线性离散周期系统的极点配置和观测器设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为连接线性时不变系统和时变系统的桥梁,线性周期时变系统是一类非常重要的系统。一方面,现实世界中的许多问题可以归结为周期动态模型;另一方面,在一些系统的控制过程中,定常反馈控制律失效时,周期反馈控制律往往能够胜任。由于电子计算机技术的迅猛发展,许多连续系统都要进行离散处理,因此,线性离散周期系统的研究就尤为重要。目前,在线性离散周期系统领域,已经取得了相当数量的研究成果,但仍有许多问题有待于进一步探讨。
     本文立足于线性离散周期系统中最基本的问题,采用参数化设计方法,研究了线性离散周期系统的周期极点配置问题和周期观测器设计问题,主要内容包括以下几个方面:
     第一,研究了线性离散周期系统的周期状态反馈极点配置问题。通过对闭环系统的单值性矩阵进行的一系列处理,使得周期状态反馈增益包含在一类推广的Sylvester矩阵方程的解中,利用这类方程的解,给出了周期状态反馈增益的参数化递推求解算法。利用存在于这些参数化周期状态反馈增益中的充分的自由度,考虑了鲁棒极点配置问题。提出了一个反映周期系统极点对于参数扰动的灵敏度指标,将鲁棒极点配置问题转化为了一个静态优化问题,最终给出了鲁棒极点配置问题的设计算法。
     第二,研究了线性离散周期系统的周期输出反馈极点配置问题。在周期系统完全能达和完全能观测的条件下,给出了周期输出反馈极点配置问题的参数化解。并进一步考虑了周期输出反馈鲁棒极点配置问题。分别给出了周期输出反馈参数化极点配置算法和周期输出反馈鲁棒极点配置算法。虽然在线性时不变系统中,不能用定常输出反馈进行任意极点配置,数值结果表明周期输出反馈不仅能够胜任,而且还能提供相当多的自由度。
     第三,研究了利用周期动态反馈来对线性离散周期系统进行极点配置的问题。和线性时不变系统相似,事实表明,周期动态补偿器的设计问题可以转化为一个增广周期系统的周期输出反馈控制器设计问题。采用周期输出反馈控制器设计的参数化方法,给出了参数化动态补偿器的设计方案。对于存在多个扰动变量的情形,提出了闭环周期系统极点对于扰动的灵敏度指标,并设计了鲁棒周期动态补偿器。
     第四,研究了周期观测器设计问题。将前向和逆向离散周期Sylvester矩阵方程的求解问题转化为一般的Sylvester矩阵方程的求解问题。给出了这两类方程的显式、完全、参数化解。前向离散周期Sylvester矩阵方程可用于极点配置,和现有的方法相比,能够将实现极点的任意配置,且对系统参数没有任何要求。考虑了周期Luenberger函数观测器设计问题,提出了观测器成立的充分必要条件。利用逆向离散周期Sylvester矩阵方程的解,设计出了参数化的周期Luenberger函数观测器。进一步研究了基于观测器的控制系统设计问题,指出在了线性离散周期系统中也存在分离原理,给出了基于全维状态观测器的状态反馈控制器设计算法。
     第五,将周期鲁棒极点配置方法应用到卫星姿态控制中去。根据磁力矩器控制卫星姿态时在滚动和偏航通道产生的周期动态特性,对这两个通道设计了周期状态反馈控制器,进一步构造了鲁棒性能的目标函数,并对其进行优化,求得了鲁棒周期状态反馈控制器。采用零阶保持,对滚动和偏航姿态进行了仿真。结果表明,利用周期控制律,能够很好地对卫星的滚动和偏航姿态进行镇定。
As a bridge between the linear time invariant systems and time varying systems,linear periodic time varying systems are a class of systems of great importance. On theone hand, many problems in real world can be reduced into periodic models; on the otherhand, in the control process of some systems, when the constant feedback control lawsdo not work, the periodic ones do perfectly. Due to the rapid development of computertechnology, many continuous systems need to be discretized. Thus, the research on lineardiscrete-time periodic systems is especially important. Up to now, there are already agreat deal of results in the field of discrete-time periodic systems, but there are still manyproblems to be discussed.
