Mn基合金相变机制的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属Mn具有α,β,γ,和6四种结构,其中的面心立方结构γ相只有在温度处于1100-C到1140℃之间才能够稳定,通常可以采用合金化(加入Ni, Pd, Rh, Pt, Cu, Fe, Au等金属元素)来稳定γ相。Mn基合金近年来发展为一种新型的智能材料,可以用做重要的磁性部件。大多数Mn基合金(它们的3d轨道是接近半占据的)具有反铁磁性能,同时具有高的尼尔温度TN,因而可以用做自旋阀钉扎材料、巨磁电阻和隧道磁致电阻设备。MnX (X=Ni, Pd, Rh, Pt和Au)合金的低温反铁磁(AFM)结构是由高温的顺磁(PM)结构通过降温转变得到,过程包含马氏体相变及磁性相变,认识它们相变的理论机制有助于研发性能更加优越的磁性材料。本论文基于密度泛函理论(DFT)采用第一性原理方法对MnX(X=Ni,Pd,Rh,Pt,Au和Ir)合金的马氏体相变进行了系统的物理性质的研究,得到了以下创新性结果:
     1.利用投影缀加平面波在广义梯度近似(GGA)和局域密度近似(LDA)下分别计算MnX (X=Ni, Pd, Rh, Pt, Au和Ir)体系的所有低温AFM-L10相的晶格结构,结果表明,GGA方法更适合我们研究的合金。以后的计算都采用PAW-GGA方法。首先,计算了PM-B2/L10相及AFM-L10相的晶格参数(晶格常数,原子内坐标,键角),计算结果与实验值比较接近。我们也首次得到MnIr/Pt的PM-B2相及MnIr的PM-L10相的晶格参数。第一性原理计算的总能大小顺序与实验所发现的相变顺序一致,表明用总能来预测相变是正确的。对于MnRh和MnPd、MnPt和MnAu合金,我们得到的总能能差与实验相变温度随合金的价电子总数变化的趋势基本是一致的,再一次表明我们用总能预测的相变顺序是合适的。
     2.我们还用第一性原理方法首次计算了MnX(X=Ni, Pd,Rh,Pt和Au)合金体系的弹性常数、德拜温度、弹性模量、机械各向异性、泊松比和比热容。弹性常数的计算表明PM-B2相的弹性常数不满足稳定性标准,剪切模量C'的软化导致其发生四方畸变,会转变为四方结构,这从微观上首次解释了实验所发生的马氏体相变(PM-B2→PM-L10)的相变机理。AFM-L10目的弹性常数计算结果表明这两相是机械稳定的。低温AFM-L10相的德拜温度的计算结果与实验值符合的很好,说明我们计算的弹性常数是正确的。得到的弹性模量,各向异性及泊松比表明MnX (X=Ni, Rh和Ir)合金是脆性的,所有5种合金具有各向异性,并且在单轴变形时具有大的体积改变。AFM-L10相比热容的计算表明,在低温遵从德拜模型,高温接近杜隆-珀替极限。对于MnIr合金,弹性常数的计算结果也证实了我们对其相变的猜想,说明MnIr合金降温时所发生的相变顺序和其它合金一样。
     3.为了了解合金的动力学稳定性,我们首次计算了MnX (X=Ni, Pd, Rh, Pt, Au和Ir)合金体系的声子谱。结果显示高温PM-B2相的声子曲线存在虚频点,表明该相是动力学不稳定的,除MnPt外,其它合金的PM-L10相也是动力学不稳定的。除了MnPt和MnAu,其它所有合金的低温AFM-L10相都具有动力学稳定性。具有动力学不稳定的PM-L10结构也只能转变为顺磁结构,因此反铁磁转变(PM-L10→AFM-L10)是由磁性引起的。磁性Mn原子交换参数的首次计算表明,主要决定反铁磁相变的交换参数为:J1及J1L (MnNi),J1和J2L(MnRh和MnPd), J2(MnPt和MnAu)。
     4.为了进一步得到MnX (X=Ni, Pd, Rh, Pt, Au和Ir)合金体系的电子结构,我们用VASP软件计算了它们的总态密度和分波态密度。总态密度计算表明它们的低温AFM-L10是最稳定的,首次得到的分波态密度有助于了解合金结构的轨道占据情况,为进一步的实验和理论研究做基础。
The Mn metal exists with four kinds of structures(α,β,γ and δ), in which the face-centered cubic y phase can be stable only from1100℃to1140℃, so y phase can be stabilized by alloying, such as adding Ni, Pd, Rh, Pt, Cu, Fe, Au and so on. In recent years, Mn-based alloys are developed to be a new type of intelligent materials, and can be used for important magnetic components. Most of Mn-based alloys are antiferromagnetic, whose3d orbit is nearly semi-filled and Neel temperature is high, so that they can be used as spin vale pinning materials, giant magnetoresistance and tunnel magnetoresistance equipments. The antiferromagnetic-MnX (X=Ni, Pd, Rh, Pt and Au) at low temperatures is obtained from paramagnetic structures by cooling, the martensite phase transition and antiferromagnetic phase transition occur during the cooling. Understanding the phase transition mechanism helps to develop magnetic materials with more superior performance. In this paper, we systematically study the martensite phase transition for MnX (X=Ni, Pd, Rh, Pt and Au) using the first principles method based on the density functional theory, and obtain the following results:
     1. The lattice constants of all AFM-L1O alloys for MnX (X=Ni, Pd, Rh, Pt, Au and Ir) system are respectively calculated by the projector-augmented-wave pseudopotential in the generalized gradient approximation(GGA) and the local density approximation(LDA), the results show that the GGA method is appropriate for the studied alloys, all the following calculations are performed by PAW-GGA method. We first calculate the lattice parameters (lattice constant, atomic coordinate, band angle) of PM-B2/L10phase and AFM-L10phase, the calculations values are close to the experimental data. The lattice parameters of PM-B2MnIr/Pt and PM-L10Mnlr are first obtained. The total energy order calculated through the first-principles is consistent with the phase transformation order found by experiments, which indicate that it is correct to use total energy to predict the phase transition. For MnRh and MnPd, MnPt and MnAu alloy, the tendency.of energy difference of total energy and experimental phase transition temperature dependence on the total number of valence electron shows that it is suitable to use total energy to predict the phase transition once again.
