抑制柔性附件的振动。最后根据仿真结果横向的比较了三类四种控制器的控制精度,系统鲁棒性,工程应用价值和局限性。
With the development of aerospace techniques, more and more large scale spacecrafts adopt flexible structure, e.g. large scale flexible antenna, solar array and large space etc. Rigid body motion of flexible spacecraft in orbit will excite elastic deformation of flexible body, and these two kinds of motion are coupled and affected by each other which results in the significant complexity of rigid-flexible coupling. Hence, research on dynamic model of flexible spacecraft and designing its attitude control system has important significance. Supported by CASC project“Complex framework satellite intelligent adaptive inverse control technique research”and NSFC project“Adaptive inverse control based on passivity approach and its application in a class of complex system”, we take the flexible spacecraft with cantilever beam where the beam appendage is connected with body through flexible joints as the research object in this thesis, and do a deep research on modeling of flexible spacecraft, attitude control and suppressing of appendage vibration in term of theory. It mainly consists of the following aspects:
     1. Dynamics model of flexible spacecraft with cantilever beam is derived using Lagrange Dynamics Equation after analyzing rigid model and model of spacecraft with clamped support cantilever beam appendage. Model analysis method is adopted and vibration equation of beam appendage is derived. Coupling dynamics equation of flexible spacecraft is normalized to adapt the analysis and design of attitude control system. Furthermore, models of flexible spacecraft with multiple cantilever beam appendage and multiple cantilever beam appendage with joints are derived. Finally, characteristic of spacecraft actuator is analyzed simply, and parameter of PWPF is designed.
     2. Attitude control methods of flexible spacecraft include output feedback, state feedback and decentralized control, in which the output feedback has the advantage of simple structure. The input shaping is introduced to suppress low frequency vibration of spacecraft based on the idea of traditional output feedback, and variable structure output feedback controller is designed using tracking control model. It was compared with the traditional PD control strategy. The simulation results indicated the presented method had the obvious advantage in suppress the low frequency vibration exited by maneuver of spacecraft body. At the same time, similarities and differences of attitude control requirement between this kind of spacecraft and generals is discussed based on the simulation results.
     3. State observer is designed to utilize less sensors on beam estimating vibration modes of appendage. By this way, the requirement of state feedback is approved. On the basis of this, optimal guaranteed cost feedback control law of uncertain parameter system is analyzed and designed when control is constrained. This control law has good robustness via solving LMI and extreme value optimization problem.
     4. Piezoelectric elements are used to suppress vibration which makes system model be a multi input system. At first, optimal guaranteed cost feedback control law of control constrained multi input system is studied, which is a centralized control method. Local state observer and decentralized feedback control law are designed based on the design idea of decentralized control for local state feedback. The simulation results indicate that both of these two methods can approve the attitude control precise requirement and suppressed the vibration of flexible appendage efficiently.
引文
[1]马兴瑞,王本利,苟兴宇.航天器动力学—若干问题进展及应用.北京:科学出版社. 2001
    [2]刘暾,赵钧.空间飞行器动力学.哈尔滨:哈尔滨工业大学出版社. 2003
    [3]屠善澄.卫星姿态动力学与控制.北京:宇航出版社. 2001
    [4] G S Nurre. Dynamics and Control of Large Space Structures[J]. J. Guidance, Control and Dynamics, 1984. 7(5): 514-526
    [5] V J Modi. Attitude Dynamics of Satellite with Flexible Appendages-A Brief Review[J]. J. Spacecraft and Rockets, 1974. 11: 743-751
    [6] D A Turic, A Mirlha. Dynamic Analysis of Elastic Mechanism System, Part I: Applications[J]. ASME J. Dynamic Systems, Measurement and Control, 1981. 106: 243-248
    [7] P W Likins. Spacecraft Attitude Dynamics and Control- A Personal Perspective on Early Developments[J]. J. Guidance,Control and Dynamics, 1986. 9(2): 129-134
    [8] P M Bainum. A Review of ModelingTechniques for The Open and Closed Loop Dynamics of Large Space Structures[J]. Large Space Structures: Dynamics and Control, 1998: 165-177
    [9] P M Bainum. Breakwell Memorial Lectures: Review of Astrodynamics,1958-2001--A Personal Pespective[J]. Acta Astronautica, 2002. 15(1): 517-526
    [10]曲广吉,程道生.空间站复合体柔性动力学分析研究.空间站技术学术会议. 1997.
