半导体纳米结构材料的功能化组装及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要致力于选择合适的生长条件与生长方式,以及研究不同固体材料的结构与功能特性来实现对半导体纳米结构的功能化组装,获得了一系列高质量的多功能化纳米结构单元,系统研究了功能组合的化学基础以及功能化纳米结构单元的物理化学性质,如磁学性质、光学性质以及可见光催化性能等,结果表明功能组装可以有效改善或改变纳米结构的物理、化学、机械性能或产生新的功能。具体归纳如下:
     1.一维CdS-Ni半导体-磁性功能复合纳米材料
     选择功能性强、应用广泛的半导体纳米结构作为研究对象。在合成高质量的CdS纳米线的基础上,利用水合肼诱导的溶液化学还原法得到的镍金属纳米颗粒对其进行磁性修饰,成功制备了一维CdS-Ni半导体-磁性复合纳米材料,研究了复合结构的生长过程和可能的形成机理。经过研究,我们发现在该实验条件下,Ni~(2+)在CdS纳米线表面可以快速地进行离子交换反应生成厚度为5 nm左右的NiS壳层,该过程是动力学驱动的离子转换反应。
     我们在不添加N_2H_4·H_2O和NaOH溶液的条件下进行了对比试验,得到了一维CdS@NiS核/壳复合结构从而证明了该过程的发生。在我们的实验体系里,乙二醇(EG)起着至关重要的作用,它可以与CdS纳米线外层的Cd~(2+)离子和溶液中的Ni~(2+)离子螯合形成中间配合物从而促进离子转换过程的进行。值得指出的是,在加热的条件下离子转换反应进行地非常快,反应进行10分钟后(添加或不添加N_2H_4·H_2O和NaOH)我们只得到一维CdS@NiS核/壳复合结构。反应时间延长,NiS壳层逐渐变厚至一定的程度后达到一个平衡,即使反应时间延长至24小时也没有明显变化,这是由于壳层的形成可以阻止溶液中Ni~(2+)离子与CdS进一步接触。阳离子转换反应的进行破坏了阴离子晶体格子排布的规整性,由此产生的晶体缺陷为溶液中的Ni~(2+)发生氧化还原反应提供了结晶成核的位置,因而,NiS壳层的形成有利于Ni纳米颗粒在纳米线表面的沉积和非外延生长。延长反应时间,Ni纳米颗粒可能经历一个聚集驱动的形貌转化过程,趋向于生长成较大的颗粒,由于六方相CdS本身具有六方截面的结构特性,Ni颗粒甚至可以围绕CdS的六方截面生长成一个环。
     所得复合纳米材料的磁性在室温下进行了测定,结果显示Ni组份的铁磁性质在复合结构中得以保留。与Ni纳米颗粒或体相材料相比,复合纳米结构材料表现出明显减小的Ms和增强的Hc。通过对一维半导体CdS纳米结构进行磁性修饰,我们可以利用磁场方便地对其方向和位置进行操纵,可以解决纳米材料难以回收等难题,在实际应用方面具有特别重要的意义。
     2.外延、非外延生长制备一维CdS/α-Fe_2O_3、CdS/Fe_3O_4异质、功能组合纳米材料
     我们以Fe(NO_3)_3·9H_2O为原料,通过溶剂热反应,将准立方形α-Fe_2O_3纳米粒子修饰到CdS纳米线表面,制备了一维CdS/α-Fe_2O_3半导体异质复合纳米材料。通过分析,我们发现两种半导体单晶组分之间具有清晰而且连续的界面,表明新化学键的形成。通过两种化合物的模拟ED衍射花样和晶体结构模型进一步研究了它们的晶体结构相关性和晶格匹配程度,对α-Fe_2O_3纳米颗粒围绕CdS纳米线的取向外延生长方式给予了合理的解释和说明,为对称性不同或晶格不匹配的纳米组份构建异质结构材料具有指导意义。有趣的是,经过深入观察我们甚至发现在CdS的同一晶面上生长的α-Fe_2O_3纳米颗粒具有相同的形貌和生长取向。探究了半导体复合纳米材料可见光催化降解污染物的性能,由于两种半导体导带能级的差异,CdS经光照后的光生载流子能够运输到其表面的Fe_2O_3上面。半导体Fe_2O_3对CdS纳米线的表面修饰能够起到促进CdS光生电子和空穴分离的作用,从而表现出优异的可见光催化性能。
     以FeCl_3·6H_2O为原料,通过溶剂热反应,将磁性Fe_3O_4微球修饰到CdS纳米线表面得到一维CdS/Fe_3O_4半导体-磁性功能复合纳米材料。分析发现表面粗糙的磁性微球是由许多小Fe_3O_4纳米粒子组装而成,整体表现为多晶态,其具有与Ni纳米颗粒相似的沉积成核和非外延生长行为。实验结果表明S~(2-)与Fe~(3+)(或Fe~(2+))之间存在着强作用力,S~(2-)在外延、非外延生长合成异质结构的过程中起着非常关键的作用。我们探究了一维CdS/Fe_3O_4半导体-磁性功能复合纳米材料的光学、磁学性质及其可见光催化性能,CdS的荧光行为和Fe_3O_4的铁磁性质在复合结构中均得以保留,而且CdS的可见光催化性能亦未受到明显的影响。
     总之,我们的研究结果表明,将铁磁性或半导体组份与一维半导体结构进行组合,可以提高、改良半导体纳米结构性能或者产生新的功能,在纳米科技领域具有潜在的应用价值。
     3.基于一维CdS纳米结构的核壳型复合半导体的制备及其光催化性能研究
     以醋酸锌和硫脲为原料,无需任何预处理或者表面修饰,通过溶剂热反应直接将一层ZnS均匀沉积到CdS纳米线表面得到一维CdS@ZnS核-壳结构复合半导体。经过观察我们发现表面不平滑的ZnS壳层是由粒径为4 nm左右的ZnS纳米颗粒沿CdS纳米线表面生长形成的,其厚度在5~10 nm之间,CdS纳米线核的直径未发生明显变化。研究了反应条件对最终产物形貌的影响,发现溶剂对于核-壳复合结构的形成起着非常重要的作用;提高体系的反应温度,CdS表面的ZnS纳米颗粒具有较大的粒径尺寸,因而ZnS壳层变厚。宽带隙半导体ZnS对窄带隙CdS的修饰可以有效地钝化其表面电子态、抑制电子空穴复合,从而改善了材料的光学性质,发光强度有很大提高。复合材料可见光催化降解亚甲基蓝(MS)和对氯苯酚(4-CP)废水溶液性能的提高,亦证明了ZnS壳层对CdS纳米线核表面电子态的有效钝化作用。
     近年来,人们已经成功地将CdS纳米结构与多种半导体材料进行多种方式的组合,以提高其光效率。可是,既具有高的光催化效率,又能提高CdS热、机械或化学稳定性的半导体组合方式却鲜有报道。我们利用TBT的缓慢均匀水解反应对CdS纳米线进行包覆,500℃退火后成功合成了一维CdS@TiO_2纳米电缆。研究发现TiO_2壳层的存在既可以提高CdS纳米线的热稳定性,又有助于CdS光生电子-空穴的快速分离,从而能提高其光催化性能,在实际应用方面具有特别重要的意义。
     4.新型Bi-Ca-O体系可见光催化剂的制备及性能研究
     目前,提高半导体纳米结构光催化材料的可见光利用率及光催化效率,寻找新型、高效光催化剂已经成为一个新的研究热点。结合前几章的研究思路:功能复合能够有效地提高或者改良半导体纳米结构的性能。我们用聚合物配位与共沉淀相结合的方法,通过控制退火温度得到了一系列新型的纯相和复合相Bi-Ca-O系可见光光催化材料,并对其光学性质和可见光(λ>420 nm)范围内的光催化性能进行了探究。
In this dissertation,various chemical methods are explored to realize the functional-assembly of semiconductor-based nanostructures and modulate novel properties,accompanied by understanding the structural and functional correlations of separate constituents.A series of multi-functional nanosructure unit are successfully synthesized,and their physical or chemical properties are systematically studied,such as magnetic,optical properties and photocatalytic activities.Further study shows that the chemical,physical or mechanical properties of theses chemically distinct heterostructures have been largely enhanced or modified,or even resulting in novel functions.
     1.1-D CdS-Ni semiconductor-magnetic functionally-assembled nanocomposites
     Widely-used semiconductors were chosen as object,1D CdS-Ni semiconductor-magnetic nanocomposites was achieved by means of electroless plating of nickel nanoparticles on preformed CdS nanowires.The growth of Ni nanoparticles onto CdS nanowires may be attributed to a nonepitaxial process.Conversion phenomena have been detected and verified in our experiments,during which the substitution rate of Cd~(2+) by Ni~(2+) on the surface of CdS nanowire is very fast,generating a layer of NiS shell with a thickness of about 5 nm.