     2. We also first calculate the elastic constant, Debye temperature, elastic module, mechanical anisotropy, Poisson's ratio, specific heat capacity of MnX (X=Ni, Pd, Rh, Pt and Au) alloy system. The elastic constant calculations indicate that the elastic constants of PM-B2phase don't satisfy the stability standard, and the softening of shear module C" induces the PM-B2structure to produce tetragonal distortion and transform to the tetragonal structure, which first explains the martensite phase transition (PM-B2→PM-L10) mechanism. The elastic constants calculations for these phases show that they are mechanically stable. The Debye temperatures calculations for low temperature AFM-Llo phases are accord to experimental data well, indicating that our calculated elastic constants are correct. Obtained elastic module, anisotropy and Poisson's ratio indicate that the MnX (X=Ni, Rh and Ir) alloy is brittle, and all the five kinds of alloys are anisotropic and have a large volume change during uniaxial deformation. The specific heat capacity calculations of AFM-L10phases indicate that it follows the Debye module at low temperatures, and approaches to the Dulong-Petit limit. For Mnir alloy, the elastic constant calculations also confirm our guess about its phase transition, showing that the phase transition order for Mnlr alloy by cooling is the same to other alloys.
     3. In order to understand the dynamic stability of alloys, we also first calculate the phonon spectrum for MnX (X=Ni, Pd, Rh, Pt, Au and Ir) alloy system. The results show that phonon curves for the high temperature PM-B2phase has imaginary frequency, indicating that this phase is dynamically unstable. Except for MnPt and Mnir, PM-L10phases of other alloys are also dynamically unstable. Except for MnPt and MnAu, AFM-L10phases of other alloys are dynamically stable. The dynamically unstable PM-L10structure can only transform a new PM structure, so that the antiferromagnetic transition (PM-L10→AFM-L10) is caused by magnetism. The exchange parameters of magnetic atom Mn are first calculated and show that the exchange parameters dominating the antiferromagnetic transition are J1and J1L (MnNi), J1and J2L (MnRh and MnPd) and J2(MnPt and MnAu).
     4. To obtain the electronic structures of MnX (X=Ni, Pd, Rh, Pt, Au and Ir) alloy system, we have calculated their total density of states and partial density of states. The total density of states calculated show that their AFM-Llo structures are most stable, and first obtained partial density of states help to understand the orbital occupancy of alloy, which are the foundation for further experiments and theoretical research.
引文
[1]DesRoches R., Delemont M. Seismic retrofit of simply supported bridges using shape memory alloys[J]. Eng. Struct.,2002,24(3):325-332
    [2]Corbi O. Shape memory alloys and their application in structural oscillations attenuation[J].2003, 11(5-6):387-402
    [3]Sutoua Y., Omoria T., Wang J. J., et al. Characteristics of Cu-Al-Mn-based shape memory alloys and their applications[J].2004,378(1-2):278-282
    [4]Yashima M., Kakihana M., Yoshimura M. Metastable-stable phase diagrams in the zirconia-containing systems utilized in solid-oxide fuel cell application[J]. Solid State Ionics, 1996,86-88(2):1131-1149
    [5]William J. B., Frederick E. W. A summary of recent research on the nitinol alloys and their potential application in ocean engineering[J]. Ocean Eng.,1968, 1(1):105-108
    [6]Xu Y, Otsuka K., Toyama N. Fabrication of TiNi/CFRP smart composite using cold drawn TiNi wires[J]. Proc. SPIE,2002,4699:564-574
    [7]Li J. C., Zhang Z., Jiang Q. Properties and application of Fe-6Si-14Mn-9Cr-5Ni shape memory alloy[J]. Mater. Sci. Technol.,2001,17(3):292-295
    [8]Ishida A., Martynov V. Sputter-Deposited Shape-Memory Alloy Thin Films:Properties and Applications[J]. MRS Bull.,2002,17(2):111-114
    [9]李青.耐腐蚀性钛合金[J].材料开发与应用,1999,11(3):45-47
    [10]Shelyakov A. V., Sitnikov N. N., Koledov V. V. Melt-spun thin ribbons of shape memory TiNiCu alloy for micromechanical applications[J].2011,2(2):68-77
    [11]Zhang P., Ma A. B., Lu S., et al. Effect of equal channel angular pressing and heat treatment on the microstructure of Cu-Al-Be-B shape memory alloy [J]. Mate. Lett.,2009, 63(30):2676-2679
    [12]Cheniti H. L., Bouabdallah M., Patoor E. High temperature decomposition of the Pi phase in a Cu-Al-Ni shape memory alloy[J]. J. Alloy. Compd.,2009,476(1-2):420-424
