微观尺度下的硬盘驱动器浮动块/磁盘接触碰撞过程的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机技术的飞速发展,极光滑表面、极小飞行高度以及超高密度是未来硬盘的发展趋势。超高密度硬盘的磁头磁盘间隙将降至5nm以下,将来甚至发展接触式头盘系统,微观尺度下的界面力和表面粗糙度对头盘系统的影响已不容忽视。
     本文采用修正的Hamaker常数,推导出适合于浮动块与磁盘界面的分子作用力计算公式;然后,以双轨浮动块和ASS浮动块为例,采用数值积分方法,研究了润滑层对分子作用力与最小飞行高度之间关系;最后,采用有限体积法数值计算了楔形浮动块的气膜压力分布,研究了楔形浮动块考虑润滑层的分子间作用力与气膜力耦合后的总承载力与最小飞行高度的关系。解析结果表明:当润滑层厚度小于1nm时,润滑层能明显地减小分子作用力;当润滑层厚度大于2nm时,继续增加润滑层厚度,分子作用力减小幅度降低;润滑层在浮动块最小飞行高度小于2nm时对总承载力的影响较大。
     当浮动块与磁盘碰撞时,表面粗糙度对其接触碰撞特性有一定的影响,因此本文基于统计学接触模型,假设粗糙表面微凸体高度遵循Weibull分布和Guass分布。首先根据KE模型计算上述两种分布对应的接触力、粘附力以及最大静摩擦力等接触界面力;其次,通过计算不同粗糙表面的接触界面力,发现粗糙度对浮动块与磁盘的接触界面力的影响较为显著;最后,研究了斜度、塑性指数以及粘附能对静摩擦系数的影响,研究结果显示:相同外力作用下,正斜度的静摩擦系数要比负斜度的小,塑性指数越大静摩擦系数越小,粘附能大的粗糙表面的静摩擦系数也越大。
     另外,本文提出了一个浮动块与磁盘碰撞的简化模型,讨论了碰撞模型成立的假设条件,并对模型进行了受力分析。首先研究了浮动块最大位移、最大接触半径以及最大接触压力等变量随球体半径和碰撞速度的变化规律,研究发现:碰撞速度越大,球体半径越小,浮动块与磁盘的碰撞界面越容易失效;然后,根据磁盘构造,研究了磁盘薄膜层厚度对接触参数的影响,发现薄膜层厚度对浮动块与磁盘的接触碰撞影响不大,碰撞特性主要受基板材料的影响;最后,本文引入无量纲粗糙度参数来研究粗糙度对接触碰撞的影响,发现粗糙度越大,对其接触碰撞的影响也越大,粗糙度在接触面达到塑性变形之前可以有效地减缓接触碰撞严重性。
Extremely smooth surface, ultra-low flying heights and high density will be the future hard disk development trend with the rapid development of computer technology. The high density disk gap will drop to 5nm below, even will develop the touch head-disk system. It can't be neglected that interface forces and surface roughness affect the head-disk systems on the microscale.
     The amended Hamaker constant is adopted and the molecular interaction formula in the head/disk interface is derived in this paper. Then, taking a double-track slider and an advanced step slider (ASS) as examples, numerical integration method is adopted to study the effect of lubricating layer on intermolecular forces. Finally, the finite volume method is used to calculate the air bearing force for the wedge-type slider. The relationship of total air bearing force including intermolecular force considering lubricating layer and minimum flying height is studied. It is found that the lubricating layer can significantly reduce the intermolecular force when the thickness of the lubricating layer is less than 1nm. The reduction of intermolecular force is slow by continuing to increase the lubricating layer thickness when lubricating layer is thicker than 2nm. It is found that the total air bearing force is greatly affected by lubricating layer thickness when the slider flying height is less than 2nm.