    [11]缪炳祺,曲广吉.柔性航天器动力学模型的模态综合-混合坐标法建模研究.空间飞行器总体学术会议. 1997.
    [12]缪炳祺,曲广吉,程道生.柔性航天器的动力学建模问题[J].中国空间科学技术, 1999(5): 35-39
    [13]程绪铎,王照林.复杂系统动力学、控制的几个问题[J].安庆师范学院学报(自然科学版), 2000. 6(1): 22-26
    [14] Edward Mettler, Marco B Quadrelli. Multibody Dynamics Modeling of Segmented Booms of The Mars Express Spacecraf[J]. Journal of Spacecraft and Rockets, 2005. 42(3): 523-529
    [15] R E Skelton, P C Hughes. Order Reduction for Flexible of Space StructuresUsing Model Cost Analysis[J]. J. Guidance and Control, 1982. 5(4): 351-357
    [16] G S Nurre, J P Sharkey, J D Neson, A J Bradley. Preserving Mission On-obit Modifications to Hubble Telescope Pointing Control System[J]. J. Guidance, 1995. 18(2): 222-229
    [17] A K Banerjee, M E Lomak. Multi-Flexible Body Dynamics Capturing Motion-induced stiffness[J]. ASME JAM, 1991. 58: 766-775
    [18] P Gross, M Gurgoze, W Kliem. Bifurcation and Stability Analysis of A Rotating Beam[J]. Quarterly of Applied Mechanics, 1993. L1(4): 701-711
    [19]李俊峰,王照林.航天器柔性伸展附件非线性振动稳定性研究[J].清华大学学报(自然科学版), 1998(2): 439-447
    [20] Kosei Ishimura, Ken Higuchi. Coupling between structural deformation and attitude motion of large planar space structures suspended by multi-tethers[J]. Acta Astronautica, 2007. 60(8-9): 691-710
    [21]肖世富,陈滨.一类刚-柔耦合系统的建模与稳定性研究[J].力学学报, 1997. 19(3): 439-447
    [22] A Suleman. Structrural Modeling Issues in Flexible Systems[J]. AIAA Journal, 1995. 32(4)
    [23]李志斌,王照林,王天舒.平面型刚柔耦合系统几何非线性动力学建模[J].力学学报(增刊), 2002. 34: 79-84
    [24] Mehrdad Fraid, S A Lukasiewicz. Dynamic Modeling of Spatial Maniopulators with Flexible Links and Joints[J]. Computers and Structures, 2000. 75: 419-437
    [25] M Fumisoshi, H Michirori, S Hideaki. Modeling and Control of A Flexible Solar Array Paddle as A Clamped-Free Rectangular Plate[J]. Automatica, 1996. 32(1): 49-58
    [26] M Iura, S N Atluri. Dynamic Analysis of Planar Flexible Beams with Finite Rotations by Using Inertial and Rotating Frames[J]. Computers and Structures, 1998. 55(3): 453-462
    [27]刘才山,陈滨,王示.考虑刚弹耦合作用的柔性多体连续系统动力学建模[J].力学与实践, 1999. 21(6): 22-25
    [28]阎绍泽,黄铁球,吴德隆,范晋伟.空间飞行器柔性附件动力学建模方法研究[J].导弹与航天运载技术, 1999(2): 31-39
    [29] B Frederic, C Philippe. Symbolic Modeling of A Flexible Manipulator via Assembling of Its Generalized Newton-Euler Model[J]. Mech. Mach. Theory, 1996. 31(1): 45-46
    [30] J Wittenburg, U Wolz. A Symbolic Program for Nonlinear Articulated Rigid Body Dynamics. Proc. ASME Conf. Mechenial Vibration and Noise. 1985.