    [13]Saldivia R., Sarrazin M., Sepulveda A., Damping characteristics of a CuZnAlNi shape memory alloy[J]. Mater. Sci. Eng., A,2002,335(1-2):313-319
    [14]Jiang C. B., Feng G., Gong S. K., et al. Effect of Ni Excess on Phase Transformation Temperatures of NiMnGa Alloys[J]. Mater. Sci. Eng., A,2003,342(1-2):231-235
    [15]Wang J. M., Bai H. Y., Jiang C. B., et al. A highly plastic Ni50Mn25Cu18Ga7 high-temperature shape memory alloy[J]. Mater. Sci. Eng., A,2010,527(7-8):1975-1978
    [16]Li Y., Xin Y., Chai L., et al. Microstructures and shape memory characteristics of dual-phase Co-Ni-Ga high-temperature shape memory alloys[J]. Acta Mater.,2010, 58(10):3655-3663
    [17]Oikawa K., Ota T., Imano Y, et al. Phase equilibria and phase transformation of Co-Ni-Ga ferromagnetic shape memory alloy system[J].2006,27(1):75-82
    [18]Lin T., Mauri D., Staud N., et al. Improved exchange coupling between ferromagnetic Ni-Mn-based films[J]. Appl. Phys. Lett.,1994,65(9):1183-1185
    [19]Mao S., Mack A., Singleton E., et al. Thermally stable spin valve films with synthetic antiferromagnet pinned by NiMn for recording heads beyond 20 Gbit/in.2 [J]. J. Appl. Phys., 2000,87(9):5720-5722
    [20]Jungblut R. Orientational dependence of the exchange biasing in molecular-beam-epitaxy-grown Ni80Fe20/Fe50Mn50 bilayers (invited)[J]. J. Appl. Phys.,1994, 75(10):6659-6664
    [21]Baibich M. N., Broto J. M., Fert A., et al. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices[J]. Phys. Rev. Lett.,1988,61(21):2472-2475
    [22]Jin S., Tiefel T. H., MeCormack M., et al. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films[J]. Sci.,1994,264:413-415
    [23]胡松青,杨渭.巨磁电阻应用的现状与展望[J].青岛大学学报,2003,16(1):70-72
    [24]蒋致诚.硬盘驱动器巨磁电阻(GMR)磁头:从微米到纳米[J].物理学和高新技术,2004,33(7):529-533
    [25]Mao S. N., Wang L., Hou C. H., et al. Vertical GMR recording heads for 100 Gb/in2[J]. IEEE Trans. Magn.,2003,39(5):2396-2398
    [26]柴春林,腾蛟,于广华,等.退火对FeMn钉扎自旋阀性质的影响[J],物理学报,2002,51(8):1846-1850
    [27]Anderson, G W. Spin-valve thermal stability:The effect of different antiferromagnets[J]. J. Appl. Phys.,2000,87(9):5726-5728
    [28]Dieny B., Speriosu V. S., Gurney B. A., et al, Spin-valve effect in soft ferromagnetic sandwiches[J]. J. Magn. Magn. Mater.,1991,93:101-104
    [29]Kishi H., Kitade Y., Miyake Y, et al, Study of exchange-coupled bias field in Ni-Fe/Pd-Pt-Mn thin films[J]. Magn., IEEE Trans, on,1996,32(5):3380-3382
    [30]Anderson, G. W., Pakala M., Huai, Y. Spin-valve thermal stability:interdiffusion versus exchange biasing[J]. Magn., IEEE Trans, on,2000,36(5):2605-2607
    [31]Lederman M. Performance of metallic antiferromagnets for use in spin-valve read sensors[J]. Magn., IEEE Trans, on,1999,35(2):794-799
    [32]Lin T., Mauri D., Staud N., et al. Improved exchange coupling between ferromagnetic Ni-Fe and antiferromagnetic Ni-Mn-based films[J]. Appl. Phys. Lett.,1994,65 (9):1183-1185
    [33]Krishnan K., Nelson C., Echer C., et al. Exchange biasing of permalloy films by MnxPt1-x:Role of composition and microstructure[J]. J. Appl. Phys.,1998,83(11):6810-6812
    [34]Saito M., Hasegawa N., Koike F., et al. PtMn single and dual spin valves with synthetic ferrimagnet pinned layers[J]. J. Appl. Phys.,1999,85(8):4928-4930
    [35]Hoshino K., Nakatani R., Hoshiya H., et al. Exchange coupling between antiferromagnetic Mn-Ir and ferromagnetic Ni-Fe layers[J]. Jpn. J. Appl. Phys.,1996, 35(2A):607-612
    [36]Veloso A., Freitas P. P., Oliveira N. J. Spin Valve Heads with a Corrosion Resistant MnRh Exchange Layer[J]. IEEE Trans. Magn.,1998,34(4):2343-2347
    [37]Tang Y. J., Roos B., Mewes T., et al. Enhanced coercivity of exchange-bias Fe/MnPd bilayers[J]. Appl. Phys. Lett.,1999,75(5):707-709
    [38]Wang D., Tondra M., Nordman C., et al. Thermal stability of spin dependent tunneling junctions pinned with IrMn[J]. IEEE Trans. Magn.,1999,35(5):2886-2888
    [39]Tehrani S., Slaughter J. M., Chen E., et al. Progress and outlook for MRAM technology[J]. IEEE Trans. Magn.,1999,35(5):2814-2819
    [1]Hohenberg P., Kohn W. In homogeneous electron gas[J]. Phys. Rev.,1964, 136(3B):B864-B871
    [2]Thomas L. H. The calculation of atomic fields[J]. Proc. Cambridge Philos. Soc.,1927, 23(33):542-548
    [3]Fermi E. A statistical method for the determination of some atomic Properties and the application of this method to the theory of the periodic system of elements[J]. Z. Phys.,1928, 48(1-2):73-79