     When the collision happen between slider and disk, surface roughness have a certain effect on its contact collision characteristics, so based on statistical contact models, the rough surface heights follow a Weibull distribution or a Guass distribution. First, following KE model, the interface forces corresponded to above two distributions including the contact force, adhesion force and maximum static friction force have been calculated. Second, through calculation interface forces of different cases rough surfaces, it has found that the effect of the roughness on interface forces is significant. Finally, It has discussed that the effect of the skewness, plasticity index and energy of adhesion on static friction coefficient, It has been found that the static friction coefficient corresponding to positive skewness is small than that of negative skewness with the same applied force. The more plasticity index, the smaller static friction coefficient. More cleaner interfaces have higher energy of adhesion, and its static friction coefficient has a higher values.
     Additionally, the simplified collision model between slider and disk has been proposed in the present paper, discussed the assumption that the collision model have to follow conditions, and stress of the model is analyzed and calculated. First of all, it is researched that the variation of the slider's maximum displacement, maximum contact radius and maximum contact stress with sphere radius and the impact velocity, it is found that the higher impact velocity and the smaller sphere radius, the interface has became more easily failure. Second, based on the magnetic thin-film disk configuration, the effect of the disk layer thickness on impact variables has been studied, it is found that its effect is modest. However, the collision characteristics is mainly affected by the influence of disk substrate. Ultimately, a single non-dimensional parameter has been introduced to gauge the influence of surface roughness on the impact. It is found that when the roughness becomes larger, the impact influence is larger. Before the surface plastic deformation, roughness can effectively slowed contact collision severity.
引文
[1]踏步.硬盘的构造原理及维护[J].专题策划,2001,3:29-31
    [2]白永林.超高密度光盘存储关键技术的研究[D].北京:中国科学院研究生院,2003
    [3]刘爱龙.微硬盘磁头弹性臂的研究[D].西安:电子科技大学,2006
    [4]吴彦华,孙磊厚,陈扬枝,朱文坚.磁头/磁盘系统静态性能研究[J].现代制造工程,2009,7:15-18[5]Tang T.. Dynamics of air-lubricated slider bearing for non-contact magnetic recording[J]. ASME Journal of Lubrication Technology,1971,93:272-278
    [6]Hayashi T.,et al. Dynamic characteristics of Gas-lubricated slider bearings under high Knudsen number conditions[J]. ASME Journal of Tribology,1990,112:111-118
    [7]Ruiz O.J., Bogy D. B.. A numerical simulation of the head-disk assembly in magnetic hard disk files[J]. ASME Journal of Tribology,1990,112:593-613
    [8]Cha E., Bogy D.B., A numerical scheme for static and dynamic simulation of sub-ambient pressure shaped rail sliders[J]. ASME Journal of Tribology,1995,117:36-46
    [9]Hu Y.. Flying characteristics of a slider over textured surface disks [J]. IEEE Transactions On Magnetics, 1997,V33(8),1431-1439
    [10]Jeong T G., Bogy D B.. Numerical Simulation of Dynamic Loading in Hard Disk Drives[J]. ASME Journal of Tribology,1993,115:370-375
    [11]Zeng Q. H., Chapin M., David D B.. Dynamics of the Unload Process for Negative Pressure Slider[J]. IEEE Transactions on magnetics,1999,35(2):512-520.
    [12]Suzuki S., Nishihira H., Study of Slider Dynamics over Very Smooth Magnetic Disks[J]. ASME Journal of Tribology,1996,118:382-387.