     Aiming at the basic problem in linear discrete periodic systems, employing paramet-ric design approaches, this thesis investigates pole assignment via periodic control lawsand design of periodic observers. The main contributions given by this thesis are list asfollows.
     1. Pole assignment for linear discrete periodic systems via periodic state feedback isdiscussed. The monodromy matrix of the closed-loop system is represented in a specialform. By combining this special form with the recent result on solutions to a class ofgeneralized Sylvester matrix equations, a complete parametric approach for pole assign-ment via periodic state feedback is proposed. The free parameters existing in the solutionsto pole assignment are further used to achieve robustness performance. The robust poleassignment problem is converted into a static optimization problem. The algorithm forrobust pole assignment is proposed.
     2. Pole assignment for linear discrete periodic systems via periodic output feedbackis investigated. Under the condition that the periodic system is completely reachable andcompletely observable, parametric solutions to the pole assignment problem for lineardiscrete periodic systems via periodic output feedback are presented. Further, robust poleassignment via periodic output feedback are solved. Both parametric pole assignmentalgorithm and robust pole assignment algorithm are obtained. It is shown that using peri-odic output feedback control laws can not only realize arbitrary pole assignment but alsoprovide many degree of freedom.
     3. Pole assignment for linear discrete periodic systems via periodic dynamical feed-back is investigated. Similar to time invariant systems, the design of a periodic dynamicalcompensator can be reduced into the design of a periodic output feedback controller fora augmented periodic system. By employing the parametric approach of periodic outputfeedback controllers, a parametric design method for periodic dynamical compensators isproposed. For the system with several pertubation variables, a robustness index is pro-posed and robust dynamical compensator design problem is solved.
     4. Periodic observers design problem for linear discrete periodic systems is re-searched. Both solving forward-time discrete periodic Sylvester matrix equations andsolving reverse-time discrete-time discrete periodic Sylvester matrix equations are re-duced into solving a class of generalized Sylvester matrix equations. The explicit, com-plete and parametric solutions for the two class of matrix equations are presented. Basedon the solutions to reverse-time periodic Sylvester matrix equation, problem for peri-odic Luenberger function observer design is solved. Further, it is shown that there existsseparation principle of observer-based controllers design in this type of systems. An algo-righm for design a periodic state feedback controller based on a full order state observeris provided.
     5. Stabilization of satellite attitude by magnetorquer is considered. Under the ac-tion of geomagnetic field, the roll and yaw dynamics result in a linear periodic model.By setting an objective function of robust performance and optimization, a set of robustperiodic state feedback controllers is obtained. A numerical simulation through the zero-order-hold is conducted. The result shows that the periodic controllers are very effectivein regulating roll angle and yaw angle to zero.
引文
1 R. J. Spiteri, P. Montagnier, J. Angeles. Control of a Shaking Conveyor Belt Us-ing a Novel Approach to Floquet-lyapunov Theory[C]//Proc. Canadian Society forMechanical Engineering Forum. Toronto, Canada, 1998:392–399.
    2 D. A. streit, C. M. Krousgrill, A. Bajaj. Dynamic Stability of Flexible ManipulatorsPerforming Repetitive Tasks[J]. Robotics and Manufacturing Automation, 1985,15:121–136.
    3 S. G. Webb, R. A. Calico, W. E. Wiesel. Time-periodic Control of a MultibladeHelicopter[J]. AIAA J. of Guidance, Control, and Dynamics, 1991, 14(6):1301–1308.
    4 R. A. Calico, G. S. Yeakel. Active Attitude Control of a Spinning SymmetricalSatellite in an Elliptic Orbit[J]. AIAA J. of Guidance, Control, and Dynamics,1983, 6(4):315–318.
    5 J. W. Cole, R. A. Calico. Nonlinear Oscillations of a Controlled Periodic System[J].AIAA J. of Guidance, Control, and Dynamics, 1992, 15(3):627–633.
    6郑育红,王平.一种用磁力矩器控制卫星姿态的新方法[J].宇航学报, 2000,21(3):94–99.
    7苏晓明,张庆灵.广义周期时变系统[M].北京:科学出版社, 2006:4–4.