    [31] L Meirovitch. Dynamics and Control of Structures. New York: Wiley. 1990
    [32] W W Hooker. A Set of Dynamics Attitude Equations for An Arbitrary n-Body Satellite Having Rotational Degrees of Freedom[J]. AIAA Journal, 1970: 1205-1207
    [33] P W Likins. Dynamics Analysis of A System of Hinged-Connected Rigid Bodies with Nonrigid Appendages[J]. Int. J. Solids and Structures, 1973. 9: 1473-1487
    [34] T R Kane, D A Leivinson. Formation of Equations of Motion for Complex Spacecraft[J]. J. Guidance, Control and Dynamics, 1980. 3(2): 99-112
    [35] P C Hughes. Spacestructure Vibration Modes:How Many Exist? Which Ones Are Important?[J]. IEEE Contr. Sys. Mag., 1987. 7(1): 22-28
    [36] S N Atluri, M Iura. Nonlinearities in The Dynamics and Control of Space Structures: Some Issues for Computational Mechanics[J]. Large Space St ructures: Dynamics and Control, 1988: 33-70
    [37] J T Spanos, W Truha. Selection of Component Modes for The Simulation of Flxible Multibody Spacecraft[J]. J. Guidance, Control and Dynamics, 1991. 14(2): 278-286
    [38] R E Skelton, A Hu. Modeling Structures for Control Design[J]. Computers and Structures, 1985. 63: 112-123
    [39] J Mirro. Automatic Feedback Control of A Vibrating Beam. Master Thesis.MIT, 1972.
    [40] W J Book, O N Maizz, D E Whitney. Feedback Control of Two-Beam,Two-Joint System with Distribute Flexibility[J]. ASME J. Dynamic Systems, Measurement and Control, 1975. 97: 424-431
    [41] T R Kane, R R Ryan, A K Banerjee. Dynamics of A Cantilever Beam Attached to A Moving Base[J]. J. Guidance,Control and Dynamics, 1987. 10: 139-151
    [42] A Y Lee, W S Tsuha. Model Reduction Methodology for Articulated, Multi-Flexible Body Structures[J]. J. Guidance, Control and Dynamics, 1994. 17(1): 69-75
    [43] R E Skelton. Component Cost Analysis of Large Scale Systems[J]. Int. J. Control, 1983. 37(2): 285- 304
    [44] L Meirovitch. Analytical Method in Vibrations. Macmillan. 1967
    [45] G G Hastings, W J Book. A Linear Dynamic Model for Flexible RoboticManipulators[J]. IEEE Contr. Sys. Mag., 1987. 7(1): 61-67
    [46] H H Yoo, C Pierre. Modal Characteristic of A Rotating Rectangular Cantilever Plate[J]. J of Sound and Vibration, 2003. 259(1): 81-96
    [47]杨辉,洪嘉振,余征跃.刚柔耦合多体系统动力学建模与数值仿真[J].计算力学学报, 2003. 20(4): 402-407
    [48]章定国,朱志远.一类刚柔耦合系统的动力刚化分析[J].南京理工大学学报, 2006. 30(1): 21-25
    [49]王平,李铁寿,吴宏鑫.磁控小卫星周期时变的比例微分控制设计方法[J].中国空间科学技术, 1999.10(5): 14-19
    [50]耿云海,崔祜涛,孙兆伟,杨涤.小卫星主动磁控制地球捕获姿态控制系统设计[J].航空学报, 2000. 21(2): 142-145
    [51]刘新建,雷勇军,唐乾刚.大挠性太阳能帆板航天器的姿态控制[J].国防科技大学学报, 2003. 25(5): 6-8
    [52] Xipu Li, J Throckmorton Arthur, B Boka Jefery. Stability Analysis on Earth Observing System AM-1 Spacecraft Earth Acquisition[J]. Journal of Guidance, Control and Dynamics, 1996. 19(3): 512-519
    [53]李勇.挠性航天器快速大角度机动的非线性模型与控制[J].中国空间科学技术, 1998.8(4): 19-23
    [54]邓以高,田军,王亚锋,雷军委.飞行器姿态控制方法综述[J].战术导弹控制技术, 2006(2): 7-13
    [55] B N Agrawal, G Song, N V Buck. Control and Dynamics of A Flexible Spacecraft Using Input Shaping and Pulse-Width Pulse-Frequency Modulated thruster. 48th International Astronautical Congress 1997.