    [13]Norio Tagawa, David D B.. Air Film Dynamics for Micro-Textured Flying Head Slider B-earings in Magnetic Hard Disk Drives[J]. Journal of Tribology JULY 2002, Vol.124
    [14]Bogy D. B.. Some Tribology and Mechanics Issues for 100Gb/in2 Hard Disk Drive[J]. IEEE Transactions on Magnetics,2002,38(5):1879-1885
    [15]Thornton B. H., Bogy D. B.. A numerical study of air-bearing slider form-factors[J]. ASME Journal of Tribology,2004,126:553-558
    [16]Isralachvili J N., Intermolecular and surface forces with applications to colloidal and biological systems[J].1985,22:65-85
    [17]Wang R. H., Nayak Vasant, Huang F. Y.,et al. Head-disk Dynamics in the Flying Near Contact and Contact regimes[J].ASME Journal of Tribology,2001,123:561-565
    [18]Wu L., Bogy D. B.. Effect of the intermolecular forces on the flying attitude of sub-5nm flying height air bearing slider in hard disk drives[J]. ASME Journal of Tribology,2002,124(3):562-567
    [19]Thornton B. H., Bogy D. B.. Head-disk interface Dynamic instability due to intermolecular force[J]. IEEE Transactions on Magnetics,2003,39(5):2420-2422
    [20]Thornton B.H., Bogy D.B.. A parametric study of head-disk interface instability due to intermolecular force[J]. IEEE Transactions on Magnetics 2004,40(1):337-343
    [21]Zhang B., Nakajima, A. Possibility of surface force effect in slider air bearing of 100 Gbit/in hard disks[J].Tribology International,2003,36:291-296
    [22]Gupta V., Bogy D.B.. Effect of intermolecular forces on the static and dynamic perf-ormance of air bearing sliders:Part Ⅱ-Dependence of the stability on Hamaker constant,suspensio-n preload and pitch angle[J]. ASME Journal of Tribology,2006,128:203-208
    [23]白少先,孟永刚,温诗铸.范德华力对磁头/硬盘系统气体润滑特性的影响[J].摩擦学学报,2007,27(3):264-268
    [24]梁丽,王玉娟,陈云飞.分子间作用力对硬盘磁头承载力的影响[J].功能材料与器件学报,2008,14(1):93-97
    [25]Hanchi J., Polycarpou A. A., Boutaghou, Z., Proceedings of the Symposium on Interface Technology Towards 100 Gbit/in2[J].Tribology of Contacting Head-Disk Interface,1999,9:17-22
    [26]Polycarpou A. A., and Etsion I.. Static Friction of Contacting Real Surfaces in the Presence of Sub-Boundary Lubrication [J]. ASME J. Tribol.,1998,120:296-303
    [27]Lee S.C., Andreas A. P.. Adhesion forces for sun-10nm flying-height magnetic st-orage head disk interfaces[J]. ASME Journal of Tribology,2004,126:334-341
    [28]Johnson K. L., Kendall K., Roberts A. D.. Surface Energy and the Contact of Elastic Solids[J]. Proc. R. Soc. London,1971,324:301-313
    [29]Derjaguin B. V., Muller V. M., Toporov Y. P.. Effect of Contact Deformations on the Adhesion of Particles[J]. J. Colloid Interface Sci.,1975,53:314-326
    [30]Greenwood J. A., Williamson B. P.. Contact of Nominally Flat Surfaces[J]. Proc. R. Soc. London,1966, 295:300-319
    [31]Pullen J., Williamson J. B.. On the plastic contact rough surfaces[J]. Proc. R. Soc. London,1972, 327:159-173
    [32]Whitehouse D. J., Archard J. F.. The properties of random Surface of significance In their contact[J]. Proceedings of Royal Society,1970,A316:97-121
    [33]McCool J. I., Comparison of models for the contact of rough surfaces[J].Wear,1986,107:37-60