    8 P. P. Vaidyanathan. Multirate Digital Filters, Filter Banks, Polyphase Networks,and Applications: A Tutorial[J]. Proceedings of IEEE, 1990, 78:56–92.
    9 Wornell, W. Gregory. Emerging Applications of Multirate Signal Processingand Wavelets in Digital Communications[J]. Proceedings of the IEEE, 1996,84(4):586–603.
    10 A. Marzollo. Periodic Optimization[M]. Berlin: Springer, 1972.
    11 V. A. Yakubovich and V. M. Starzhinskii. Linear Differential Equations with Peri-odic Coefficients[M]. New York: Wiley, 1975.
    12 A. Feuer and G. C. Goodwin. Sampling in Digital Signal Processing and Con-trol[M]. New York: Birkhauser, 1996.
    13 S. Bittanti, P. Colaneri. Analysis of Discrete-time Linear Periodic Systems[J]. Con-trol and dynamic systems, 1996, 78:313–339.
    14 M. Pittelkau. Optimal Periodic Control for Spacecraft Pointing and Attitude Deter-mination[J]. Journal of Guidance, Control and Dynamics, 1993, 16(6):1078–1084.
    15 R. W. Isniewski, M. Blanke. Fully Magnetic Attitude Control for Spacecraft Subjectto Gravity Gradient[J]. Automatica, 1999, 35:1201–1214.
    16 M. Lovera. Optimal Magnetic Momentum Control for Inertially Pointing Space-craft[J]. European Journal of Control, 2001, 7(1):30–39.
    17 S. Bittani, P. Colaneri. Periodic Control[M]. New York: Wiley, 1999.
    18 L. Tong, G. Xu, T. Kailath. Blind Identification and Equalization Based on Second-order Statistics: A Time Domain Approach[J]. IEEE Transacitons on InformationTheory, 1994, 40(2):340–349.
    19 S. Bittani, P. Colaneri. Invariant Representations of Discrete-time Periodic Sys-tems[J]. Automatica, 2000, 36:1777–1793.
    20 E. I. Jury, R. J. Mullin. A Note on the Operational Solution of Linear DifferenceEquations[J]. J. Franklin Inst., 1958, 266:189–205.
    21 E. I. Jury, R. J. Mullin. The Analysis of Sampled-data Control Systems with a Peri-odically Time-varying Sampling Rate[J]. IRE Trans. Auto. Control, 1959, 5:15–21.
    22 G. M. Kranc. Iput-output Analysis of Multirate Feedback Systems[J]. IRE Trans.Auto. Control, 1957, 2:21–28.
    23 B. Rriedland. Sampled-data Control Systems Containing Periodically VaryingMemebers[C]//Proceeding of the 1th IFAC Congress. London, 1961:361–367.
    24 R. A. Meyer, C. S. Burrus. A Unified Analysis of Multirate and Periodically Time-varying Digital Filters[J]. IEEE Trans. Circuits Systems, 1975, 22:162–168.
    25 B. Park, E. I. Verriest. Canonical Forms on Discrete-time Periodically Time VaryingSystems and a Control Application[C]//Proceeding of the 28th IEEE Conference onDecision and Control. Tampa(USA), 1989:1220–1225.
    26 D. S. Flamm. A New Shift-invariant Representation for Periodic Systems[J]. Sy-sems and Control Letters, 1991, 17:9–14.
    27段广仁.线性系统理论[M].哈尔滨:哈尔滨工业大学出版社, 2004.
    28 S. Bittanti, P. Bolzern. On the Structure Theory of Discrete-time Linear Systems[J].Int. J. of Systems Science, 1986, 17:33–47.
    29 S. Bittanti, P. Colaneri, G. D. Nicolao. Discrete-time Linear Periodic Systems:A Note on the Reachability and Controllability Interval Length[J]. Sysems andControl Letters, 1986, 8:75–78.
    30 S. Bittanti, P. Bolzern. Discrete-time Linear Periodic Systems: Gramian and ModalCriteria for Reachability and Controllability[J]. Int. J. Control, 1985, 41:909–928.