    [4]Dirac P. A. M. Note.on exchange phenomena in the Thomas atom[J]. Proc. Cambridge Philos. Soc.,1930,26(3):376-385
    [5]Weiszacker C. F. v. Zur Theorie der Kernmassen[J]. Z. Phys.1935,96(7-8):431-458
    [6]Slater J. C. A Simplification of the Hartree-Fock Method[J]. Phys. Rev.,1951, 81(3):385-390
    [7]Levy M. Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem[J]. Proc. Natl. Acad. Sci. USA,1979,76(12):6062-6065
    [8]Levy M. Electron densities in search of Hamiltonians[J]. Phys. Rev. A,1982, 26(3):1200-1208
    [9]Hybertsen M. S., Louie S. G Electron correlation in semiconductors and insulators:Band gaps and quasiparticle energies[J]. Phys. Rev. B,1986,34(8):5390-5413
    [10]Gell-Mann M., Brueckner K. A. Correlation Energy of an Electron Gas at High Density[J]. Phys. Rev.,1957,106(2):364-368
    [11]Kohn W., Sham L. J. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Phys. Rev. A,1965,140(4A):1133-1138
    [12]Langreth D. C., Mehl M. J. Beyond the local-density approximation in calculations of ground-state electronic properties [J]. Phys. Rev. B,1983,28(4):1809-1834
    [13]Perdew J. P., Burke K., ErnZerhof M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett.,1996,77(18):3865-3868
    [14]Perdew J. P., Chevary J. A., Vosko S. H., et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Phys. Rev. B,1992,46(11):6671-6687
    [15]Martinez-Canales M., Bergara A. No Evidence of Metallic Methane Under Pressure[J]. High Pressure Res.,2006,26(4):369-375
    [16]Becke A. D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Phys. Rev. A,1988,38(6):3098-3100
    [17]Lee C., Yang W., Parr R. G Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B,1988,37(2):785-789
    [18]Mattsson A. E. Density Functional Theory:In Pursuit of the "Divine" Functional [J]. Science,2002,298(5594):759-760
    [19]Tao J., Perdew J. P., Staroverov V. N. Climbing the Density Functional Ladder: Nonempirical Meta-Generalized Gradient Approximation Designed for Molecules and Solids[J]. Phys. Rev. Lett.,2003,91(14):146401-146404
    [20]Bengone O., Alouani M., Blochl P., et al. Implementation of the Projector Augmented Wave LDA+U Method:Application to the Electronic Structure of NiO[J]. Phys. Rev. B,2000, 62(24):16392-16401
    [21]Anisimov V. I., Aryasetiawan F., Lichtenstein A. I. First-Principles calculations of the electronic structure and spectra of strongly correlated systems:the LDA+U method[J]. J. Phys. Condens. Matter.,1997,9(4):767-808
    [22]Liechtenstein A. I., Anisimov V. I., Zaanen J. Density-functional theory and strong interactions:Orbital ordering in Mott-Hubbard insulators[J]. Phys. Rev. B,1995,52(8):5467
    [23]Harmon B. N., Antropov V. P., Liechtenstein A. I., et al. Calculation of magneto-optical Properties for 4f systems:LSDA+Hubbard U results[J]. J. Phys. Chem. Solids,1995, 56(11):1521-1524
    [24]Galantucci L. M., Tricarico L. Thermo-mechanical simulation of a rolling Process with an FEM approach[J]. J. Mater. Process. Technol.,1999,92-93:494-501
    [25]张健飞,姜弘道.有限元并行计算的预处理[J].计算力学学报,2003,20(4):500-503
    [26]Hamann D. R., Sehluter M., Ching C. Norm-Conserving PseudoPotential[J]. Phys. Rev. Lett.,1979,43(20):1494-1497
    [27]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys. Rev. B,1990,41(11):7892-7895
    [28]Blochl P. E., Smargiassi E., Car R., et al. First-principles calculations of self-diffusion constants in silicon[J]. Phys. Rev. Lett.,1993,70(16):2435-2438
    [29]Voigt W. Lehrbuch der Kristallphysik[M]. Teubner:Leipzig,1928:1-978
    [30]Reuss A. Calculation of the Flow Limits of Mixed Crystals on the Basis of the Plasticity of Mono-Crystals[J]. Z. Angew. Math. Mech.,1929,9:49-58
    [31]Ranganathan S. I., Ostoja-Starzewshi M. Universal Elastic Anisotropy Index[J]. Phys. Rev. Lett.,2008,101(5):055504-055504-4
    [32]Pugh S. F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J]. Philos. Mag.,1954,45(367):823-843
    [33]Tao X. M., Liu Y. Z., Wang R. C., et al. First-principles investigations of elastic, electronic and thermodynamic properties of Al12X (X=Mo, W and Re)[J]. Intermetallics,2012, 24:15-21
    [34]Sin'ko G. V., Smirnow N. A. Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure[J]. J. Phys. Condens. Matter.,2002,14(29):6989-7005
    [1]Devasahayam A. J., Kryder M. A study of the NiFe/NiMn exchange coupling[J]. H. IEEE Trans. Magn.,1996,32(5):4654-4656
    [2]Lin T., Tsang C., Fontana E., et al. Exchange-coupled Ni-Fe/Fe-Mn, Ni-Fe/Ni-Mn and NiO/Ni-Fe films for stabilization of magnetoresistive sensors[J]. IEEE Trans. Magn.,1995, 31(6):2585-2590