     A kinetically driven conversion growth is proposed to elucidate the formation of NiS on the nanometre scale.In a parallel experiment,in the absence of hydrazine and NaOH,we obtained only CdS@NiS core/shell 1D nanostructures.In our experiment, EG as typical polyol played a crucial role.It can also bind to both Cd~(2+) ions in the shells and Ni~(2+) ions in solution,forming intermediate complexes to favour the forward reaction.It is worth pointing out that the substitution rate of Cd~(2+) by Ni~(2+) is very fast after heating.We found that only conversion of CdS to NiS on the surface of nanowires was observed for the sample(with,or without hydrazine and NaOH) processed for 10 min.With longer reaction times,the NiS layer became a little thicker and gradually reached a constant level.After that,the thickness of the NiS shell did not increase significantly even after 24 h.This suggests that once a surface layer of CdS has been substituted by NiS,it caused a passivation against further Ni~(2+) attack. The anion sublattice can be partially disrupted owning to the replacement of Cd~(2+) ions by Ni~(2+) ions.Thus,structural defects appeared in the crystal structures acting as nucleation sites for the redox reaction.The NiS shell can act as nucleation sites for the redox reaction and the nonepitaxial process of Ni nanoparticles.With the reaction proceeding,an aggregation-driven shapetransformation process may be involved to increase the size of the nanocrystal on the nanorod.Some nanoparticles could also develop into loops around the nanowires owing to the structural nature of the hexagonal-faced CdS.The six surfaces around the CdS nanowires have equal chemical activity.
     The M-H curves of 1-D CdS-Ni nanocomposites showed the ferromagnetic property of Ni are conserved.Compared with the neat Ni samples and bulk materials, nanocomposites showed decreased Ms and enhanced Hc value.The incorporation of magnetic Ni into the semiconductor makes it possible that the CdS nanowires can be aligned exactly at the intended positions or in a certain direction and recycled conveniently using a magnetic field,exhibiting special significance in practical applications.
     2.Epitaxial,nonepitaxial process to synthesis 1-D CdS/α-Fe_2O_3,CdS/Fe_3O_4 hetero-,functional-assembly nanomaterials
     1-D CdS/α-Fe_2O_3 semiconductor heterostructures were prepared by decorating quasicubicα-Fe_2O_3 nanoparticles onto CdS nanowires through a simple solvothermal method using Fe(NO_3)_3·9H_2O as the source materials.Both components are single-crystalline with distinguished and coherent interfaces,indicating the formation of chemical bonds between them.The structural homogeneity and the possibility of preferential crystal growth on multiple nucleation sites around the c axis of CdS nanowire have been illuminated by the simulated ED patterns and structural model of both constituents,providing insights into heterostructure formation in large lattice mismatched systems and how different geometries may be synthesized,More interestingly,We detect that even someα-Fe_2O_3 nanoparticles grown on the same facets of CdS nearly have identical shape and orientation.The optical properties and photocatalytic activities of the semiconductor nanocomposites towards organic pollutants under visible light(λ>420 nm) were investigated.Upon light absorption, difference in the positions of conduction bands drives photoelectrons generated in CdS nanowires to surroundingα-Fe_2O_3 nanoparticles,resulting in the enhanced photocatalytic activities.
     1-D CdS/Fe_3O_4 semiconductor-magnetic functionally-assembled nanocomposites were prepared by decorating Fe_3O_4 microspheres onto CdS nanowires through a simple solvothermal method using FeCl_3·6H_2O as the source materials.The whole Fe_3O_4 microspheres exhibited a remarkable polycrystalline feature,resulted from assembly of small nanoparticles.The growth of Fe_3O_4 microspheres onto CdS nanowires may be also attributed to a nonepitaxial process.The presence of S~(2-) is critical to nanocomposites formation:it can bond Fe~(3+)(or Fe~(2+) after heating up) strongly and appear to aid in the attaching ofα-Fe_2O_3 and Fe_3O_4 nanoparticles on multiple nucleation sites.The optical,magnetic properties and photocatalytic activities were separately investigated.The PL behavior of CdS and ferromagnetic property of Fe_3O_4 are conserved,and the photocatalytic activities were not weakened distinctly.
     In summary,these types of nanocomposites are likely to find potential applications in nanoscience owing to the combination of the ferromagnetic or catalytic domain with 1D semiconductor nanostructure into hybrid nanocomposites.
     3.Synthesis and Photocatalytic activity of 1-D CdS nanostructure-based core/shell semiconductor composites
     1D CdS@ZnS core-shell nanocomposites were successfully synthesized by coating a layer of ZnS shell via a solvothermal method,using zinc acetate and thiourea as the source materials.Our results indicate that the ZnS shell with rough surface is made up of ZnS nanoparticles of~4 nm diameter growing along the surface of the CdS nanowires,while the thickness of the shell layer was calculated to be 5~10 nm.The surface modification of a wide band gap ZnS shell around a narrow band gap CdS core can passivate nonradiative recombination sites leading to high optical properties and enhanced photocatalytic activity to MB and 4CP solutions.
     Over the past few years,both shape and compositional control have been applied to CdS-included nanostructures,attempting to improve its stability or functional properties.However,few of the above results have been proven successful regarding both the stability and the efficiency of CdS.1-D CdS@TiO_2 nanocables were synthesized by slow,uniform hydrolysis of TBT under the presence of CdS nanowires. The experimental results showed that appropriate TiO_2 shell can protect the CdS core from contamination and promote its stability,while the presence of the interface can promote charge separation to favor high efficiency in the photocatalytic reaction, exhibiting important significance in practical applications.
     4.Synthesis and performance of novel Bi-Ca-O system photocatalysts
     A series of Bi-based photocatalysts were prepared by conventional polymer-coordination and co-precipatation methods.The details of the reaction processes were investigated and the different intermediate products were identified by X-ray diffraction after the pure phases were obtained.Moreover,the optical behavior and photocatalytic activities under visible light were investigated.
引文
[1]张立德,牟季美,纳米材料和纳米结构[M],科学出版社,2001.
    [2]殷厚苹,程铸生,用作光存储材料的近红外染料[J],上海染料,1999,27,10.
    [3]D.L.Klein,R.Roth,A.K.L.Lim,et al.A single-electron transistor made from a cadmium selenide nanocrystal[J],Nature,1997,389,699-701.
    [4]A.P.Alivisatos,Semiconductor clusters,nanocrystals,and quantumn dots[J],Science,1996,271,933-937.
    [5]S.Iijima,Helical microtubules of graphitic carbon[J],Nature,1991,354,56-58.
    [6]Y.N.Xia,P.D.Yang,Chemistry and physics of nanowires[J],Adv.Mater.,2003,15,351-352.
    [7]朱静,纳米材料与器件[M],清华大学出版社,2003.
    [8]J.T.Hu,T.W.Odom,C.M.Lieber,Chemistry and physics in one dimension:Synthesis and properties of nanowires and nanotubes[J],Acc.Chem.Res.,1999,32,435-445.
    [9](a)周军.若干金属及氧化物准一维纳米材料的制备及应用基础研究[M].中山大学博士论文,2007.
    (b) S.Iijima,T.Lchihashi,Y.Ando,Pentagons,heptagons and negative curvature in graphite microtubule growth[J],Nature,1991,356,776-778.
    [10]A.G.Rinzler,J.H.Hafner,P.Nikolaev,L.Lou,S.G.Kim,D.Tomanek,P.Nordlander,D.T.Colbert,R.E.Smalley,Unraveling nanotubes:Field emission from an atomic wire[J],Science,1995,269,1550-1553.
    [11]W.A.De Heer,A.Chatelain,D.Ugarte,A carbon nanotube field-emission electron source[J],Science,1995,270,1179-1180.
    [12]J.Kong,N.R.Franklin,C.W.Zhou,M.G.Chapline,S.Peng,K.J.Cho,H.J.Dai,Nanotube molecular wires as chemical sensors[J],Science,2000,287,622-625.
    [13]P.G.Collins,K.Bradley,M.Ishigami,A.Zettl,Extreme oxygen sensitivity of electronic properties of carbon nanotubes[J],Science,2000,287,1801-1806.
    [14]H.D.Wagner,O.Lourie,Y.Feldman,R.Tenne,Stress-induced fragmentation of multiwall carbonn anotubes in a polymermatrix[J],Appl.Phys.Lett.,1998,72,188-190.
    [15]J.H.Hafner,C.L.Cheung,C.M.Lieber,Growth of nanotubes for probe microscopy tips[J],Nature,1999,398,761-762.
    [16]H.J.Dai,J.H.Hafner,A.G.Rinzler,D.T.Colbert,R.E.Smalley,Nanotubes as nanoprobes in scanning probe microscopy[J],Nature,1996,384,147-151.
    [17]P.J.Britto,K.S.V.Santhanam,A.Rubio,J.A.Alonso,P.M.Ajayan,Improved charge transfer at carbon nanotube electrodes[J],Adv.Mater.,1998,11,154-157.
    [18]T.W.Odom,J.L.Huang,P.Lim,C.M.Lieber,Atomic structure and electronic properties of single-walled carbon nanotubes[J],Nature,1998,391,62-64.
    [19]P.G.Collins,M.S.Amold,P.Avouris,Engineering carbon nanotubes and nanotube circuits using electrical breakdown[J],Science,2001,292,706-709.
    [20]V.L.Colvin,M.C.Schlamp,A.P.Alivisatos,Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J],Nature,1994,370,354-357.
    [21]N.C.Greenham,X.G.Peng,A.P.Alivisatos,Charge separation and transport in conjugated polymer/cadmium selenide nanocrystal composites studied by photoluminescence quenching and photoconductivity[J],Synth.Met.,1997,84,545-546.
    [22]Y.Cui,X.Duan,J.Hu,C.M.Lieber,Doping and electrical transport in silicon nanowires[J],J.Phys.Chem.B,2000,104,5213-5216.
    [23]Y.Cui,C.M.Lieber,Functional nanoscale electronic devices assembled using silicon nanowire building blocks[J],Science,2001,291,851-853.