    31 S. Bittanti, G. Guardabassi, L. Silverman. Periodic Systems: Controllabilityand Matrix Riccati Equation[J]. SIAM Journal Control and Optimization, 1978,16(1):37–40.
    32 S. Bittanti, P. Bolzern, P. Colaneri. The Extended Periodic Lyapunov Lemma[J].Automatica, 1985, 21(5):603–605.
    33 P. Colaneri, C. D. Souza, V. Kucera. Output Stabilizability of Periodic Sys-tems: Necessary and Sufficient Conditions[C]//Proceedings of the American Con-trol Conference. Philadelphia, Pennsylvania, 1998:2795–2796.
    34 A. Varga. Periodic Lyapunov Equations: Some Applications and New Algo-rithms[J]. International Journal of Control, 1997, 67(1):69–87.
    35 D. L. Kleinman. Stabilizing a Discrete, Constant, Linear System with Applica-tion to Iterative Methods for Solving the Riccati Equation[J]. IEEE Trans. Autom.Control, 1974, AC-19:252–256.
    36 W. H. Kwon, A. E. Pearson. On the Stabilization of a Discrete Constant LinearSystem[J]. IEEE Trans. Autom. Control, 1975, AC-19:800–801.
    37 W. H. Kwon, A. E. Pearson. A Modified Quadratic Cost Problem and Feedback Sta-bilization of a Linear System[J]. IEEE Trans. Autom. Control, 1977, AC-22:838–842.
    38 G. D. Nicolao, S. Strada. On the Stability of Receding-horizon Lq Control withZero-state Terminal Constraint[J]. IEEE Trans. Autom. Control, 1997, 42(2):257–260.
    39 G. D. Nicolao. Cyclomonotonicity and Stavilizability Properties of Solutions ofthe Difference Periodic Riccati Equation[J]. IEEE Trans. Autom. Control, 1992,37:1405–1410.
    40 G. D. Nicolao, S. Strada. On the Use of Reachability Gramians for the Stabilizationof Linear Periodic Systems[J]. Automatica, 1997, 33(4):729–732.
    41 S. Bittanti, P. Colaneri, G. D. Nicolao. The Difference Periodic Riccati Equationfor the Periodic Prediction Problem[J]. IEEE Trans. Autom. Control, 1988, AC-33:706–712.
    42 S. Bittanti, P. Colaneri, G. D. Nicolao. A Note on the Maximal Solution of thePeriodic Riccati Equation[J]. IEEE Trans. Autom. Control, 1989, AC-34:1316–1319.
    43 A. Varga, S. Pieters. Gradient-based Approach to Solve Optimal Periodic OutputFeedback Control Problems[J]. Automatica, 1998, 34(4):477–481.
    44 P. Colaneri. Output Stabilization via Pole Placement of Discrete-time Linear Peri-odic Systems[J]. IEEE Transactions on Automatic Control, 1991, 36(6):739–742.
    45 O. M. Grasselli, S. Longhi. Pole Placement for Non-reachable Periodic Discrete-time Systems[J]. Math. Control. Sig. Syst., 1991, 4:437–453.
    46 C. E. D. Souza, A. Trofino. An Lmi Approach to Stabilization of Linear Discrete-time Periodic Systems[J]. International Journal of Control, 2000, 73(8):696–703.
    47 R. Wisniewski, J. Stoustrup. Generalized ?2 Control Synthesis for PeriodicSystems[C]//Proceedings of the American Control Conference. Arlington, VA,2001:2600–2605.
    48 C. Farges, D. Peaucelle, D. Arzelier, et al. Robust ?2 Performance Analysis andSynthesis of Linear Polytopic Discrete-time Periodic Systems via Lmis[J]. Systemsand Control Letters, 2007, 56:159–166.
    49 C. A. Desoer, J. O. Schulman. Zeros and Poles of Matrix Transfer Functionsand Their Dynamical Interpretation[J]. IEEE Trans. Ciucuits and Systems, 1974,21(1):3–8.
    50 B. A. Francis, W. M. Wonham. The Role of Transmission Zeros in Linear Multi-variable Regulators[J]. International Journal of Control, 1975, 22(5):657–681.