    [3]Lin T., Mauri D., Staud N., et al. Improved exchange coupling between ferromagnetic Ni-Fe and antiferromagnetic Ni-Mn-based films[J]. Appl. Phys. Lett.,1994,65 (9):1183-1185
    [4]Adachi K., Wayman C. M., Transformation behavior of nearly stoichiometric Ni-Mn alloys[J]. Metall. Trans. A,1985,16(9):1567-1579
    [5]Ding L., Ladwig P. F., Yan X., et al. Thermodynamic stability and diffusivity of near-equiatomic Ni-Mn alloys[J]. Appl. Phys. Lett.,2002,80(7):1186-1188
    [6]Krasevee V., Delavignette P., Amelinckx S. Superstructure due to periodic twinning in quenched NiMn-alloy[J]. Mat. Res. Bull.,1967,2(11):1029-1034
    [7]Kren E., Nagy E., Nagy I., et al. Structure and transformation in the MnNi system near equiatomic composition[J]. J. Phys. Chem. Solids,1968,29(l):101-108
    [8]Krasevec V. The complex martensite in quenched NiMn alloy[J]. Phys. Stat. Sol.,1975, 30(1):241-250
    [9]Egorushkin V. E., Kulkov S. N., Kulkova S. E. Electronic structure and the theory of phase transformations in NiMn[J]. Physica B+C,1983,123(1):61-68
    [10]Huang M., Ladwig P. F., Chang Y. A. Phase transformations in sputter deposited NiMn thin films[J]. Thin Solid Films,2005,478 (1-2):137-140
    [11]Anokhina I. N., Egorushkin V. E., Kull'kov S. N., et al. Kinetic properties of the alloy NiMn in the B2 phase[J].1981,24 (10):915-918
    [12]Anokhina I. N., Kal'chikhin V. V., Kul'kova S. E. Electronic structure and kinetic properties of NiMn and NiTi alloys[J]. Sov. Phys. J.,1988,31(6):455-460
    [13]Kasper J. S., Kouvel J. S. The antiferromagnetic structure of NiMn[J]. J. Phys. Chem. Solid,1959,11 (3-4):231-238
    [14]Pearson W. B., Brun K., Krun A., et al. Equiatomic Transition Metal Alloys of Manganese. III. The Tetragonal NiMn Phase[J]. Acta Chem. Scand.,1965,19(2):477-484
    [15]Krasevec V., Delavignette P., Amelinckx S. Electron microscopic observation of order twins and anti-phase boundaries in tetragonal NiMn[J]. Mat. Res. Bull.,1967,2(8):775-780
    [16]Proctor W., Scurlock R. G., Wray E. M. Nuclear specific heats of MnNi and MnNi3[J]. Proc. Phys. Soc.,1967,90(3):697-705
    [17]Yamashita J., ASANO S., Wakoh S. Electronic Structure of Ni-Mn Alloys[J]. Prog. Theor. Phys.,1972,47(3):774-789
    [18]Kulkov S. N., Demjdenko V. S., Panin V. E. Thermal expansion of the antiferromagnetic intermetallic phase MnNi[J]. Phys. Stat. Sol. (a),1980,60(1):K55-K66
    [19]Sakuma A. Electronic structures and magnetism of CuAu-type MnNi and MnGa[J]. J. Magn. Magn. Mater.,1998,187(1):105-112
    [20]Pal L., Kren F., Kadar G, et al. Magnetic Structures and Phase Transformations in Mn-Based CuAu-I Type Alloys[J]. J. Appl. Phys.,1968 (39):538-544
    [21]Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals[J]. Phys. Rev. B, 1993,47(1):558-561
    [22]Monkhorst H. J., Pack J. D. Special points for Brillouin-zone intergrations[J]. Phys. Rev. B,13(1976)5188-5192
    [23]Parlinski K., Li Z. Q., Kawazoe Y. First-principles determination of the soft mode in cubic ZrO2[J].1997,78(21):4063-4066
    [24]Ding X. D., Suzuki T., Sun J., et al. Study on elastic constant softening in stress-induced martensitic transformation by molecular dynamics simulation[J]. Mater. Sci. Eng. A,2006, 438-440:113-117
    [25]Ravindran P., Fast L., Korzhavyi P. A., et al. Density functional theory for calculation of elastic properties of orthorhombic crystals:Application to TiSi2[J]. J. Appl. Phys.,1998, 84(9):4891-4904
    [26]Umetsu R. Y., Fukamichi K., Sakuma A. Electronic Structures and Magnetic Phase Stability of Llo and B2-Type MnRh Equiatomic Alloys[J], J. Phys. Soc. Jpn.,2007,76 (10):104712-104717
    [27]Moriya T. Ferro- and Antiferromagnetism of Transition Metals and Alloys[J]. Prog. Theor. Phys.,1965,33(2):157-183
    [28]March N. H., Lambin Ph., Herman F. Cooperative magnetic properties in single- and two-phase 3d metallic alloys relevant to exchange and magnetocrystalline anisotropy[J]. J. Magn. Magn. Mater.,1984,44(1-2):1-19
    [29]Hu J. Q., Xie M., Pan Y., et al. The electronic, elastic and structural properties of Pd-Zr intermetallic[J]. Comp. Mater. Sci.,2012,51 (1):1-6
    [1]Kouvel J. S., Harteluis C. C., Osika L.M., Magnetic Properties and Crystal-Structure Transformation of the Ordered Alloy (MnRh)[J]. J. Appl. Phys.,1963,34(4):1095-1096
    [2]Nakayama Y., Asanuma M. Magnetic Properties of Mn-Rh System Alloys[J]. Jpn. J. Appl. Phys.,1965,4(4)315-316.