    [24]X.Duan,Y.Huang,Y.Cui,J.Wang,C.M.Lieber,Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices[J],Nature,2001,409,66-69.
    [25]M.H.Huang,S.Mao,H.Feick,H.Q.Yan,Y.Y.Wu,H.Kind,E.Weber,R.Russo,P.Yang,Room-temperature ultraviolet nanowire nanolasers[J],Science,2001,292,1897-1899.
    [26] Z. L. Wang, J. H. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays [J], Science, 2006, 312, 242-246.
    [27] W. X. Dong, J. H. Song, J. Liu, Z. L. Wang, Direct-current nanogenerator driven by ultrasonic waves [J], Science, 2007, 316, 102-105.
    [28] X. F. Duan,Y Huang, R. Agarwal, C. M. Lieber, Single-nanowire electrically driven lasers [J], Nature, 2003, 421, 241-245.
    [29] M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, P. D. Yang, Nanoribbon waveguides for subwavelength photonics integration [J], Science, 2004, 305, 1269-1273.
    [30] H. X. He, N. J. Tao, Interactions of molecules with metallic quantum wires [J], Adv. Mater., 2002,14, 161-164.
    [31] Y Cui, Q. Wei, H. Park, C. M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J], Science, 2001, 293, 1289-1292.
    [32] J. Hahm, C. M. Lieber, Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors [J], Nano Lett., 2004, 4, 51-54.
    [33] G. F. Zheng, F. Patolsky, Y. Cui, W. U. Wang, C. M. Lieber, Multiplexed electrical detection of cancer markers with nanowire sensor grays [J], Nature Biotechnol., 2005, 23, 1294-1301.
    [34] F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, C. M. Lieber, Electrical detection of single viruses [J], Proc. Natl. Acad. Sci., 2004, 701, 14017-14022.
    [35] F. Patolsky, B. P. Timko, G. Yu, Y. Fang, A. B. Greytak, G. Zheng, C. M. Lieber, Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays [J], Science, 2006, 313, 1100-1104.
    [36] P. Poncharal, Z. L. Wang, D. Ugarte, W. A. De Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes [J], Science, 1999, 283, 1513-1516.
    [37] X. D. Bai, P. X. Gao, Z. L. Wang, E. G Wang, Dual-mode mechanical resonance of individual ZnO nanobelts[J],Appl.Phys.Lett.,2003,82,4806-4808.
    [38]J.Zhou,C.S.Lao,P.X.Gao,W.J.Mai,W.L.Hughes,S.Z.Deng,N.S.Xu,Z.L.Wang,Nanowire as pico-gram balance at workplace atmosphere[J],Solid State Communications.,2006,139,222-226.
    [39]M.S.Gudiksen,L.J.Lauhon,J.Wang,D.C.Smith,C.M.Lieber,Growth of nanowire superlattice structures for nanoscale photonics and electronics[J],Nature,2002,415,617-620.
    [40]Y.Wu,R.Fan,P.Yang,Block by block growth of single crystalline Si/SiGe superlattice nanowires[J],Nano Lett.2002,2,83-86.
    [41]R.He,M.Law,R.Fan,F.Kim,P.Yang,Functional bimorph composite nanotape [J],Nano Lett.,2002,2,1109-1112.
    [42]Y Wu,J.Xiang,C.Yang,W.Lu,C.M.Lieber,Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures[J],Nature,2004,430,61-65.
    [43]M.Bruchez,M.Moronne,P.Gin,S.Weiss,A.P.Alivisatos,Semiconductor Nanocrystals as Fluorescent Biological Labels[J],Science,1998,281,2013-2016.
    [44]T.Shibata,B.A.Bunker,Z.Y.Zhang,D.Meisel,C.F.Vardeman,J.D.Gezelter,Size-dependent spontaneous alloying of Au-Ag nanoparticles[J],J.Am Chem.Soc.,2002,124,11989-11996.
    [45]Y.Jung,D.K.Ko,R.Agarwal,Synthesis and structural characterization of single-crystalline branched nanowire heterostructures[J],Nano Lett.,2007,7,264-268.
    [46]R.Solanki,J.Huo,J.L.Freeouf,B.Miner,Atomic layer deposition of ZnSe/CdSe superlattice nanowires[J],Appl.Phys.Lett.,2002,81,3864-3866.
    [47]X.Y.Kong,Y.Ding,Z.L.Wang,Metal-semiconductor Zn-ZnO core-shell nanobelts and nanotubes[J],J.Phys.Chem.B,2004,108,570-574.
    [48]T.Mokari,U.Banin,Synthesis,properties of CdSe/ZnS core/shell nanorods[J],Chem.Mater.,2003,15,3955-3960.
    [49]J.H.Zhan,Y.Bando,J.Q.Hu,T.Sekiguchi,D.Golberg,One-catalyst-confined growth of ZnS/Si composite nanowires[J],Adv.Mater,2005,17,225-230.
    [50]J.Choi,Y.Jun,S.Yeon,H.C.Kim,J.Shin,J.Cheon,Biocompatible heterostructured nanoparticles for multimodal biological detection[J],J.Am.Chem.Soc.,2006,128,15982-15983.
    [51]Y.Zhang,K.Suenaga,C.Colliex,S.Iijima,Coaxial nanocable:Silicon carbide and silicon oxide sheathed with boron nitride and carbon[J],Science,1998,281,973-975.
    [52]G.W.Meng,L.D.Zhang,C.M.Mo,S.Y.Zhang,Y.Qin,S.P.Feng,H.J.Li,Synthesis of "A β-SiC nanorod within a SiO_2 Nanorod" one dimensional composite nanostructures[J],Solid State Commun.,1998,106,215-219.
    [53]Z.L.Wang,Z.R.Dai,R.P.Gao,Z.G.Bai,J.L.Gole,Side-by-side silicon carbide-silica biaxial nanowires:Synthesis,structure,and mechanical properties [J],Appl.Phys.Lett.,2000,77,3349-3351.
    [54]J.Hu,Y.Bando,Z.Liu,T.Sekiguchi,D.Golberg,J.Zhan,Epitaxial heterostructures:side-to-side Si-ZnS,Si-ZnSe biaxial nanowires,and sandwichlike ZnS-Si-ZnS triaxial nanowires[J],J.Am.Chem.Soc.,2003,125,11306-11313.
    [55]Y.Zheng,L.Zheng,Y.Zhan,X.Lin,Q.Zheng,K.Wei,Ag/ZnO heterostructure nanocrystals:Synthesis,characterization,and photocatalysis[J],Inorg.Chem.,2007,46,6980-6986.
    [56]S.Bae,H.Seo,H.Choi,J.Park,J.Park,Heterostructures of ZnO nanorods with various one-dimensional nanostructures[J],J.Phys.Chem.B,2004,108,12318-12326.
    [57]A.Fujishima,K.Honda,Electrochemical photolysis of water at a semiconductor electrode[J],Nature,1972,238,35-37.
    [58]S.N.Frank,A.J.Bard,Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders[J],J.Phys.Chem,1977,81,1484-1488.
    [59]M.R.Hoffman,S.T.Martin,W.Choi,Environmental applications of semiconductor photocatalysis[J],Chem.Rev.,1995,95,69-96.
    [60]J.M.Herrmann,C.Guillard,P.Pichat,Heterogeneous photocatalysis:An emerging technology for water treatment[J],Catal.Today,1993,17,7-17.
    [61]H.Yamashita,Y.Ichihashi,M.Anpo,Photocatalytic decomposition of NO at 275K on titannium oxides included within Y-zeolite cavities:The structure and role of the active sites[J],J.Phys.Chem.,1996,100,16041-16044.
    [62]H.Yamashita,Y.Ichihashi,M.Harada,Photocatalytic degradation of 1-Octanol on anchored titanium oxide and on TiO_2 powder catalysts[J],J.Catal.,1996,158,97-101.
    [63]H.Kenji,H.Teruaki,Photocatalytic degradation of organopnospnorous insecticides in aqueous semiconductor suspensions[J],Water Res.,1990,24,1415-1417.
    [64]O.Regan,M.Gratzel,A low-cost high efficiency solar cell based on dye-sensitized colloidal TiO_2 films[J],Nature,1991,353,737-741.
    [65]M.Gra|¨tzel,Photoelectrochemical cells[J],Nature,2001,414,338-344.
    [66]D.Y.Goswami,Advances in solar energy[M],1995.
    [67]D.F.Ollis,Contaminant degradation in water[J],Environ.Sci.Technol.,1985,19,480-484.
    [68]R.W.Matthews,Kinetics of photocatalytic oxidation of organic solutes over titanium dioxide[J],J.Catal.,1998,111,264-372.
    [69]朱屯,王福明,王习东,国外纳米材料技术进展与应用[M],化学工业出版社,2002,1-280.
    [70]H.Kazuhito,Photocatalytic reactions of hydrocarbons and fossil fuels with water hydrogen production and oxidation[J],J.Phys.Chem.,1984,88,4083-4088.
    [71]C.Kormann,Photolysis of chloroform and other organic molecules in aqueous titanium dioxide suspensions[J],Envirpn.Sci.Technol.,1991,25,494-500.
    [72]H.Kasturirangan,V.Ramakrishan,J.C.Kuriacose,Photosensitized reactions of toluidines on zinc oxide[J],J.Catal.,1981,69,216-217.