    [56] B Stetson John. Reaction Wheel Low-speed Compensation Using A Dither Signal[J]. Journal of Guidance ,Control,and Dynamics, 1993. 16(4): 617-622
    [57]郑育红,王平.一种用磁力矩器控制卫星的新方法[J].宇航学报, 2002. 21(3): 95-99
    [58]孙兆伟,曹喜滨.主动磁控小卫星模糊控制算法的研究[J].哈尔滨工业大学学报, 2002. 34(6): 848-852
    [59]孙兆伟,杨旭,杨涤.小卫星磁力矩器与反作用飞轮联合控制算法研究[J].控制理论与应用, 2002. 19(2): 173-177
    [60]孙兆伟,林晓辉,曹喜滨.小卫星姿态大角度机动联合控制算法[J].哈尔滨工业大学学报, 2003. 35(6): 663-667
    [61]李太玉,张育林.利用地磁场给飞轮卸载的新方法[J].中国空间科学技术, 2001.12(6): 56-61
    [62] Z H Luo. Direct Strain Feedback Control of Flexible Robot Arms: New Theoretical and Experimental Results[J]. IEEE Trans. Auto. Contr., 1993. 38(11): 1610-1662
    [63] ? M?rgul. Orientation and Stabiliation of A Flexible Beam Attached to A Rigid Body: Planar Motion[J]. IEEE Automat. Cotro., 1991. 36(8): 953-962
    [64] S Parman, H Koguchi. Controlling The Attitude Maneuvers of Flexible Spacecraft by Using Time- Optimal/Fuel-Efficient Shaped Inputs[J]. Journal of Sound and Vibration, 1999. 21(4): 545-565
    [65] Jianhua Zheng, Stephen P. Banks, Hugo Alleyne. Optimal attitude control for three-axis stabilized flexible spacecraft[J]. Acta Astronautica, 2005. 56(5): 519-528
    [66] W E Singhose, S Derezinski, N.Singer. Extra-Insensitive Input Shapers for Controlling Flexible Spacecraft[J]. Journal of Guidance ,Control,and Dynamics, 1996. 2: 385-391
    [67] Dario Izzo, Lorenzo Pettazzi. Command Shaping for A Flexible Satellite Platform Controlled by Advanced Fly-wheels Systems[J]. Acta Astronautica, 2007. 60(10-11): 820-827
    [68] P C Parks. Lyapunov Resign of Model Reference Adaptive Control syste,s[J]. IEEE Trans. on Automat. Cotro., 1966. 11(2): 362-367
    [69] R Ortaga. Adaptive Stabilization of Non-Linearizable Systems under a Matching Condition. Proc ACC. 1990.
    [70] J Pomet, L Praly. Adaptive Nonlinear Regulation: Estimation from the Lyapunov Equation[J]. IEEE Trans. on Automatic Control, 1992. AC-37: 729-740
    [71] C Byrnes, A Isidori, J Willems. Passivity, Feedback Equivalence, and The Global Stabilization of Minimum Phase Nonlinear Systems[J]. IEEE Trans. on Automatic Control, 1991. AC-36: 1228-1240
    [72] M M Seron, D J Hill, A L Fradkov. Nonlinear Adaptive Control of Feedback Passive Systems[J]. Automatica, 1995. 31(7): 1053-1060
    [73]苏丙未,曹云峰,陈欣,杨一栋.一种鲁棒自适应Backstepping控制方案研究[J].应用科学学报, 2002. 20(4): 350-353
    [74]解学军,张正强,张嗣瀛.一种基于反推技术的鲁棒自适应控制器[J].控制理论与应用, 2003. 20(6): 947-950
    [75] I D Landau. A Survey of Model Reference Adaptive Techniques (theory and Application)[J]. Automatica, 1974. 10(4): 353-379
    [76] K J ?strom, B Wittenmark. On Self-tuning Regulators[J]. Automatica, 1973. 9(2): 185-199
    [77] D W Clarke. An Introduction to Self-Tuning Regulator and Controller. IEE Colloquium on Self-Tuning and Adaptive Systems. 1976.
    [78] J M Edmunds. Digital Adaptive Pole-Shifting Regulators. IEE Colloquium on Self-Tuning and Adaptive Systems. 1976.