    [3]Uebayashi K., Yamada H., Structure and magnetism of pseudo-binary ordered alloys Fe(Rh,Pd), Mn(Rh,Pd), (Fe,Mn)Rh and (Fe,Mn)Pd[J]. J. Magn. Magn. Mater.,2007, 310(2):1051-1052
    [4]Umetsu R. Y., Fukamichi K., Sakuma A. Electronic Structures and Magnetic Phase Stability of L10 and B2-Type MnRh Equiatomic Alloys[J]. J. Phys. Soc. Jpn.,2007, 76(10):104712-104712-6
    [5]Pal L., Kren F., Kadar G., et al. Magnetic Structures and Phase Transformations in Mn-Based CuAu-I Type Alloys[J]. J. Appl. Phys.,1968,39(2):538-544
    [6]Daams J. L. C., Villars P., van Vucht J. H. N.1991 Atlas of Crystal Structure Types for Intermetallic Phases[M]. U.S.A:ASM International,1991
    [7]Raub, E., Mahler, W. Crystal structure of molybdenum-ruthenium alloys[J]. Z. Metallkd., 1954,45:430-436
    [8]Kjekshus, A., Mollerud, R., Andresen, A. F., et al. Equiatomic transition metal alloys of manganese[J]. Philos. Mag.,1967,16(143):1063-1083
    [9]Hansen M., Anderko K. Constitution of binary alloys[M]. New York:McGraw-Hill,1958
    [10]Kren E., Solyom J. Neutron diffraction study of MnPd[J]. Phys. Lett.,1966, 22(3):273-274
    [11]Mohn P., Schwarz K. Supercell calculations for transition metal impurities in palladium[J]. J. Phys.:Condens. Matter,1993,5(29):5099-5112
    [12]Umetsu R. Y., Fukamichi K., Sakuma A. Electrical and Calorimetric Evidence of a Pseudo-gap in Antiferromagnetic Equiatomic MnPd Alloy [J]. J. Magn. Magn. Mater.,2002, 239(1):530-532
    [13]Umetsu R. Y., Mitsumata C., Sakuma A., et al. Magnetic and electrical properties, and mechanism of exchange bias-field of -phase and L10-type antiferromagnetic Mn alloys[J]. Trans. Magn. Soc. Jpn.,2002,3:59-94
    [14]Coldea M., Neumann M., Chiuzbaian S. G., et al. X-ray photoelectron spectroscopy and magnetism of Mn-Pd alloys[J]. J. Alloys Compd.,2006,417(1-2):7-12
    [15]Umetsu R. Y., Fukamichi K., Sakuma A., Effective Exchange Constant and Electronic Structure of Pseudo-Gap-Type Llo-MnPd Alloys[J]. J. Phys. Soc. Jpn.,2006, 75(10):104714-104722
    [16]Yamada H., Shimizu H., Yamamoto K., et al. Structure and magnetism of 3d and 4d transition-metal alloys TT'(T= Mn, Fe and T'=Rh, Pd) with CuAu-Ⅰ type ordered structure[J]. J. Alloys Compd.,2006,415(1-2):31-37
    [17]舒小林,陈子瑜,陈强,等.L10结构金属间化合物空位形成能[J].北京航空航天大学学报,2006,32(10):1259-1262
    [18]Kubota M. Pseudogap formation in MnPt and MnPd alloys[J]. Appl. Phys. Lett.,2007, 90(9):091911-091911-3
    [19]Ravdel' M. P., Evdokimova O. L. Kinetics and mechanism of hardening of Mn-Pd alloys[J]. Met. Sci. Heat Treat.,1974,16(11):960-963
    [20]Khmelevskyi S., Shick A. B., Mohn P. Element-specific analysis of the magnetic anisotropy in Mn-based antiferromagnetic alloys from first principles[J]. Phys. Rev. B,2011, 83(22):224419-224424
    [21]Monkhorst H. J., Pack J. D. Special points for Brillouin-zone intergrations[J]. Phys. Rev. B,1976,13(12):5188-5192
    [22]Parlinski K., Li Z. Q., Kawazoe Y. First-principles determination of the soft mode in cubic ZrO2[J].1997,78(21):4063-4066
    [23]Selte K., Bjerkelund E., Kjekshus A., et al. Equiatomic Transition Metal Alloys of Manganese. Ⅷ. Structural and Magnetic Properties of Rh-Mn Phases[J]. Acta Chem. Scand., 1972,26(2):719-732
    [24]Kresse G., Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B,1996,54(16):11169-11186
    [25]Yamada W., Shimizu H., Yamamoto K., et al. Structure and magnetism of 3d and 4d transition-metal alloys TT'(T= Mn, Fe and T'= Rh, Pd) with CuAu-Ⅰ type ordered structure[J]. J. Alloys Compd.,2006,415(1-2):31-37
    [26]Beckstein Q., Klepeis J. E., Hart G. L. W., et al. First-principles elastic constants and electronic structure of α-Pt2Si and PtSi[J]. Phys. Rev. B,2001,63(13):134112-134123
    [27]Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals[J]. Phys. Rev. B, 1993,47(1):558-561
    [28]Mehrdad Z., Yong L., Timothy J. W. The crystal chemistry of martensite in NiTiHf shape memory alloys[J]. Intermetallics,2008,16(7):876-883
    [29]Ding X. D., Suzuki T., Sun J., et al. Study on elastic constant softening in stress-induced martensitic transformation by molecular dynamics simulation[J]. Mater. Sci. Eng. A,2006, 438-440(25):113-117
    [30]Surucu G., Colakoglu K., Deligoz E., et al. The lattice dynamical and thermo-elastic properties of Rh3X (X= Ti, V) compounds[J]. Intermetallics,2010,18(2):286-291