    [73]R.S.Davidson,J.E Pratt,The titanium dioxide sensitized photo-oxidation of sulphides[J],Tetrahedron Lett.,1983,24,5903-5906.
    [74](a)唐培松,高活性纳米TiO_2的合成、表征及可见光催化性能研究[M],浙江大学博士论文,2006.
    (b)D.Brinkley,T.Engel,Evidence for structure sensitivity in the thermally activated and photocatalytic dehydrogenation of 2-propanol on TiO_2[J],J.Phys.Chem.B,2000,104,9836-9841.
    [75]M.R.Fox,M.T.Dulay,Heterogeneous photocatalysis[J],Chem.Rev.,1993,93,341-357.
    [76]A.L.Linsebigler,G.Q.Lu,J.T.Yates,Photocatalysis on TiO2 surfaces:principles,mechanisms,and selected results[J],Chem.Rev.,1995,95,735-758.
    [77]W.Zhao,C.Chen,X.Li,Photodegradation of sulforhodamine-B dye in platinized titania dispersions under visible light irradiation:influence of platinum as a functional co-catalyst[J],J.Phys.Chem.B,2002,106,5022-5028.
    [78]W.Y.Choi,A.Termin,M.R.Hoffmann,The Role of metal ion dopants in quantum-sized TiO_2:correlation between photoreactivity and charge carrier recombination dynamics[J],J.Phys.Chem.,1994,98,13669-13679.
    [79]K.E.Karakitsou,X.E.Verykios,Effects of altervalent cation doping of TiO_2 on its performance as photocatalyst for water cleavage[J],J.Phys.Chem.,1993,97,1184-1189.
    [80]Z.H.Yuan,J.H.Jia,L.D.Zhang,Influence of co-doping of Zn(Ⅰ)+Fe(Ⅲ) on the photocatalytic activity of TiO_2 for phenol degradation[J],Mater.Chem.Phys.,2002,73,323-326.
    [81]N.Serpone,D.Lawless,J.Disdier,Spectroscopic,photoconductivity,and photocatalytic studies of TiO_2 colloids:Naked and with the lattice doped with Cr~(3+),Fe~(3+),and V~(5+) cations[J],Langmuir,1994,10,643-652.
    [82]H.Yamashita,M.Harada,M.Anpo,Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO_2 catalysts:Fe ion-implanted TiO_2[J],Catal.Today,2003,84,191-196.
    [83]M.Anpo,M.Takeuchi,The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation[J],J.Catal.,2003,216,505-516.
    [84]R.Vogel,P.Hoyer,H.Weller,Quantum-sized PbS,CdS,Ag_2S,Sb_2S_3,and Bi_2S_3 particles as sensitizers for various nanoporous wide-bandgap semiconductors[J],J.Phys.Chem.,1994,98,3183-3188.
    [85]T.Hirai,K.Suzuki,I.Komasawa,Preparation and photocatalytic properties of composite CdS nanoparticles-titanium dioxide particles[J],J.Coll.lnter.Sci.,2001,244,262-265.
    [86]K.Vinodgopal,P.V.Kamat,Enhanced rates of photocatalytic degradation of an azo dye using SnO_2/TiO_2 coupled semiconductor thin films[J],Environ.Sci.Technol.,1995,29,841-845.
    [87]C.Wang,J.C.Zhao,X.M.Wang,Preparation,characteration and phtotocatalytic of nano-sized ZnO/SnO_2 coupled photocatalysts[J],Appl.Catal.B,2002,39,269-279.
    [88]Y.Bessekhouad,D.Robert,J.V.Weber,Bi_2S_3/TiO_2 and CdS/TiO_2heterojunctions as an available configuration for photocatalytic degradation of organic pollutant[J],J.Photochem.Photobio.A,2004,163,569-580.
    [89]W.Ho,J.C.Yu,J.Lin,Preparation and photocatalytic behavior of MoS_2 and WS_2 nanocluster sensitized TiO_2[J],Langmuir,2004,20,5865-5869.
    [90]R.Asahi,T.Morikawa,T.Ohwaki,Visible-light photocatalysis in nitrogen doped titanium oxides[J],Science,2001,293,269-271.
    [91]S.Khan,M.Al-Shahry,J.W.B.Ingler,Efficient photochemical water splitting by a chemically modified n-TiO_2[J],Science,2002,297,2243-2245.
    [92]S.Sakthivel,M.Janczarek,H.Kisch,Visible light activity and photoelectrochemical properties of nitrogen-doped TiO_2[J],J.Phys.Chem.B,2004,108,19384-19387.
    [93]T.X.Wu,G.M.Liu,J.C.Zhao,Photoassisted degradation of dye pollutants V.self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO_2 dispersions[J],J.Phys.Chem.B,1998,102,5845-5851.
    [94]K.Hirano,E.Suzuki,A.Ishikawa,Sensitization of TiO_2 particles by dyes to achieve H_2 evolution by visible light[J],J.Photochem.Photobio.A,2000,136,157-161.
    [95]A.P.Hong,D.W.Bahnemann,M.R.Hoffmann,Cobalt(Ⅱ)tetrasultfophthaloeyanine on titanium dioxide.2.Kinetics and mechanisms of the photocatalytic oxidation of aqueous sulfur dioxide[J],J.Phys.Chem.,1987,91,6245-6251.
    [96]K.T.Ranjit,I.Willner,S.Bossmann,Iron(Ⅲ) phthalocyanine-modified titanium dioxide:A novel photocatalyst for the enhanced photodegradation of organic pollutants[J],J.Phys.Chem.B,1998,102,9397-9403.
    [97]P.Qu,J.C.Zhao,L.Zhang,Enhancement of the photoinduced electron transfer from cationic dyes to colloidal TiO_2 particles by addition of an anionic surfactant in acidic media[J],Coll.Surf.A,1998,138,39-50.
    [98]F.L.Zhang,J.C.Zhao,T.Shen,TiO_2-assisted photodegradation of dye pollutants.Ⅱ.Adsorption and degradation kinetics of eosin in TiO_2 dispersions under visible light irradiation[J],Appl.Catal.B,1998,15,147-156.
    [99]S.Cherian,C.C.Wamser,Adsorption and photoactivity of tetra(4-carboxyphenyl) -porphyrin(TCPP)on nanoparticulate TiO_2[J],J.Phys.Chem.B,2000,104,3624-3629.
    [100]K.Vinodgopal,D.E.Wynkoop,P.V.Kamat,Environmental photochemistry on semiconductor surfaces:Photosensitized degradation of a textile azo dye,acid orange 7,on TiO_2 particles using visible light[J],Environ.Sci.Technol.,1996,30,1660-1666.
    [101]D.Yamasita,T.Takata,M.Hara,Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting[J],Solid State Ionics,2004,172,591-595.
    [102]H.Harada,C.Hosoki,A.Kudo,Overall water splitting by sonophotocatalytic reaction:the role of powdered photocatalyst and an attempt to decompose water using a visible-light sensitive photocatalyst[J],J.Photoche.Photobio.A,2001,141,219-224.
    [103]白树林,付希贤,王俊珍,LaFeO_3的光催化活性[J],应用化学,2000,17,343-345.
    [104]J.H.Ye,Z.G.Zou,M.Oshikiri,A novel hydrogen-evolving photocatalyst InVO_4 active under visible light irradiation[J],Chem.Phys.Lett.,2002,356,221-226.
    [105]A.Ishikawa,T.Takata,J.N.Kondo,Oxysulfide Sm_2Ti_2S_2O_5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation [J],J.Am.Chem.Soc.,2002,124,13547-13553.
    [106]J.W.Tang,Z.G.Zou,J.Yin,Photocatalytic degradation of methylene blue on CaIn_2O_4 under visible light[J],Chem.Phys.Lett.,2003,382,175-179.
    [107]Z.G.Zou,J.H.Ye,H.Arakawa,Photocatalytic properties and electronic structure of a novel series of solid photocatalysts Bi_2RNbO_7(R =Y,rare earth)[J],Top.Catal.,2003,22,107-110.
    [108]Z.G.Zou,J.H.Ye,H.Arakawa,Photophysical and photocatalytic properties of InMO_4(M=Nb~(5+),Ta~(5+)) under visible light irradiation[J],Mater.Res.Bull.,2001,36,1185-1193.
    [109]J.Yin,Z.G.Zou,J.H.Ye,Photophysical and photocatalytic properties of MIn_(0.5)Nb_(0.5)O_3(M =Ca,Sr,and Ba)[J],J.Phys.Chem.B,2003,107,61-65.
    [110]Z.G.Zou,J.H.Ye,K.Sayama,Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst[J],Nature,2001,414,625-627.
    [111]J.H.Ye,Z.G.Zou,M.Oshikiri,A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation[J],Chem.Phys.Lett.,2002,356,221-226.
    [112]J.Yin,Z.G.Zou,J.H.Ye,A novel series of the new visible-light-driven Photocatalysts MCo_(1/3)Nb_(2/3)O_3(M= Ca,Sr and Ba) with special electronic structures[J],J.Phys.Chem.B,2003,107,4936-4941.
    [113]J.W.Tang,Z.G.Zou,J.H.Ye,Effects of substituting Sr~(2+) and Ba~(2+) for Ca~(2+)on the structural properties and photocatalytic behaviors of CaIn_2O_4[J],Chem.Mater.,2004,16,1644-1649.
    [114]J.W.Tang,Z.G.Zou,M.Katagiri,Photocatalytic degradation of MB on MIn_2O_4(M = alkali earth metal) under visible light:effects of crystal and electronic structure on the photocatalytic activity[J],Catal.Today,2004,93-95, 885-889.