    51 A. G. J. Macfarlane, N. Karcanias. Poles and Zeros of Linear Multivariable Sys-tems: A Survey of the Algebraic, Geometric and Complex-variable Theory[J]. In-ternational Journal of Control, 1976, 24(1):33–74.
    52 A. S. Morse. Structural Invariants of Linear Multivariable Systems[J]. SIAM J.Control Optim., 1973, 11(3):446–465.
    53 O. M. Grasselli, S. Longhi. Finite Zero Structure of Linear Periodic Discrete-timeSystems[J]. Int. J. Systems Sci., 1991, 22:1785–1806.
    54 P. Bolzern, P. Colaneri, R. Scattolini. Zeros of Discrete-time Linear Periodic Sys-tems[J]. IEEE Trans. Automatic Control, 1986, AC-31(11):1057–1058.
    55 O. M. Grasselli, S. Longhi. Zeros and Poles of Linear Periodic MultivariableDiscrete-time Systems[J]. Circuits Systems Signal Process, 1988, 7(3):361–380.
    56 A. Varga, P. V. Dooren. On Computing the Zeros of Periodic Sys-tems[C]//Proceeding of the 41th IEEE Conference on Decision and Control. lasvegas, 2002:2546–2551.
    57 B. Xie, R. Aripirala, V. Syrmos. Model Reduction of Linear Discrete-time Pe-riodic Systems Using Hankel-norm Approximations[C]//Proceeding of the 13thIFAC Congress. San Francisco, 1996:245–250.
    58 P. Colaneri, S. Longhi. The Realization Problem for Linear Periodic Systems[J].Automatica, 1995, 31:775–779.
    59 S. Longhi, R. Zulli. A Note on Robust Pole Assignment for Periodic Systems[J].IEEE Transactions on Automatic Control, 1996, 41(10):1493–1497.
    60 I. Gohberg, M. A. K. amd L. Lerer. Minimality and Realization of Discrete Time-varying Systems[J]. Operator Theory: Adv. Appl., 1992, 56:261–296.
    61 A. Varga. Balancing Related Methods for Minimal Realization of Periodic Sys-tems[J]. System and Control Letters, 1999, 36:339–349.
    62 A. Varga. Balanced Truncation Model Reduction of Periodic Sys-tems[C]//Proceedings of the 39th IEEE Conference on Decision and Control.Sydney, 2000:2379–2384.
    63 A. Varga, P. V. Dooren. Computation Methods for Periodic Systems-anOverview[C]//Proceedings of the IFAC workshop on periodic controlsystems.Como, Italy, 2001:171–176.
    64 R. Granat, I. Jonsson, B. Kagstrom. Recursive Blocked Algorithms for SolvingPeriodic Triangular Sylvester-type Matrix Equations[J]. Lecture Notes in ComputerScience, 2007, 4699:531–539.
    65 R. Byers, N. Rhee. Cyclic Schur and Hessenberg-schur Numerical Methods forSolving Periodic Lyapunov and Sylvester Equations[D]University of Missouri atKansas City, 1995:1–12.
    66 J. Sreedhar, P. V. Dooren. Periodic Schur Form and some Matrix Equa-tions[C]//Proc. MTNS’93. Regensburg, Germany, 1993:339–362.
    67 S. Longhi, R. Zulli. A Robust Periodic Pole Assignment Algorithm[J]. IEEE Trans-actions on Automatic Control, 1995, 40(5):890–894.
    68 J. Sreedhar, P. V. Dooren. Pole Placement via the Periodic Schur Decomposi-tion[C]//Proceedings of the Amer. Contr. Conf. San Francisco, 1993:1563–1567.
    69 A. U. V. Hernandez. Pole-placement Problem for Discrete-time Linear PeriodicSystems[J]. International Journal of Control, 1989, 47(3):361–371.
    70 A. Varga. Robust and Minimum Norm Pole Assignment with Periodic State Feed-back[J]. IEEE Transactions on Automatic Control, 2000, 45(5):1017–1022.
    71 M. S. Fadali, S. Gummuluri. Robust Observer-based Fault Detection for PeriodicSystems[C]//Proceedings of the 2001 American Control Conference. 2001, 1:464–469.