    [31]Umetsu R. Y., Sakuma A., Fukamichi K. Magnetic Properties and Electronic Structures of L10-type MnTM (TM= Ir, Pt, Pd and Ni) Alloy Systems[J]. Metals Mater Process,2003, 15(1-2):67-94
    [1]Krishnan K., Nelson C., Echer C., et al. Exchange biasing of permalloy films by MnxPti-x: Role of composition and microstructure[J]. J. Appl. Phys.,1998,83(11):6810-6812
    [2]Saito M., Hasegawa N., Koike F., et al. PtMn single and dual spin valves with synthetic ferrimagnet pinned layers[J]. J. Appl. Phys.,1999,85(8):4928-4930
    [3]Andresen A. F., Kjekshus A., Mollerud R., et al. Equiatomic transition metal alloys of manganese IV. A neutron diffraction study of magnetic ordering in the PtMn phase[J]. Phil. Mag.,1965,11(114):1245-1256
    [4]Pal L., Kren F., Kadar G., et al. Magnetic Structures and Phase Transformations in Mn-Bas.ed CuAu-I Type Alloys[J]. J. Appl. Phys.,1968,39(2):538-544
    [5]Kren E., Kadar G., Pal L., et al. Magnetic Structures and Exchange Interactions in the Mn-Pt System[J]. Phys. Rev.,1968,171(2):574-585
    [6]Severin C. S., Chen C. W., Stassis C. Neutron-diffraction study of the magnetic structure of MnPt alloys[J]. J. Appl. Phys.,1979,50(6):4259-4262
    [7]Hama H., Motomura R., Shinozaki, T., et al. Spin flip transition of L10-type MnPt alloy single crystal studied by neutron scattering[J]. J. Phys.:Condens. Matter,2007, 19(17):176228-176236
    [8]Kren E., Cselik M., Kadar G., et al. Magnetic structure transformation in MnPt[J]. Phys. Lett.A,1967,24(4):198-199
    [9]Ono K., Umetsu R. Y., Akinaga H. Pseudogap formation in MnPt and MnPd alloys[J]. Appl. Phys. Lett.,2007,90(9):091911-091911-3
    [10]Umetsu R. Y., Fukamichi K., Sakuma A. Concentration dependence of magnetic and electrical properties of gap-type antiferromagnetic MnPt alloys[J]. J. Appl. Phys.,2002, 91(10):8873-8875
    [11]Ravindran P., Kjekshus A., Fjellvag H., et al. Large magnetocrystalline anisotropy in bilayer transition metal phases from first-principles full-potential calculations[J]. Phys. Rev. B,2001,63(14):144409-144426
    [12]Sakuma A. First-principles study on the non-collinear magnetic structures of disordered alloys[J]. Journal of the Physical Society of Japan,2000,69(9):3072-3083
    [13]Ladwig P. F., Chang Y. A. Paramagnetic to antiferromagnetic phase transformation in sputter deposited Pt-Mn thin films[J], J. Appl. Phys.,2003,94(2):979-987
    [14]Ji C.-X., Ladwig P. F., Ott R. D., et al. An investigation of phase transformation behavior in sputter-deposited PtMn thin films[J]. JOM,2006,58(6):50-54
    [15]Smiths J. H., Gaunt P. The martensitic transformations in gold-manganese alloys near the equiatomic composition[J]. Acta Metallurgica,1961,9(9):819-824
    [16]Finbow D., Gaunt P. Martensitic transformations in au-mn alloys near the equiatomic composition[J]. Acta Metallurgica,1969,17(1):41-48
    [17]Smith J. H. Magnetic Properties of Manganese-Gold Alloys and the Effect of Thermal and Mechanical Treatment[J], J. Appl. Phys.,1968,39(2):675-677
    [18]Giansoldati A., Linde J. O. La resistance electrique et la structure cristalline des alliages Au3 Mn et Au Mn dans l'intervalle de temperature-183 a 700℃[J]. J. Phys. Radium,1955, 16(4):341-341
    [19]Bacon G E. The Magnetic Structure of AuMn[J], Proc. Phys. Soc.,1962,79(5):938-945
    [20]Bacon G. E., Street R. Gold-Manganese Alloys; Some Preliminary Studies by Neutron Diffraction [J], Proc. Phys. Soc.,1958,72(3):470-473
    [21]Austex A. E. W., Whitehead S. The Electric Strength of Some Solid Dielectrics[J]. Proc. Roy. Soc. A,1940,176(964):33-50
    [22]Matsumoto M., Kaneko T., Kamigaki K. On the Pressure Effect of the Neel Temperature in the Compound AuMn[J]. J. Phys. Soc. Jpn.,1968,25(2):631-631
    [23]Plant J. S. Neutron polarisation analysis study of the detailed magnetic structure of the antiferromagnet Au/Mn[JJ. J. Phys. F:Metal Phys.,1981,11(9):1901-1912
    [24]Wang J. T., Wang D. S., Yoshiyuki K. Magnetic phase competing in MnAu systems[J]. Appl. Phys. Lett.,2001,79(10):1507-1509
    [25]Wang J. T., Wang D. S., Yoshiyuki K. Ab initio-Monte Carlo Studies on Magnetic Properties of Tetragonal L10 Ordered 3d/Au Superlattices[J]. Mater. Trans.,2003, 44(8):1529-1534
    [26]Kresse G., Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a Plane-wave basis set[J]. Phys.Rev.B,1996,54(16):11169-11186
    [27]Blochl P. E. Projector augmented-wave method[J]. Phys. Rev. B,1994, 50(24):17953-17979