    [115]D.Wang,Z.G.Zou,J.H.Ye,A novel series of photoeatalysts M_(2.5)VMoO_8(M =Mg,Zn ) for O_2 evolution under visible light irradiation[J],Catal.Today,2004,93-95,891-894.
    [116]Z.G.Zou,H.Arakawa,Direct water splitting into H_2 and O_2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts[J],J.Photochem.Photobio.A,2003,158,145-162.
    [117]Z.G.Zou,J.H.Ye,H.Arakawa,Preparation,structural and optical properties of a new class of compounds Bi_2MNbO_7(M:Al,Ga,In)[J],Mater.Sci.Eng.B,2001,79,83-85.
    [118]D.F.Wang,J.W.Tang,Z.G.Zou,Photophysical and photocatalytic properties of a new series of visible-light-driven photocatalysts M_3V_2O_8(M = Mg,Ni,Zn)[J],Chem.Mater.,2005,17,5177-5182.
    [1]P.D.Cozzoli,T.Pellegrino,L.Manna,Synthesis,properties and perspectives of hybrid nanocrystal structures[J],Chem.Soc.Rev.,2006,35,1195-1208.
    [2]Y.Huang,X.Duan,Q.Wei,Y.Cui,L.J.Lauhon,K.H.Kim,C.M.Lieber,Logic gates and computation from assembled nanowire building blocks[J],Science,2001,294,1313-1317.
    [3]J.Ding,J.A.Zapien,W.Chen,Y.Lifshitz,S.T.Lee,Lasing in ZnS nanowires grown on anodic aluminum oxide templates[J],Appl.Phys.Lett.,2004,85,2361-2363.
    [4]J.Wang,M.S.Gudiksen,X.Duan,Y.Cui,C.M.Lieber,Highly polarized photolumineseence and photodetection from single indium phosphide nanowires [J],Science,2001,293,1455-1457.
    [5]Y.Hsu,S.Lu,Y.Lin,One-step preparation of coaxial CdS-ZnS and Cd_(1-x)Zn_xS-ZnS nanowires[J],Adv.Funct.Mater.,2005,15,1350-1357.
    [6]D.V.Talapin,I.Mekis,S.Gotzinger,A.Kornowski,O.Benson,H.Weller,CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals[J],J.Phys.Chem.B,2004,108,18826-18831.
    [7]X.Peng,M.C.Schlamp,A.V.Kadavanich,A.P.Alivisatos,Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility[J],J.Am.Chem.Soc.,1997,119,7019-7029.
    [8]A.Salant,E.A.Sadovsky,U.Banin,Directed self-assembly of gold-tipped CdSe nanorods[J],J.Am.Chem.Soc.,2006,128,10006-10007.
    [9]T.Mokari,A.Aharoni,I.Popov,U.Banin,Diffusion of gold into InAs nanoerystals[J],Angew.Chem.Int.Ed.,2006,45,8001-8005.
    [10](a) A.E.Saunders,I.Popov,U.Banin,Synthesis of hybrid CdS-Au colloidal nanostructures[J],J.Phys.Chem.B,2006,110,25421-25429.
    (b) T.Mokari,C.G.Sztrum,A.Salant,E.Rabani,U.Banin,Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods[J],Nat.Mater.,2005,4,855-863.
    [11]P.D.Cozzoli,M.L.Curri,C.Giannini,A.Agostiano,Synthesis of TiO_2-Au composites by titania-nanorod-assisted generation of gold nanoparticles at aqueous/nonpolar interfaces[J],small,2006,2,413-421.
    [12](a) M.Casavola,R.Buonsanti,G.Caputo,P.D.Cozzoli,Colloidal strategies for preparing oxide-based hybrid nanocrystals[J],Eur.J.Inorg.Chem.,2008,837-854.
    (b) H.Gu,R.Zheng,X.Zhang,B.Xu,Facile one-pot synthesis of bifunctional heterodimers of nanoparticles:A conjugate of quantum dot and magnetic nanoparticles[J],J.Am.Chem.Soc.,2004,126,5664-5665.
    (c) S.W.Lee,M.C.Jeong,J.M.Myoung,G.S.Chae,I.J.Chung,Magnetic alignment of ZnO nanowires for optoelectronic device applications[J],Appl.Phys.Lett.,2007,90,133115-3.
    (d)M.Casavola,V.Grillo,E.Carlino,C.Giannini,F.Gozzo,E.F.Pinel,M.A.Garcia,,L.Manna,R.Cingolani,P.D.Cozzoli,Topologically controlled growth of magnetic- metal-functionalized semiconductor oxide nanorods[J],Nano Lett.,2007,7,1386-1395.
    (e) R.Buonsanti,V.Grillo,E.Cadino,C.Giannini,M.L.Curri,C.Innocenti.,C.Sangregorio.,K Achterhold,F.G.Parak,A.Agostiano,P.D.Cozzoli,Seeded growth of asymmetric binary nanocrystals made of a semiconductor TiO_2 rodlike section and a magnetic γ-Fe_2O_3 spherical domain[J],J.Am.Chem.Soc.,2006,128,16953-16970.
    [13](a) X.F.Duan,C.M.Lieber,General synthesis of compound semiconductor nanowires[J],Adv.Mater.,2000,12,298-302.
    (b) C.J.Barrelet,Y.Wu,D.C.Bell,C.M.Lieber,Synthesis of CdS and ZnS nanowires using single-source molecular precursors[J],J.Am.Chem.Soc.,2003,125,11498-11499.
    (c) C.Ye,G.Meng,Y.Wang,Z.Jiang,L.Zhang,On the growth of CdS nanowires by the evaporation of CdS nanopowders[J],J.Phys.Chem.B,2002,106,10338-10341.
    (d) Y.Wang,G.Meng,L.Zhang,C.Liang,J.Zhang,Catalytic growth of large-scale single-crystal CdS nanowires by physical evaporation and their photoluminescence[J],Chem.Mater.,2002,14,1773-1777.
    [14](a) A.K.Bentley,J.S.Trethewey,A.B.Ellis,W.C.Crone,Magnetic manipulation of copper tin nanowires capped with nickel ends[J],Nano Lett.,2004,4,487-490.
    (b) F.M.Yang.T.C.Chang,Nickel nanocrystals with HfO_2 blocking oxide for nonvolatile memory application[J],Appl.Phys.Lett.,2007,90,2221041-3.
    [15]J.Zhan,X.Yang,D.Wang,S.Li,Y.Xie,Y.Xia,Y.Qian,Polymer-controlled growth of CdS nanowires[J],Adv.Mater.,2000,12,1348-1351.
    [16]J.Bao,Y.Liang,Z.Xu,L.Si,Facile synthesis of hollow nickel submicrometer spheres[J],Adv.Mater.,2003,15,1832-1835.
    [17]Q.Liu,H.Liu,M.Han,J.Zhu,Y.Liang,Z.Xu,Y.Song,Nanometer-sized nickel hollow spheres[J],Adv.Mater.,2005,17,1995-1999.
    [18]T.Mokari,E.Rothenberg,I.Popov,R.Costi,U.Banin,Selective growth of metal tips onto semiconductor quantum rods and tetrapods[J],Science,2004,304,1787-1790.
    [19]R.D.Robinson,B.Sadtler,D.O.Demchenko,C.K.Erdonmez,L.Wang,A.P.Alivisatos,Spontaneous superlattice formation in nanorods through partial cation exchange[J],Science,2007,317,355-358.
    [20]W.Zhu,W.Wang,J.Shi,A reverse cation-exchange route to hollow PbSe nanospheres evolving from Se/Ag_2Se core/shell colloids[J],J.Phys.Chem.B,2006,110,9785-9790.
    [21]D.H.Son,S.M.Hughes,Y.Yin,A.P.Alivisatos,Cation exchange reactions in ionic nanocrystals[J],Science,2004,306,1009-1012.
    [22]U.Jeong,J.U.Kim,Y.Xia,Z Li,Monodispersed Spherical Colloids of Se@CdSe:Synthesis and Use as Building Blocks in Fabricating Photonic Crystals[J],Nano Lett.,2005,5,937-942.
    [23]P.H.C.Camargo,Y.H.Lee,U.Jeong,Z.Zou,Y.Xia,Cation exchange:a simple and versatile route to inorganic colloidal spheres with the same size but different compositions and properties[J],Langmuir,2007,23,2985-2992.
    [24]J.Zhan,H.Lin,C.Mou,Biomimetic formation of porous single-crystalline CaCO_3 via nanocrystal aggregation[J],Adv.Mater.,2003,15,621-623.
    [25](a) L.Yin,Y.Bando,J.Zhan,M.Li,D.Golberg,Self-assembled highly faceted wurtzite-type ZnS single-crystalline nanotubes with hexagonal cross-sections[J],Adv.Mater.,2005,17,1972-2977.
    b) A.Figuerola,A.Fiore,R.D.Corato,A. Falqui,C.Giannini,E.Micotti,A.Lascialfari,M.Corti,R.Cingolani,T.Pellegrino,P.D.Cozzoli,L.Manna,One-pot synthesis and characterization of size-controlled bimagnetic FePt-iron oxide heterodimer nanocrystals[J],J.Am.Chem.Soc.,2008,130,1477-1487.