    [34]Bhushan B., Dugger M T.. Real contact area measurement on magnetic rigid disks[J].Wera,1990,137:41-50
    [35]Chang W. R., Etsion I., Bogy D. B., An Elastic-Plastic Model for the Contact of Rough Surfaces[J] ASME J. Tribol.,1987,109:257-263
    [36]Chang W. R., Etsion I., and Bogy D. B., Adhesion Model for Metallic Rough Surfaces[J]. ASME J. Tribol.,1988,110:50-56
    [37]Zhao Y., Maietta D. M., Chang L.. An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow[J]. ASME J. Tribol.,2000,122:86-93
    [38]Kucharski S.. Finite elements model for the contact of rough surfaces[J]. Wear,1994,177:1-13
    [39]Kogut L., Etsion I.. Elastic-plastic contact analysis of a shere and rigid flat[J]. Journal of Applied Mechanics,2002,69:657-662
    [40]Kogut L., Etsion I.. A Static Friction Model for Elastic-Plastic Contacting Rough Surfaces[J]. Journal of Applied Mechanics,2004,126:34-40
    [41]Robert L. J, ltahak G. A statistical model of elasto-plastic asperity contact between rough surfaces[J]. Tribology International,2006,39:906-914
    [42]赵永武,吕彦明,蒋建忠.新的粗糙表面弹塑性接触模型[J].机械工程学报,2007,43:95-101
    [43]Stanley H. M., Etsion, I., Bogy, D. B.. Adhesion of Contacting Rough Surfaces in the Presence of Sub-Boundary Lubrication [J]. ASME J. Tribol.,1990,112:98-104
    [44]Polycarpou A. A., Etsion, I.. Comparison of the Static Friction Subboundary Lub-rication Model With Experimental Measurements on Thin Film Disks[J]. STLE Tribol. Trans.,1998,41:217-224
    [45]Gui J., Marchon B.. A Stiction Model for a Head-Disk Interface of a Rigid Dis-k Drive[J]. Appl. Phys., 1995,78:4206-4217
    [46]Gui J., Marchon B.. Fly/Stiction:Mechanical Instability of a Head-Disk Interface[J]. IEEE Trans. Magn.,1998,34:1804-1806
    [47]Israelachvili J. N., Intermolecular and Surface Forces,2nd[M]. San-Diego:Academic Press,1991
    [48]Hua W., Liu B., et al. Contact recording review[J].Microsyst Technol.2010,16:493-503
    [49]Ambekar R., Gupta V., Bogy D.B.. Experimental and numerical investigation of dynamic instability in the head disk interface at proximity[J]. ASME Trans. J. Tribol.,2005,127:530-536
    [50]Ono K., Oohara S.. Experimental Identification of Elastic, Damping and Adhesion Forces in Collision of Spherical Sliders with Stationary Magnetic Disk[J]. ASME Trans. J. of Tribology,2003,127:365-375
    [51]Li Z.F., Chen C.Y., Liu, J.J.. Study of Head-Disk Interface at Low-Flying Height[J]. IEEE Trans. Magnetics,2003,39,(5):2462-2464
    [52]Sakane Y., Wakabayashi A., Li L., Kasai P.H.. Effect of molecular structure of PFPE lubri-cant on interaction at HDI in near-contact operation[J]. IEEE Trans. Magnet.2006,42,2501-2503
    [53]Mate C.M., Payne R.N., Dai Q., Ono K... The nanoscale origins of dynamic friction in an asymmetric contact geometry[J]. Phys. Rev. Lett.2006,97(21):216104.1-216104.4
    [54]Kata T., Kogure K., Mitsuya Y, et al.. New method of detecting contact between floating head and disk[J].IEEE Transaction on Magnetics,1980,16(5):873-875
    [55]Yeack Scranton. Novel piczoelastic transduncers to moniter head-disk interactions[J].IEEE Transactionas on Magnetics,1986,22(5):1011-1016.