    72 A. Varga. Design of Fault Detection Filters for Periodic Systems[C]//Proceedingsof the 43rd IEEE Conference on Decision and Control. Paradise Island, Bahamas,2004:4800–4805.
    73 P. Zhang, S. X. Ding, G. Z. Wang, et al. Fault Detection of Linear Discrete-timePeriodic Systems[J]. IEEE Transactions on Automatic control, 2005, 50(2):239–244.
    74 P. Zhang, S. X. Ding. Disturbance Decoupling in Fault Detection of Linear PeriodicSystems[J]. Automatica, 2007, 43:1410–1417.
    75 M. Kono. Eigenvalue Assignment in Linear Periodic Discrete-time Systems[J].International Journal of Control, 1980, 32(1):149–158.
    76 P. P. Khargonekar, A. B. u¨lent O¨zgu¨ler. Decentralized Control and Periodic Feed-back[J]. IEEE Transactions on Automatic Control, 1994, 39(4):877–882.
    77 B. Zhou, G. R. Duan. A New Solution to the Generalized Sylvester Matrix Equation???? ? ?????? ????[J]. Systems and Control Letters, 2006, 55(3):193–198.
    78 T. Beelen, G. Veltkamp. Numerical Computation of a Coprime Factorization of aTransfer-function Matrix[J]. Systems and Control Letters, 1987, 9(4):281–288.
    79 G. R. Duan. Polynomial Right Coprime Factorizations Using System Upper Hes-senberg Forms–the Multi-input System Cases[J]. IEE Pro. Control Theory andApplications, 2001, 148(6):433–441.
    80 B. Zhang. Parametric Eigenstructure Assignment by State Feedback in DescriptorSystems[J]. IET Control Theory and Applications, 2008, 2(4):303–309.
    81龚德恩.离散定常线性系统能达性与能控性的注记[J].华侨大学学报(自然科学版),1995,16(2):235–238.
    82 J. Lam, H. K. Tso, N. K. Tsing. Robust Deadbeat Regulation[J]. InternationalJournal of Control, 1997, 67(4):587–602.
    83 D. Aeyels, J. L. Willems. Pole Assignment for Linear Periodic Systems byMemeorless Output Feedback[J]. IEEE Transactions on Automatic Control, 1995,40(4):735–739.
    84 G. R. Duan. Solutions of the Equation ???? ???? ???? and Their Application toEigenstructure Assignment in Linear Systems[J]. IEEE Transactions on AutomaticControl, 1993, 38(2):276–280.
    85 G. R. Duan. Eigenstructure Assignment by Decentralized Output Feedback-a Com-plete Parametric Approach[J]. IEEE Transactions on Automatic Control, 1994,39(5):1009–1014.
    86 W. Y. Yan, R. R. Bitmead. Control of Linear Discrete-time Periodic Systems: A De-centralized Control Approach[J]. IEEE Transactions on Automatic Control, 1992,37(10):1644–1648.
    87 D. Aeyels, J. L. Willems. Pole Assignment for Linear Time-invariant Systems byPeriodic Memeoryless Output Feedback[J]. Automatica, 1992, 28(6):1159–1168.
    88 G. R. Duan. Robust Eigenstructure Assignment via Dynamical Compensators[J].Automatica, 1993, 29(2):469–474.
    89 Z. Z. Han. Eigenstructure Assignment Using Dynamical Compensator[J]. Interna-tional Journal of Control, 1989, 49:233–245.
    90 K. R. Gavin, S. P. Bhattacharyya. Robust and Well-conditioned Eigenstructure As-signment via Sylvester’s Equation[J]. Optimal Control Application and Methods,1983, 4:205–212.
    91 Y. Kim, H. S. Kim. Eigenstructure Assignment Algorithm for Mechanical Second-order Systems[J]. Journal of Guidance, Control and Dynamics, 1999, 22(5):729–731.