    [26]R.S.Iskhakov,S.V.Komagortsev,A.D.Balaev,A.V.Okotrub,A.G.Kudashov,V.L.Kuznetsov,Y.V.Butenko,Fe nanowires in carbon nanotubes as an example of a one-dimensional system of exchange-coupled ferromagnetic nanoparticles[J],JETP Lett.,2003,78,236-240.
    [27](a) S.H.Wu,D.H.Chen,Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol[J],J.Colloid Interface Sci.,2003,259,282-286.
    (b) J.H.Hwang,V.P.Dravid,M.H.Teng,J.J.Host,B.R.Elliott,D.L.Johnson,T.O.Mason,Magnetic properties of graphitically encapsulated nickel nanocrystals[J],J.Mater.Res.,1997,12,1076-1082.
    (c) V.P.M.Shafi,A.Gedanken,R.Prozorov,J.Balogh,Sonochemical preparation and size-dependent properties of nanostructured CoFe_2O_4 particles[J],Chem.Mater.,1998,10,3445-3450.
    [28](a) Z.Liu,S.Li,Y.Yang,S.Peng,Z.Hu,Y.Qian,Complex-surfactant-assisted hydrothermal route to ferromagnetic nickel nanobelts[J],Adv.Mater.,2003,15,1946-1948.
    (b) H.T.Zhang,G.Wu,X.H.Chen,Synthesis and magnetic properties of NiS_(1+x) nanocrystallines[J],Mater.Lett.,2005,59,3728-3731.
    [29]E.N.Konyushenko,N.E.Kazantseva,J.Stejskal,M.Trchova,J.Kovarva,I.Sapurina,M.M.Tomishko,O.V.Demicheva,J.Prokes,Ferromagnetic behaviour of polyaniline-coated multi-wall carbon nanotubes containing nickel nanoparticles[J],J.Magn.Magn.Mater.,2008,320,231-240.
    [1]Y.Wu,J.Xiang,C.Yang,W.Lu,C.M.Lieber,Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures[J],Nature,2004,430,61-66.
    [2](a) K.Suenaga,C.Colliex,N.Demoncy,A.Loiseau,H.Pascard,F.Willaime,Synthesis of nanoparticles and nanotubes with well-weparated layers of boron nitride and carbon[J],Science,1997,278,653-655.
    (b) S.Han,C.Li,Z.Q.Liu,B.Lei,D.H.Zhang,W.Jin,X.L.Liu,T.Tang,C.W.Zhou,Transition metal oxide core-shell nanowires:generic synthesis and transport studies[J],Nano Lett.,2004,4,1241-1246.
    [3](a) J.H.Zhan,Y.Bando,J.Q.Hu,T.Sekiguchi,D.Golberg,One-Catalyst-Confined Growth of ZnS/Si Composite Nanowires[J],Adv.Mater.,2005,17,225-230.
    (b) B.K.Teo,C.P.Li,X.H.Sun,N.B.Wong,S.T.Lee,Silicon-silica nanowires,nanotubes,and biaxial nanowires:inside,outside,and side-by-side growth of silicon versus silica on zeolite[J],Inorg.Chem.,2003,42,6723-6728.
    [4]M.S.Gudiksen,L.J.Lauhon,J.Wang,D.C.Smith,C.M.Lieber,Growth of nanowire superlattice structures for nanoscale photonics and electronics[J],Nature,2002,415,617-620.
    [5](a) Y.Zheng,L.Zheng,Y.Zhan,X.Lin,Q.Zheng,K.Wei,Ag/ZnO Heterostructure Nanocrystals:Synthesis,Characterization,and Photocatalysis[J],Inorg.Chem.,2007,46,6980-6986.
    (b) J.Y.Lao,J.G.Wen,Z.F.Ren,Hierarchical ZnO nanostructures[J],Nano Lett.,2002,2,1287-1291.
    (c) Y.Jung,D.K.Ko,R.Agarwal,Synthesis and structural characterization of singlecrystalline branched nanowire heterostructures[J],Nano Lett.,2007,7,264-268.
    [6](a) M.Chen,Y.Xie,J.Lu,Y.Xiong,S.Zhang,Y.Qian,X.Liu,Synthesis of rod-,twinrod-,and tetrapod-shaped CdS nanocrystals using a highly oriented solvothermal recrystallization technique[J],J.Mater.Chem.,2002,12,748-753.
    (b) C.Ye,G.Meng,Y.Wang,Z.Jiang,L.Zhang,On the growth of CdS nanowires by the evaporation of CdS nanopowders[J],J.Phys.Chem.B,2002,106, 10338-10341.
    (c) Y.Wang,G.Meng,L.Zhang,C.Liang,J.Zhang,Catalytic growth of large-scale single-crystal CdS nanowires by physical evaporation and their photoluminescence[J],Chem.Mater,2002,14,1773-1777.
    [7](a) J.L.Zhang,Y.Wang,H.Ji,Y.G.Wei,N.Z.Wu,B.J.Zuo,Q.L.Wang,Magnetic nanocomposite catalysts with high activity and selectivity for selective hydrogenation of ortho-chloronitrobenzene[J],J.Catal.,2005,229,114-118.
    (b)O.Shekhah,W.Ranke,A.Schule,G.Kolios,R.Schlogl,Styrene Synthesis:High conversion over unpromoted iron oxide catalysts under practical working conditions[J],Angew.Chem.Int.Ed.,2003,42,5760-5763.
    (c) A.S.C.Brown,J.S.J.Hargreaves,B.Rijniersce,A study of the structural and catalytic effects of sulfation on iron oxide catalysts prepared from goethite and ferrihydrite precursors for methane oxidation[J],Catal.Lett.,1998,53,7-13.
    [8](a) P.Li,D.E.Miser,S.Rabiei,R.T.Yadav,M.R.Hajaligol,The removal of carbon monoxide by iron oxide nanoparticles[J],Appl.Catal.B,2003,43,151-162.
    (b) L.C.A.Oliveira,D.I.Petkowicz,A.Smaniotto,S.B.C.Pergher,Magnetic zeolites:a new adsorbent for removal of metallic contaminants from water[J],Water Res.,2004,38,3699-3704.
    (c) C.H.Lai,C.Y.Chen,Removal of metal ions and humic acid from water by iron-coated filter media[J],Chemosphere,2001,44,1177-1184.
    (d) R.C.Wu,J.H.Qu,Y.S.Chen,Magnetic powder MnO-Fe_2O_3 composite-a novel material for the removal of azo-dye from water[J],Water Res.,2005,39,630-638.
    (e) F.Herrera,A.Lopez,G.Mascolo,E.Albers,J.Kiwi,Catalytic combustion of Orange Ⅱ on hematite Surface species responsible for the dye degradation[J],Appl.Catal.B,2001,29,147-162.
    [9]J.Chen,L.N.Xu,W.Y.Li,X.L.Gou,α-Fe_2O_3 nanotube in gas sensor and lithium-ion battery applications[J],Adv.Mater.,2005,17,582-586.
    [10]H.Zeng,J.Li,J.P.Liu,Z.L.Wang,S.H.Sun,Exchange-coupled nanocomposite magnets by nanoparticle self-assembly[J],Nature,2002,420,395-398.
    [11]A.Jordan,R.Scholz,K.Maler-Hauff,M.Johannsen,P.Wust,J.Nadobny,H.Schirra,H.Schmidt,S.Deger,S.Loening,W.Lanksch,R.Felix,Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia[J],J.Magn.Magn.Mater.,2001,225,118-126.
    [12](a) X.Liu,Q.Hu,X.Zhang,Z.Fang,Q.Wang,Generalized and facile synthesis of Fe_3O_4/MS(M:Zn,Cd,Hg,Pb,Co,and Ni) nanocomposites[J],J.Phys.Chem.C,2008,112,12728-12735.
    (b) J.Gao,W.Zhang,P.Huang,B.Zhang,X.Zhang,B.Xu,Intracellular spatial control of fluorescent magnetic nanoparticles [J],J.Am.Chem.Soc.,2008,130,3710-3711.
    (c) D.Wang,J.Hem Z.Rosenzweig,Superparamagnetic Fe_2O_3 beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation[J],Nano Lett.,2004,4,409-413.
    (d)S.Selvan,P.Patra,C.Ang,J.Ying,Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells[J],Angew.Chem.,Int.Ed.,2007,46,2448-2452.
    (e) D.Li,H.Haneda,Photocatalysis of sprayed nitrogen-containing Fe_2O_3-ZnO and WO_3-ZnO composite powders in gas-phase acetaldehyde decomposition[J],Journal Photochem.Photobiol.,A,2003,160,203-212.
    (f) O.Tan,W.Zhu,Q.Yan,L.Kong,Size effect and gas sensing characteristics of nanocrystalline xSnO_2-(1-x) α-Fe_2O_3 ethanol sensors [J],Sens.Actuators,B,2000,65,361-365.
    [13]Y.Ding,Z.Wang,Structure analysis of nanowires and nanobelts by transmission electron microscopy[J],J.Phys.Chem.B,2004,108,12280-12291.
    [14]K.Kwon,M.Shim,γ-Fe_2O_3/Ⅱ-Ⅵ sulfide nanocrystal heterojunctions[J],J.Am.Chem.Soc.,2005,127,10269-10275.
    [15]L.Yin,Y.Bando,J.Zhan,M.Li,D.Golberg,Self-assembled highly faceted wurtzite-type ZnS single-crystalline nanotubes with hexagonal cross-sections[J],Adv.Mater.,2005,17,1972-2977.