    [56]Benson R C,Talke F E. Transition between sliding and flying of a magnetic recording slider[J]. IEEE Transactions on Magnetics,1987,23(5):3441-3443
    [57]Ponnaganti V., Kane T. R.,White J. W.. Dynamics of head-disk contact/impact in magnetic recording[J
    ].IEEE Transactions on Magnetics,1987,23(5):3435-3437
    [58]祝夭龙,杨荫薄,周学仁.磁盘浮动特性研究:头盘碰撞动力学分析[J].电子计算机外部设备,1993,17(1):10-14
    [59]Kumar S.,Khanna V. D.,SriJayantha M.. A study of the head disk interface shock failure mechanism[J]. IEEE Transactions on Magnetics,1994,30(6):4155-4157
    [60]Kouhei T.,Yamada T.,Kuroba Y.,et al. A study of head-disk interface shock resistance[J]. IEEE Transactions on Magnetics,1995,31(6):3006-3008
    [61]徐光弘,王宏民.小型硬盘驱动器头盘系统冲击特性研究综述[J].电子计算鸡外部设备,1998,22(3):61-63
    [62]林大超,施惠基,曾德斌等.硬盘驱动器冲击激励的头盘碰撞分析[J].爆炸与冲击,2004,24(2):122-126
    [63]Kyosuke Ono, Kenji NAKAGAWA. Experimental study of collision motion, contact force and adhesion force of hemispherical sliders with stationary magnetic disks[J].ASME International Journal Series C,2006,49(4):1159-1170
    [64]Kyosuke Ono, Dynamic instability of flying head slider and stabilizing design for near-contact magnetic recording[J]. Journal of Magnetism and Magnetic Materials,2008,320:3174-3182
    [65]杨志伊.纳米科技[J].机械工业出版社,2003,17:1-16
    [66]PIERRE LAMBERT, STEPHANE REGNIER. Surface and contact forces models within the frame-work of microassembly[J]. Journal of Micromechatronics,2006,3(2):123-157
    [67]马志波,乔大勇等.MEMS微结构粘附问题研究[J].航空精密制造技术,2006,42(6):9-11
    [68]汪时机.微小结构粘附的尺度效应与张法拉的理论研究[D].北京:中国科学技术大学,2007
    [69]李明.固体微颗粒粘附与清除的机理及表面保洁技术的研究[D].长沙:中南大学,2009
    [70]Jagota A., Argento C..An Intersurface Stress Tensor[J]. Journal of Colloid and Interface Science,1997,192(2):326-336
    [71]Lifshitz E., The theory of molecular attractive forces between solids[J], Soviet Phys.,1956(2) 73-83
    [72]陈东辉,典型生物摩擦学结构及仿生[D].长春:吉林大学,2007
    [73]Johnson K.L., Contact Mechanics [M]. England:Cambridge University Press,1987
    [74]Tabor D.. Surface forces and surface interaetions [J]. Journal of colloid and interface science,1976,58:1-13
    [75]樊康旗,MEMS黏着接触特性研究[D].西安:西安电子科技大学,2007
    [76]Maugis D.. Adhesion of sphere:the JKR-DMT transition using a Dugdale model[J]. Journal of Colloid and Interface Seience,1992,150(1):243-269
    [77]Johnson K.L,, Greenwood J.A.. An Adhesion Map for the Contact of Elastic Spheres[J]. Journal of Colloid and Interface Seience,1997,192:326-333
    [78]丁建宁,张建,杨平等,范德华力作用下粗糙表面静态粘附的研究[J].传感器技术学报,2006,19(5):1663-1666
    [79]王方明,毛多鹭,浅析分子力的本质[J].青海教育,2002,11:41-42
    [80]Matsuoka H., Ohkubo S., Fukui S.. Corrected expression of the van der Waals pressure for multilayered system with application to analyses of static characteristics of flying head sliders with an ultrasmall spacing[J]. Microsyst Technol,2006,11:824-829
    [81]Matsuoka H., Ohkubo S., Fukui S.. A new evaluation method of surface energy of ultra-thin film[J]. Microsyst Technol,2010,16:73-76
    [82]李欣,胡元中,王慧.磁盘润滑膜全氟聚醚的分子动力学模拟研究[J].物理学报2005,54(8):3788-3792.
    [83]杨得全,范垂祯.LB膜及其在气体传感器中的应用[J].Vacuum & Cryogenics 1997,6(1):93-99.