    92 D. G. Luenberger. An Introduction to Observers[J]. IEEE Transactions on Auto-matic Control, 1971, 16:596–602.
    93 C. C. Tsui. New Approach to Robust Observer Design[J]. International Journal ofControl, 1988, 47:745–751.
    94 G. R. Duan, R. Patton. Robust Fault Detection in Linear Systems Using Luenberger-type Unknown-input Observers–a Parametric Approach[J]. International Journal ofSystems Science, 2001, 32(4):533–540.
    95 J. Park, G. Rizzoni. An Eigenstructure Assignment Algorithm for the Designof Fault Detection Filters[J]. IEEE Transactions on Automatic Control, 1994,39:1521–1524.
    96 G. R. Duan, J. H. Li, L. S. Zhou. Design of Robust Luenberger Observers[J]. ActaAutomatica Sinica, 1991, 18(6):742–747.
    97 G. R. Duan. Design of the Luenberger Function Observers with Disturbance De-coupling[J]. Acta Automatica Sinica, 1992, 20(5):548–552.
    98 R. J. Patton, J. Chen. Observer-based Fault Detection and Isolation: Robustnessand Applications[J]. Control Engineering Practice, 1997, 5(5):671–682.
    99 G. R. Duan, R. J. Patton. Robust Fault Detection Using Luenberger-type UnknownInput Observers—a Parametric Approach[J]. International Journal of Systems Sci-ence, 2001, 32(4):533–540.
    100 C. H. Lien. An Efficient Method to Design Robust Observer-based Controlof Uncertain Linear Systems[J]. Applied Mathematics and Computation, 2004,158(1):29–44.
    101 F. Nollet, T. Floquet, W. Perruquetti. Observer-based Second Order Sliding ModeControl Laws for Stepper Motors[J]. Control Engineering Practice, 2008, 16:429–443.
    102 S. Ibrir, S. Diopt. Novel Lmi Conditions for Observer-based Stabilization of Lips-chitzian Nonlinear Systems and Uncertain Linear Systems in Discrete-time[J]. Ap-plied Mathematics and Computation, 2008, 206:579–588.
    103屠善澄.卫星姿态动力学与控制[M].宇航出版社, 1999.
    104王庆观,刘敏,刘藻珍.环境力矩在现代小卫星姿态控制中的应用综述[J].战术导弹控制技术,2005,51(4):8–10.
    105 M. E. Pittelkau. Frequency Weighted Lqg Control of Spacecraft Atti-tude[C]//Proceeding of the 1st IEEE Conference on Control Applications. NewYork, 1992:336–341.
    106刘良栋.航天器的姿态动力学与控制[M].航空工业出版社, 1992.
    107 J. Bezos. The Titlesec and Titletoc Packages[M]. 2nd ed., Cityname: University ofSomeName, 2002:10–20.
    108 S. Bittani, G. Guardabassi, C. Maffezzoni, et al. Periodic Systems: Controllabil-ity and the Matrix Riccati Equation[J]. SIAM J. Contr. and Optimization, 1978,16(1):37–40.
    109 P. T. Kabamba. Monodromy Eigenvalue Assignment in Linear Periodic Systems[J].IEEE Transactions on Automatic Control, 2002, 31(10):950–952.
    110 C. Farges, D. Peaucelle, D. Arzelier, et al. Robust ?2 Performance Analysis andSynthesis of Linear Polytopic Discrete-time Periodic Systems via Lmis[J]. Systemsand Control Letters, 2007, 56(2):159–166.
    111 P. P. Khargonekar, K. Poola, A. Tannebaum. Robust Control of Linear Time-invariant Plants Using Periodic Compensation[J]. EEE Transactions on AutomaticControl, 1985, AC-30(11):1088–1096.
    112 J. Lavaei, S. Sojoudi, A. G. Aghdam. Pole Assignment with Improved Control Per-formance by Means of Periodic Feedback[C]//Proceeding of the 46th IEEE confer-ence on Decision and Control. New Orleans, 2007:1082–1087.
    113 J. Lam, W. Y. Yan. Pole Assignment with Optimal Spectral Conditioning[J]. Sys-tems and Control Letters, 1997, 29(5):241–253.
    114 J. Lam, W. Yan, T. Hu. Pole Assignment with Eigenvalue and Stability Robust-ness[J]. International Journal of Control, 1999, 72(13):1165–1174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700