    [79]吴振顺,许文波,汲永涛.最小方差自校正控制器在液控伺服作动器上的应用与仿真[J].机床与液压, 2002.1(1): 69-70
    [80]丁军,徐用懋.单神经元自适应PID控制器及应用[J].控制工程, 2004. 11(1): 27-30
    [81]许世范,李敬兆.极点配置自校正控制直流调速系统研究[J].中国矿业大学学报, 1995. 24(3): 24-28
    [82] C E Rohrs. Robustness of Adaptive Control Algorithm in The Presence of Unmodeled Dynamics. Proc. of CDC. 1982.
    [83]张世杰,曹喜滨.基于单神经元自适应PID控制的航天器大角度姿态机动[J].上海航天, 2003(6): 9-14
    [84]刘军,韩潮.基于单神经元的卫星姿态自适应PID控制[J].计算机仿真, 2006. 23(3): 45-48
    [85]连葆华,崔平远,崔祜涛. RBF网络及其在卫星姿态控制中的应用[J].高技术通讯, 2002(4): 83-87
    [86] J Marsik. A New Conception of Digital Adaptive PSD Control[J]. Problemsof Control and Information theory, 1983. 12(4): 267-279
    [87] J Marsik, V Strejc. Application of Identification Free Algorithms for Adpative control[J]. Automatica, 1989. 25(2): 237-277
    [88] S Chen, E S Chng, K Alkadhimi. Regularized Orthogonal Least Squares Algorithm for Constructing Radial Basis Function Networks[J]. Int J. Cont rol, 1996. 64(5): 829-837
    [89] Kamesh Subbarao, Ajay Verma, John L Junkins. Structured Adaptive Model Inversion Applied to Tracking Spacecraft Maneuvers. AAS/AIAA Space Flight Mechanics Meeting. 2000.
    [90] Ganesh B Maganti, Sahjendra N Singh. Simplified adaptive control of an orbiting flexible spacecraft[J]. Acta Astronautica, 2007. 61(7-8): 575-589
    [91]唐超颖,王彪.基于在线神经网络的自适应控制器的设计与应用[J]. 2006. 34(6): 34-38
    [92]吴宏鑫.全系数自适应理论及其应用.北京:国防工业出版社. 1990
    [93]解永春,牟小刚,吴宏鑫,李季苏.挠性航天器大角度机动的全系数自适应控制[J].宇航学报, 1999. 20(2): 1-6
    [94]邱志成,张洪华.基于特征模型的挠性悬臂板控制[J].航天控制, 2002(2): 1-5
    [95]吴宏鑫,解永春,李智斌,何英姿.基于对象特征模型描述的智能控制[J].自动化学报, 1999. 25(1): 9-17
    [96]吴宏鑫,刘一武,刘忠汉,解永春.特征建模与挠性结构的控制[J].中国科学(E辑) 2001. 31(2): 137-149
    [97]齐春子,吴宏鑫,吕振铎.多变量全系数自适应控制系统稳定性的研究[J].控制理论与应用, 2000. 17(4): 489-494
    [98]孙多青,吴宏鑫.多变量线性时变系统的特征模型及自适应模糊控制方法[J].宇航学报, 2005. 26(6): 677-681
    [99] Bernard Widrow, E Walach. Adaptive Inverse Control. Upper Saddle River,NJ: Prentice-Hall. 1996
    [100]刘亚秋.基于动态神经网络的自适应逆控制及其应用研究.博士学位论文.哈尔滨工业大学, 2004.10.
    [101]岑小锋.复杂挠性航天器动力学模型及其近似逆控制研究.博士学位论文.哈尔滨工业大学, 2004.
    [102]刘亚秋.基于动态神经网络的自适应逆控制及其应用研究.博士学位论文.哈尔滨工业大学, 2004.
    [103] E Abdulhamitbilal, E M Jafarov. Performances Comparison of Linear and Sliding Mode Attitude Controllers for Flexible Spacecraft with Reaction Wheels. Proceedings of the 2006 International Workshop on Variable Structure Systems. 2006.