    [84]Li X. H., Numerical simulation of slider air bearings in head-disk interface system based on meshfree method[D].NANYANG TECHNOLOGICAL UNIVERSITY,2005
    [85]Fukui S., Kaneko R. Analysis of Ultra-Thin Gas Film Lubrication Based on Linearized Boltzmann Equation:First Report-Derivation of a Generalized Lubrication Equation Including Thermal Creep Flow[J]. Journal of Tribology,1988,110(2):253-261
    [86]陈继涛.表面粗糙度检测方法发展史及研究现状概述[J].中国科技信息,2007,17:305-306
    [87]贺林,朱均.粗糙表面接触分形模型的提出与发展[J].摩擦学学报,1996,16(4):375-384
    [88]McCool J. I.. Extending the Capability of the Greenwood Williamson Microcontact Model[J] Journal of
    Tribology,2000,122(3):496-502 [89]Kotwal C. A., Bhushan B.. Contact Analysis of Non-Guassian Surfaces for Minimum Static and Kineti c Friction and Wear[J].Tribology Transactions,1996,39(4):890-898
    [90]McCool J.I., Relating Profile Instrument Measurements to the Functional Performance of Rough Surfaces[J]. Journal of Tribology,1987,109(2):264-270
    [91]Chang W. R., Etsion, I., Bogy, D. B.. Static Friction Coefficient Model for Metallic Rough Surfaces[J] ASME Jour. of Trib.,1988,10:57-63
    [92]Kogut L., Etsion I.. A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces[J]. Tribology Transactions,2003,46:383-390
    [93]Tabor D.. Friction-The Present State of Our Understanding[J], ASME J. Lubr. Technol., 1981,103:169-179
    [94]Mesarovic S. D., Fleck N. A.. Frictionless Indentation of Dissimilar Elastic-Plastic Spheres[J], Int. J. Solids Struct.,2000,37:7071-7091
    [95]Suk M., Denning P., Gillis D., Magnetic erasures due to impact induced interfacial heating and magnetostriction[J]. Journal of Tribology,2000,122(1):264-268.
    [96]Ono K., Yamane M., Yamaura, H.. Experimental and analytical study of bouncing vibrations of a flying head slider in a near-contact regime[J]. ASME J. Tribol.,2005,127(3):376-386
    [97]Ono K., Oohara S.. Damping and adhesion forces in collision of spherical sliders with stationary magnetic disk[J].ASME J. Tribol.,2005,127(3):365-377
    [98]刘学璋,王柏春,许向阳等人,计算机硬盘微晶玻璃基板抛光研究[J].微细加工技术,2008,4(2):28-32
    [99]Gao C., Dai P., Vu V.. Flying stiction lubricant pick-up and carbon-overcoat wear of magnetic heads[J]. ASME J. Tribol.,1999,121,97-101
    [100]Xu J., Tsuchiyama R.. Ultra-low-flying-height design from the viewpoint of contact vibration[J]. Tribol. Int.,2003,36,459-466
    [101]Lee S. C., Polycarpou A. A.. Microtribo dynamics of pseudo-contacting head-disk interfaces intended for 1 Tbit/in[J]. IEEETrans. Magnet.2005,41,812-818
    [102]Tani H., Goshi K., Suzuki K., Hamaguchi T.. Contact hysteresis behavior of textured pad slider in head-disk interface[J]. IEEE Trans. Magnet,2006,42:2525-2527
    [103]Ono K., Yamane M.. Improved analysis of unstable bouncing vibration and stabilizing design of flying head slider in near-contact region[J]. ASME J. Tribol.,2007,129,65-74
    [104]Ono K., Yamane M.. Experimental and analytical investigation of bouncing vibrations of a flying head slider in the near-contact region[J]. ASME J. Tribol.,2005,129,246-255
    [105]Shimizu Y., Ono K., et al. Study of a spherical-pad head slider for stable low-clearance recording in near-contact regime[J]. Tribol.Lett,2008,30(3):161.-167
    [106]Johnson K. L.. Contact Mechanics[J]. New York:Cambridge University Press,1985
    [107]Ye N., Komvopoulos K.. Three-dimensional finite element analysis of elastic-plastic layered media under thermomechanical surface loading[J]. Journal of Tribology,2003,125(1):52-59
    [108]Greenwood J.A., Johnson K.L., Matsubara E.. Surface roughness parameter in Hertz contact[J],Wear, 1984,100(1-3):47-57
    [109]Bahrami M., Yovanovich M. M., Culham,J.R.. A compact model for spherical rough contacts[A]. Proceedings of 2004 ASME/STLE International Joint Tribology Conference[C], California:Long Beach, 2004,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700