    [16]D.Yu,X.Sun,J.Zou,Z.Wang,F.Wang,K.Tang,Oriented assembly of Fe_3O_4nanoparticles into monodisperse hollow single-crystal microspheres[J],J.Phys.Chem.B,2006,110,21667-21671.
    [17]D.V.Talapin,I.Mekis,S.Gotzinger,A.Kornowski,O.Benson,H.Weller,CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core-Shell-Shell Nanocrystals[J],J.Phys.Chem.B,2004,108,18826-18831.
    [18]T.Mokari,A.Aharoni,I.Popov,U.Banin,Diffusion of gold into InAs nanocrystals[J],Angew.Chem.Int.Ed.,2006,45,8001-8005.
    [19](a) S.W.Lee,M.C.Jeong,J.M.Myoung,G.S.Chae,I.J.Chung,Magnetic alignment of ZnO nanowires for optoelectronic device applications[J],Appl.Phys.Lett.,2007,90,133115-3.
    (b) L.Wang,X.Z.Liu,M.Yang,Y.J.Fan,J.H.Zhan,Electroless plating of nickel nanoparticles on CdS nanowires[J],Eur.J.Inorg.Chem.,2009,897-902.
    [20]J.Zhan,H.Lin,C.Mou,Biomimetic formation of porous single-crystalline CaCO_3 via nanocrystal aggregation[J],Adv.Mater.,2003,15,621-623.
    [21]H.Gu,R.Zheng,H.Liu,X.Zhang,B.Xu,Direct synthesis of a bimodal nanosponge based on FePt and ZnS[J],Small,2005,1,402-406.
    [22]R.S.Iskhakov,S.V.Komagortsev,A.D.Balaev,A.V.Okotrub,A.G.Kudashov,V.L.Kuznetsov,Y.V.Butenko,Fe nanowires in carbon nanotubes as an example of a one-dimensional system of exchange-coupled ferromagnetic nanoparticles[J],JETP Lett.,2003,78,236-240.
    [23](a) H.Deng,X.Wang,J.P.Chen,Y.D.Li,Monodisperse magnetic single-crystal ferrite microspheres[J],Angew.Chem.,Int.Ed.,2005,44,2782-2785.
    (b) M.Shafi,A.Gedanken,R.Prozorov,J.Balogh,Sonochemical preparation and size-dependent properties of nanostructured CoFe_2O_4 particles[J],Chem.Mater,1998,10,3445-3450.
    [1]M.R.Hoffman,S.T.Martin,W.Choi,Environmental Applications of Semiconductor Photocatalysis[J],Chem.Rev.,1995,95,69-96.
    [2](a) H.Du,G.Q.Xu,W.S.Chin,L.Huang,W.Ji,Synthesis,characterization,and nonlinear optical properties of hybridized CdS-polystyrene nanocomposites[J],Chem.Mater.,2002,14,4473-4479.
    (b) M.R.Kim,Y.M.Kang,D.J.Jang,Synthesis and Characterization of Highly Luminescent CdS@ZnS Core-Shell Nanorods[J],J.Phys.Chem.C,2007,111,18507.
    (c) W.T.Chen,T.T.Yang,Y.J.Hsu,Au-CdS core#shell nanocrystals with controllable shell thickness and photoinduced charge separation property[J],Chem.Mater.,2008,20,7204-7206.
    [3](a) Y.J.Hsu,S.Y.Lu,One-step preparation of coaxial CdS-ZnS nanowires[J],Chem.Commun.,2004,18,2102-2103.
    (b) J.Q.Hu,Q.Li,X.M.Meng,C.S.Lee,S.T.Lee,Thermal reduction route to the fabrication of coaxial Zn/ZnO nanocables and ZnO nanotubes[J],Chem.Mater,2003,15,305-308.
    (c) L.Manna,E.C.Scher,L.S.Li,A.P.Alivisatos,Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods [J],J.Am.Chem.Soc.,2002,124,7136-7145.
    [4](a) M.A.Malik,P.O'Brien,N.Revaprasadu,A simple route to the synthesis of core/shell nanoparticles of chalcogenides[J],Chem.Mater.,2002,14,2004-2010.
    (b) P.Reiss,J.Bleuse,A.Pron,Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion[J],Nano Lett.,2002,2,781-784.
    (c) M.Danek,K.F.Jensen,C.B.Murray,M.G.Bawendi,Synthesis of luminescent thin-film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe[J],Chem.Mater,1996,8,173-180.
    [5]A.Datta,S.K.Panda,S.Chaudhuri,Synthesis and optical and electrical properties of CdS/ZnS core/shell nanorods[J],J.Phys.Chem.C,2007,111,17260-17264.
    [6]Y.J.Hsu,S.Y.Lu,Preparation of nanosized ZnS-passivated CdS particle films via the MOCVD process with co-fed single source precursors[J],Langmuir,2004,20,194-201.
    [7]Y.J.Hsu,S.Y.Lu,Y.F.Lin,One-step preparation of coaxial CdS-ZnS and Cd_(1-x)Zn_xS-ZnS nanowires[J],Adv.Funct.Mater.,2005,15,1350-1357.
    [8](a) S.Kalele,S.W.Gosavi,J.Urban,S.K.Kulkami,Nanoshell particles:synthesis,properties and applications[J],Curr.Sci.,2006,91,1038-1052.
    (b) R.G.Xie,U.Kolb,J.X.Li,T.Basche,A.Mews,Synthesis and characterization of highly luminescent CdSe-core CdS/Zn_(0.5)Cd_(0.5)S/ZnS multishell nanocrystals[J],J.Am.Chem.Soc.,2005,127,7480-7488.
    [9](a) R.Wang,J.H.Xin,Y.Yang,H.Liu,L.Xu,J.Hu,The characteristics and photocatalytic activities of silver doped ZnO nanocrystallites[J],Appl.Surf.Sci.,2004,227,312-317.
    (b) H.Lachheb,E.Puzenat,A.Houas,M.Ksibi,E.Elaloui,C.Guillard,J.M Hermman,Photocatalytic degradation pathway of methylene blue in water[J],Appl.Catal.B Environ.,2001,31,145-157.
    [10]C.Yogi,K.Kojima,N.Wada,H.Tokumoto,T.Takai,T.Mizoguchi,H.Tamiaki,Photocatalytic degradation of methylene blue by TiO_2 film and Au particles-TiO_2composite film[J],Thin Solid Films,2008,516,5881-5884.
    [11]L.H.Kieth,W.A.Telliard,Priority pollutants:I-a perspective view[J],Environ.Sci.Technol.,1979,13,416-423.
    [12](a) X.Shen,L.Zhu,G.Liu,H.Yu,H.Tang,Enhanced photocatalytic degradation and selective removal of nitrophenols by using surface molecular imprinted titania[J],Environ.Sci.Technol.,2008,42,1687-1692.
    (b).X.Shen,L.Zhu,J.Li,H.Tang,Synthesis of molecular imprinted polymer coated photocatalysts with high selectivity[J],Chem.Commun.,2007,1163-1165,
    [13](a) L.G.Arriaga,A.M.Fernandez,Determination of flat band potential and photocurrent response in(Cd,Zn)S used in photoelectrolysis process[J],Int.J.Hydrogen Energy,2002,27,27-31.
    (b) L.Spanhel,H.Weller,A.Henglein,Photochemistry of semiconductor colloids.22.electron injection from illuminated CdS into attached TiO_2 and ZnO particles[J],J.Am.Chem.Soc.,1987,109,6632-6635.
    (c) T.Kid,G.Guan,A.Yoshida,LaMnO_3/CdS nanocomposite:a new photocatalyst for hydrogen production from water under visible light irradiation [J], Chem. Phys. Lett, 2003, 371, 563-567.
    [1]王俊珍,付希贤,杨秋华,Bi_2O_3对染料的光催化降解性能[J],应用化学,2002,5,483-485。
    [2]W.F.Yao,H.Wang,X.H.Xu,Synthesis and photocatalytic property of bismuth titanate Bi_4Ti_3O_(12)[J],Mater.Lett.,2003,57,1899-1902.
    [3]W.F.Yao,H.Wang,X.H.Xu,Characterization and photocatalytic properties of Ba doped Bi_(12)TiO_(20)[J],J.of Mol.Catal.A:Chem.,2003,202,305-311.
    [4]C.Zhang,Y.F.Zhu,Synthesis of square Bi_2WO_6 nanoplates as high-activity visible-light-driven photocatalysts[J],Chem.Mater.,2005,17,3537-3545.
    [5]J.G.Yu,J.F.Xiong,B.Cheng,Hydrothermal preparation and visible-light photocatalytic activity of Bi_2WO_6 powders[J],J.of Solid State Chem.,2005,178,1968-1972.
    [6]J.W.Tang,Z.G.Zou,J.H.Ye,Efficient photocatalytic decomposition of organic contaminants over CaBi_2O_4 under visible-light irradiation[J],Angew.Chem.int.Ed,2004,43,4463-4466.
    [7]P.J.Hillson,R.B.Mckay,Aggregation of Dye Molecules in Aqueous Solution-a Polarographic Study[J],Trans.Faraday Soc.,1965,61,374- 380.
    [1] P. D. Cozzoli, T. Pellegrino, L. Manna, Chem. Soc. Rev. 2006, 35, 1195-1208.
    [2] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber, Nature 2002, 415, 617-620.
    
    [3] R. He, M. Law, R. Fan, F. Kim, P. Yang, Nano Lett. 2002, 2, 1109-1112.