    [104]胡跃明.变结构控制理论与应用.北京:科学出版社. 2003
    [105] Hyochoong Bang, Cheol Keun Ha, Jin Hyoung Kim. Flexible spacecraft attitude maneuver by application of sliding mode control[J]. Acta Astronautica, 2005. 57(11): 841-850
    [106]李勇,吴宏鑫.一类挠性航天器的变结构控制[J].宇航学报, 1998. 19(1): 13-20
    [107]王庆超,岑小锋,马兴瑞.挠性航天器旋转机动的输入成形变结构控制[J].系统工程与电子技术, 2006. 28(5): 727-730
    [108]胡庆雷,马广富.带有输入非线性的挠性航天器姿态机动变结构控制[J].宇航学报, 2006. 27(4): 630-634
    [109] Yen Wen Liang, Sheng Dong Xu, Che Lun Tsai. Study of VSC ReliableDesigns with Application to Spacecraft Attitude Stabilization[J]. IEEE Transactions on Control Systems Technology, 2007. 15(2): 332-338
    [110]周连文,周军,李卫华.控制受限的挠性航天器大角度机动变结构控制[J].华北工学院学报, 2004. 25(4): 246-249
    [111]周连文,周军,李卫华.基于遗传算法的挠性航天器大角度机动的变结构控制[J].上海航天, 2005.1: 15-18
    [112]周连文,周军.挠性航天器大角度机动的变结构控制[J].航天控制2003(3): 48-52
    [113]唐超颖,沈春林,李丽荣.航天器姿态滑模变结构控制系统的设计[J].南京航空航天大学学报, 2003. 35(4): 361-365
    [114]周连文,周军,李卫华.挠性航天器大角度机动的滑模变结构控制[J].飞行力学, 2004. 22(1): 71-73
    [115] H Elmali, N Olgac. Sliding Mode Control with Perturbation Estimation ( SMCPE) : A New Approach [J]. International Journal of Cont rol, 1992. 56(1): 923-941
    [116] Morteza Shahravi, Mansour Kabganian, Aria Alasty. Adaptive Robust Attitude Control of A Flexible Spacecraft[J]. International Journal of Robust and Nonlinear Control, 2006. 16(6): 287-302
    [117]王炳全,崔祜涛,杨涤.轻型高精度卫星的变结构姿态控制器[J].航空学报, 2000. 21(5): 417-420
    [118] S V Yallapragada, B S Heck, J D Finney. Reaching Conditions for Variable Structure Control with Output Feedback[J]. Journal of Guiance, Control and Dynamics, 1996. 19(4): 848-853
    [119] Y Shen, C Liu, H Hu. Output Feedback Variable Structure Control for Uncertain Systems with Input Nonlinearities[J]. Journal of Guiance, Control and Dynamics, 2000. 23(4): 762-764
    [120] Mansour Kabganian, Morteza Shahravi. Adaptive Sliding Mode Attitude and Vibration Control of An Elastic Spacecraft. Proceedings of the 5th International Conference on Control and Automation. 2005.
    [121]王晓磊,吴宏鑫,李智斌.挠性航天器非线性滑动模态控制和实验研究[J].宇航学报, 2001. 22(6): 50-56
    [122] T Floquet, W Perruquetti, J P Barbot. Angular Velocity Stabilization of A Rigid Body via VSS Control[J]. Journal of Dynamics Systems, Measurement and Control, 2000. 122
    [123]刘春梅,沈毅,胡恒章,葛升民.非线性挠性结构的神经网络变结构控制[J].系统工程与电子技术, 2000. 22(2): 11-14
    [124]管萍,陈家斌.挠性卫星的自适应模糊滑模控制[J].航天控制, 2004. 22(4): 62-67
    [125]管萍,陈家斌,刘晓河.基于滑模控制的挠性卫星的自学习模糊控制[J].北京理工大学学报, 2005. 25(2): 127-130
    [126] Le Ballois Sandrine, Due Gilles. H∞Control of An Earth Observation Satellite[J]. Journal of Guidance,Control and Dynamics, 1996. 19(3): 628-635
    [127]兰维瑶,陈亚陵.新型卫星姿态运动的鲁棒控制器设计[J].厦门大学学报(自然科学版), 1999. 38(2): 193-198
    [128]王广雄,张静,朱井泉.挠性系统的鲁棒控制设计[J].控制与决策, 2003. 18(3): 281-284
    [129] S Di Gennaro. Active Vibration Suppression in Flexible Spacecraft Atitude Tracking[J]. Journal of Guidance, Control and Dynamics, 1998. 21(3)