    [28]Kohn W., Sham L. J. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev.,1965,140(4A):A1133-A1138
    [29]Perdew J. P., Burke K., Wang Y. Generalized gradient approximation for the Exchange-correlation hole of a many-electron system[J]. Phys. Rev. B,1996,54(23): 16533-16539
    [30]Monkhorst H. J., Paek J. D. Special points for Brillouin-zone integrations[J]. Phys. Rev. B,1976,13(12):5188-5192
    [31]Morris D. P., Preston R. P., Structural Transition and Antiferromagnetism in the Alloy AuMn[J]. Proc. Phys. Soc. B,1956,69(8):849-851
    [32]Delbecq F., Verite L., Sautet P. Electronic Structure and Magnetism of Ordered Palladium-Manganese and Palladium-Chromium Alloys[J]. Chem. Mater.,1997, 9(12):3072-3082
    [33]Shapiro S. M., Xu G., Gu G., et al. Lattice dynamics of the high-temperature shape-memory alloy Nb-Ru[J]. Phys. Rev. B,2006,73(21):214114-214119
    [34]Umetsu R. Y., Fukamichi K., Sakuma A. Electronic Structures and Magnetic Phase Stability of L10 and B2-Type MnRh Equiatomic Alloys[J]. J. Phys. Soc. Jpn.,2007, 76(10):104712-104712-6
    [35]Ackland G. J., Warren M. C., Clark S. J. Practical methods in ab initio lattice dynamics[J]. J. Phys.:Condens. Matter.,1997,9(37):7861-7872
    [1]Hoshino K., Nakatani R., Hoshiya H., et al. Exchange coupling between antiferromagnetic Mn-Ir and ferromagnetic Ni-Fe layers[J]. Jpn. J. Appl. Phys.,1996,35(2A):607-612
    [2]Fuke H. N., Saito K., Kamiguchi Y., et al. Spin-valve giant magnetoresistive films with antiferromagnetic Ir-Mn layers[J]. J. Appl. Phys.,1997,81(8):4004-4006
    [3]Devasahayam A. J., Sides P. J., Kryder M. H. Magnetic, temperature, and corrosion properties of the NiFe/IrMn exchange couple[J]. J. Appl. Phys.,1998,83(11):7216-7218
    [4]Wang D., Tondra M., Nordman C., et al. Thermal stability of spin dependent tunneling junctions pinned with IrMn[J]. IEEE Trans. Magn.,1999,35(5):2886-2888
    [5]Tehrani S., Slaughter J. M., Chen E., et al. Progress and outlook for MRAM technology [J]. IEEE Trans. Magn.,1999,35(5):2814-2819
    [6]Pearson W. B., Brun K., Kjekshus A. Equiatomic Transition Metal Alloys of Manganese[J]. Acta Chem.Scand,1965,19(2):107-112
    [7]Umetsu R. Y., Miyakawa M., Fukamichi K. Pseudogap in the density of states and the highest Neel temperature of the Llo-type MnIr alloy system[J]. Phys. Rev. B,2004,69(10): 104411-104411-8
    [8]Selte K., Kjekshus A. Equiatomic Transition Metal Alloys of Manganese[J], Acta. Chem. Scand.,1968,22(9):3039-3042
    [9]Umetsu R. Y., Sakuma A., Fukamichi K., Magnetic anisotropy energy of antiferromagnetic Llo-type equiatomic Mn alloys [J]. Appl. Phys. Lett.,2006, 89(5):052504-052504-3
    [10]Umetsu R.Y., Okamoto Y., Miyakawa M., et al. Very high antiferromagnetic stability of L10-type MnIr alloys[J]. J. Magn. Magn. Mater.,2004,272-276(2):790-791
    [11]Khmelevskyi S., Shick A. B., Mohn P. Element-specific analysis of the magnetic anisotropy in Mn-based antiferromagnetic alloys from first principles[J]. Phys. Rev. B,2011, 83(22):224419-224419-6
    [12]Umetsu R. Y., Fukamichi K., Sakuma A. Electronic Structures and Magnetic Phase Stability of L10 and B2-Type MnRh Equiatomic Alloys[J]. J. Phys. Soc. Jpn.,2007,76 (10):104712-104717
    [13]Smith J. H. Magnetic Properties of Manganese-Gold Alloys and the Effect of Thermal and Mechanical Treatment[J], J. Appl. Phys.,1968,39(2):675-677
    [14]Alfe D. PHON:A program to calculate phonons using the small displacement method[J]. Comput. Phys. Commun,2009,180(12):2622-2633
    [15]Zeng Z.-Y, Hu C.-E., Cai L.-C, et al. Lattice dynamics and phase transition of NiTi alloy[J]. Solid State Commun.,2009,149(47-48):2164-2168
    [16]Selte K., Bjerkelund E., Kjekshus A., et al. Equiatomic Transition Metal Alloys of Manganese. VIII. Structural and Magnetic Properties of Rh-Mn Phases[J]. Acta Chem. Scand, 1972,26(2):719-732
    [17]Shindo D., Murakami Y., Ohba T. Understanding Precursor Phenomena for the R-Phase Transformation in Ti-Ni-Based Alloys[J]. MRS Bull.,2002,27(2):121-127
    [18]Ohba T., Shapiro S. M., Aoki S., et al. Phonon softening in Au-49.5at%Cd alloy[J]. Jpn. J. Appl. Phys.,1994,33:L1631-L1633
    [19]Manosa L., Gonzalez-Comas A., et al. Anomalies related to the TA2-phonon-mode condensation in the Heusler Ni2MnGa alloy[J]. Phys. Rev. B,1997,55(17):11068-11071

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700