    [130]谭文.挠性航天器的姿态控制:混合灵敏度方法[J].厦门大学学报(自然科学版), 1995. 34(3): 333-338
    [131]兰维瑶,彭洪,罗林开,陈亚陵.挠性卫星姿态低阶鲁棒控制器设计[J].厦门大学学报(自然科学版), 2001. 40(sup.1): 18-24
    [132] M G Safonov, R Y Chiang, H Flashner. H∞Robust Control Synthesis for A Large Space Structure[J]. J. Guidance, 1991. 14(3): 513-520
    [133] D Mustafa, K Glover. Controller Reduction by H∞-Balanced Truncation[J]. IEEE Automat. Cotro., 1991. 36(6): 668-689
    [134]宋斌,马广富,李传江,谌颖.基于H∞鲁棒控制的挠性卫星姿态控制[J].系统仿真学报, 2005. 17(4): 968-970
    [135] J Sefton, K Glover . Pole/Zero Cancellations in The General H∞Problem with Reference to A Two-block Design[J]. Syst. Contr. Letters, 1990. 14: 295-306
    [136] P Gahinet, P Apkarian. Int. J. Robust and Nonlinear Contr.[J]. A linear matrix inequality approach to H∞control, 1994. 4(1): 421-448
    [137] C Scherer, P Gahinet, M Chilali. Multiobjective Output-feedback Control via LMI Optimization[J]. IEEE Trans. on Autom. Contr., 1997. 42(7): 896-911
    [138] M Chilali, P Gahinet. H∞Design with Pole Placement Constraints: An LMI Approach[J]. IEEE Automat. Cotro., 1996. 41(3): 358-367
    [139]王新生,王广雄,张华强.鲁棒极点约束的H∞设计[J].控制与决策, 2001. 16(sup.1): 801-804
    [140]王松,崔平远,张池平,杨涤.柔性航天器姿态的在线神经网络控制[J].飞行力学, 1998 16(2): 83-89
    [141]管萍,陈家斌,戈新声.挠性卫星姿态的模糊神经控制[J].火力与指挥控制, 2005. 30(2): 36-40
    [142]张云,王培垣.一种用于挠性卫星姿态控制的改进模糊控制器[J].上海航天, 2004.6(6): 42-46
    [143] S Narendra, K Paratharathy. Identification and Control of Dynamical Systems Using Neural Networks[J]. IEEE Trans on Neural Networks, 1990. 1(1)
    [144]白圣建,黄新生.一类挠性航天器的模糊控制[J].战术导弹控制技术, 2006(3): 29-33
    [145]王蜀泉,赵光恒.基于模糊控制的卫星大角度姿态机动控制方法研究[J].中国科学院研究生院学报, 2006. 23(1): 112-117
    [146]孙庆,吴宏鑫.挠性结构卫星单轴气浮台的模糊控制[J].航天控制, 1997(2): 29-36
    [147] W E Singhose, B Mills. Command Generation Using Specified Negative-Amplitude Input Shapers. American Control Conference. 1999.
    [148] Sadettin Kapucu, Cursel Alici, Sedat Baysec. Residual Swing/Vibration Reduction Using A Hybrid Input Shaping Method[J]. Mechanism and Machine Theory, 2001. 36: 311-326
    [149] A.K.Banerjee, nelson Pedreiro, W.E.Singhose. Cibration Reduction for Flexible Spacecraft Following Momentum Dumping with/without Slewing[J]. Journal of Guidance, Control and Dynamics, 2001. 24(3): 417~427
    [150] Q Liu, B Wies. Robuse Time-Optimal Control of Uncertain Flexible Spacecraft[J]. Journal of Guidance, Control and Dynamics,, 1992. 15(3): 597-604
    [151] A.Z. Yan, G.Q. Wang, H. Xu. Reduction of Residual Vibration in Rotating Flexible Beam[J]. Acta Mechanica, 2004. 171: 137~149
    [152] D Gorinevsky, G Vukovich. Nonlinear Input Shaping Control of Flexible Spacecraft Reorientation Maneuver[J]. Journal of Guiance, Control and Dynamics, 1998. 21(2): 264-270
    [153] E.A. Ooten, W. Singhose. Command Generation with Sliding Mode Control for Flexible Systems. International Symposium on Motion and Vibration Control in Mechatronics. 1999.
    [154] J.J. Shan, H.T. Liu, D. Sun. Modified Input Shaping for a Rotating Single-link Flexible Manipulator[J]. Journal of Sound and Vibrations, 2005. 8: 187~207
    [155]陕晋军.挠性空间飞行器的分力合成主动振动抑制方法研究.博士学位论文.哈尔滨工业大学, 2002.
    [156] Jinjun Shan, Dun Liu. New Optimal Large Angle Maneuver Strategy for Single Link[J]. Chinese Journal of Mechanical Engineering, 2001. 14(3): 224~230
    [157]陕晋军,刘墩.应用分力合成主动振动抑制方法的最优飞行器大角度机动控制策略[J].航空学报, 2002. 23(1): 62-65
    [158] J.J. Shan, H.T. Liu, D Sun. Slewing and Vibration Control of A Single-link Flexible Manipulator by Positive Position Feedback[J]. Mechatronics, 2005. 15(4): 487~503
    [159] Gangbing Song, BRIJ N. Agrawal. Vibration Suppression of Flexible Spacecraft during Attitude Control[J]. Acta Astronautica, 2001. 49(2): 73-83
    [160] N V Buck. Minimum Vibration Maneuvers Using Input Shaping and Puslse-Width Pulse-Frequency Modulated Thruster Control. Master.US Naval Postgraduate School, 1996.
    [161] Marcel J. Sidi. Spacecraft Dynamics and Control. New York: Press Syndicate of The University of Cambridge. 1997
    [162] Gang Bing Song, V Buck Nick, N Agrawal Brij. Spacecraft Vibration Reduction Using Pulse-width Pulse-Frequency Modulated Input Shaper[J]. Journal of Guidance, Control, and Dynamics 1999. 22(3): 433-440
    [163] T Singh, G R Heppler. Shaped inputs for a multimode system. Proceedings of IEEE International Conference on Robotics and Automation. 1993.
    [164] J M Hyde, W P Seering. Using Input Command Pre-shaping to Suppress Multiple Mode Vibration. IEEE International Conference on Robotics and Automation. 1991.
    [165]纪志成,朱嵘嘉,沈艳霞.一类不确定线性时滞系统的保性能研究[J].控制与决策, 2005. 20(8): 943~946
    [166] Lei Guo. Guaranteed Cost Control of Uncertain Discrete-time Delay Systems Using Dynamic Output Feedback[J]. Transactions of the Institute of Measurement and Control, 2002. 24(5): 417~430
    [167] Li Yu, Qing Long Han, Ming Xuan Sun. Optimal Guaranteed Cost Control of Linear Uncertain Systems with Input Constraints[J]. International Journal of Control and Decision, 2005. 3(3): 397~402
    [168] Moon Y S, Park P, Kwon W H, Lee Y S. Delav-dependent robust stabilization of uncertain state-delayed systems[J]. International Journal of Control, 2001. 74: 1447~1455
    [169]L Xie. Output Feedback H∞Control of Systems with Parameter Uncertainty[J]. Int J. Control, 1996. 63(4): 741~750
    [170]钟红恩.复杂大系统的分散控制理论及应用研究.博士学位论文.西北工业大学, 2003.
    [171] Marine R., Santosuosso G.L., Tomei P. Robust adaptive observers for nonlinear systems with bounded disturbances[J]. Automatic Control, IEEE Transactions on, 2001. 46(6): 967~972
    [172]王广雄,张静.控制理论中的频率定理:Kalman-Yakubovich引理[J].电机与控制学报, 2002. 6(4): 301~303
    [173] Li-Xin Wang. Stable Adaptive Fuzzy Control of Nonlinear Systems[J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1993. 1(2): 146~155
    [174] KIMY H, FRANKL L. Dynamic recurrent neural network-based adaptive observer for a class of nonlinear systems[J]. Automatica, 1997. 33(8): 1539~1543

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700