    [4] Y. Wu, J. Xiang, C. Yang, W. Lu, C. M. Lieber, Nature 2004, 430, 61-65.
    [5] Y. Huang, X. Duan, Q. Wei, Y. Cui, L. J. Lauhon, K. H. Kim, C. M. Lieber, Science 2001, 294, 1313-1317.
    [6] a) M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, R.P.Yang,Science 2001,292,1897-1899;
    b) J.Ding,J.A.Zapien,W.Chen,Y.Lifshitz,S.T.Lee,Appl.Phys.Lett.2004,85,2361-2363.
    [7]J.Wang,M.S.Gudiksen,X.Duan,Y.Cui,C.M.Lieber,Science 2001,293,1455-1457.
    [8]D.J.Milliron,S.M.Hughes,Y.Cui,L.Manna,J.Li,L.Wang,A.P.Alivisatos,Nature 2004,430,190-195.
    [9]R.D.Robinson,B.Sadtler,D.O.Demchenko,C.K.Erdonmez,L.Wang,A.P.Alivisatos,Science 2007,317,355-358.
    [10]F.Shieh,A,E.Saunders,B.A.Korgel,J.Phys.Chem.B 2005,109,8538-8542.
    [11]D.V.Talapin,R.Koeppe,S.Goetzinger,A Kornowski,J.M.Lupton,A.L.Rogach,O.Benson,J.Feldmann,H.Weller,Nano Lett.2003,3,1677-1681.
    [12]T.Mokari,E.Rothenberg,I.Popov,R.Costi,U.Banin,Science 2004,304,1787-1790.
    [13]H.Kim,M.Achermann,L.P.Balet,J.A.Hollingsworth,V.I.Klimov,J.Am.Chem.Soc.2005,127,544-546.
    [14]Y.Hsu,S.Lu,Y.Lin,Adv.Funct.Mater.2005,15,1350-1357.
    [15]D.V.Talapin,I.Mekis,S.Gotzinger,A.Kornowski,O.Benson,H.Weller,J.Phys.Chem.B 2004,108,18826-18831.
    [16]X.Peng,M.C.Schlamp,A.V.Kadavanich,A.P.Alivisatos,J.Am.Chem.Soc.1997,119,7019-7029.
    [17]A.Salant,E.A.Sadovsky,U.Banin,J.Am.Chem.Soc.2006,128,10006-10007.
    [18]T.Mokari,A.Aharoni,I.Popov,U.Banin,Angew.Chem.Int.Ed.2006,45,8001-8005.
    [19]a) A.E.Saunders,I.Popov,U.Banin,J.Phys.Chem,B 2006,110,25421-25429;
    b) T.Mokari,C.G.Sztrum,A Salant,E.Rabani,U.Banin,Nat.Mater.2005,4,855-863.
    [20]P.D.Cozzoli,M L.Curri,C.Giannini,A.Agostiano,Small 2006,2,413-421.
    [21]a) M.Casavola,R.Buonsanti,G.Caputo,P.D.Cozzoli,Eur.J.Inorg.Chem.2008,837-854;
    b) H.Gu,R.Zheng,X.Zhang,B.Xu,J.Am.Chem.Soc.2004, 126,5664-5665;
    c) S.W.Lee,M.C.Jeong,J.M.Myoung,G.S.Chae,I.J.Chung,Appl.Phys.Lett.2007,90,133115-3;
    d) M.Casavola,V.Grillo,E.Carlino,C.Giannini,F.Gozzo,E.F.Pinel,M.A.Garcia,L.Manna,R.Cingolani,P.D.Cozzoli,Nano Lett.2007,7,1386-1395;
    e) R.Buonsanti,V.Griilo,E.Carlino,C.Giannini,M.L.Curri,C.Innocenti,C.Sangregorio,K.Achterhold,F.G.Parak,A.Agostiano,P.D.Cozzoli,J.Am.Chem.Soc.2006,128,16953-16970.
    [22]a) Q.H,Xiong,G.Chen,J.D.Acord,X.Liu,J.J.Zengel,H.R.Gutierrez,J.M Redwing,L.C.Lew Yan Voon,B.Lassen,P.C.Eklund,Nano Lett.2004,4,1663-1668;
    b) M.Chen,Y.Xie,J.Lu,Y.Xiong,S.Zhang,Y.Qian,X.Liu,J.Mater.Chem.2002,12,748-753.
    [23]a) X.F.Duan,C.M.Lieber,Adv.Mater.2000,12,298-302;
    b) C.J.Barrelet,Y.Wu,D.C.Bell,C.M.Lieber,J.Am.Chem.Soc.2003,125,11498-11499;
    c) C.Ye,G.Meng,Y.Wang,Z.Jiang,L.Zhang,J.Phys.Chem.B 2002,106,10338-10341;
    d) Y.Wang,G.Meng,L.Zhang,C.Liang,J.Zhang,Chem.Mater.2002,14,1773-1777.
    [24]a) K.Nielsch,R.B.Wehrspohn,J.Barther,J.Kirschner,S.F.Fischer,H.Kronmuller,T.Schweinbock,D.Weiss,U.Gosele,J.Magn.Magn.Mater.2002,249,251-256;
    b) N.Cordente,M.Respaud,F.Senocq,M.J.Casanove,C.Amiens,B.Chaudret,Nano Lett.2001,1,565-568;
    c) J.C.Bao,C.Y.Tie,Z.Xu,Q.F.Zhou,D.Shen,Q.Ma,Adv.Mater.2001,13,1631-1633.
    [25]A.K.Bentley,J.S.Trethewey,A.B.Ellis,W.C.Crone,Nano.Lett.2004,4,487-490;F.M.Yang,T.C.Chang,Appl.Phys.Lett.2007,90,222104.
    [26]a) M.Han,Q.Liu,J.He,Y.Song,Z.Xu,J.M.Zhu,Adv.Mater.2007,19,1096-1100;
    b) X.Ni,Q.Zhao,H.Zheng,B.Li,J.Song,D.Zhang,X.Zhang,Eur.J.Inorg.Chem.2005,4788-4793;
    c) N.Cordente,M.Respaud,F.Senocq,M.J.Casanove,C.Amiens,B.Chaudret,Nano Lett.2001,1,565-568.
    [27]P.Yan,Y.Xie,Y.Qian,X.Liu,Chem.Commun.1999,86,1293-1294.
    [28]J.Zhan,X.Yang,D.Wang,S.Li,Y.Xie,Y.Xia,Y.Qian,Adv.Mater.2000,12,1348-1351.
    [29]W.Zhu,W.Wang,J.Shi,J.Phys.Chem.B 2006,110,9785-9790.
    [30]J.Bao,Y.Liang,Z.Xu,L.Si,Adv.Mater.2003,15,1832-1835.
    [31]Q.Liu,H.Liu,M.Han,J.Zhu,Y.Liang,Z.Xu,Y.Song,Adv.Mater.2005,17,1995-1999.
    [32]D.H.Son,S.M.Hughes,Y.Yin,A.P.Alivisatos,Science 2004,306,1009-1012.
    [33]U.Jeong,J.U.Kim,Y.Xia,Z.Li,Nano Lett.2005,5,937-942.
    [34]P.H.C.Camargo,Y.H.Lee,U.Jeong,Z.Zou,Y.Xia,Langmuir 2007,23,2985-2992.
    [35]J.Zhan,H.Lin,C.Mou,Adv.Mater.2003,15,621-623.
    [36]a) L.Yin,Y.Bando,J.Zhan,M Li,D.Golberg,Adv.Mater 2005,17,1972-2977;
    b) A.Figuerola,A.Fiore,R.D.Corato,A.Falqui,C.Giannini,E.Micotti,A.Lascialfari,M.Corti,R.Cingolani,T.Pellegrino,P.D.Cozzoli,L.Manna,J.Am.Chem.Soc.2008,130,1477-1487.
    [37]R.S.Iskhakov,S.V.Komagortsev,A.D.Balaev,A.V.Okotrub,A.G.Kudashov,V.L.Kuznetsov,Y.V.Butenko,JETP Lett.2003,78,236-240.
    [38]a) S.H.Wu,D.H.Chen,J.Colloid Interface Sci.2003,259,282-286;
    b) J.H.Hwang,V.P.Dravid,M.H.Teng,J.J.Host,B.R.Elliott,D.L.Johnson,T.O.Mason,J.Mater.Res.1997,12,1076-1082;
    c) V.P.M.Shafi,A.Gedanken,R.Prozorov,J.Balogh,Chem.Mater 1998,10,3445-3450.
    [39]a) Z.Liu,S.Li,Y.Yang,S.Peng,Z.Hu,Y.Qian,Adv.Mater.2003,15,1946-1948;
    b) H.T.Zhang,G.Wu,X.H.Chen,Mater.Lett.2005,59,3728-3731.
    [40]E.N.Konyushenko,N.E.Kazantseva,J.Stejskal,M.Trchova,J.Kovarova,I.Sapurina,M.M.Tomishko,O.V.Demicheva,J.Prokes,J.Magn.Magn.Mater.2008,320,231-240.
    (1)(a) Cozzoli,P.D.;Pellegrino,T.;Manna,L.Chem.Soc.Rev.2006,35,1195.
    (b)Wu,Y.;Xiang,J.;Yang,C.;Lu,W.;Lieber,C.M.Nature 2004,430,61.
    (c)Huang,Y.;Duan,X.;Wei,Q.;Cui,Y.;Lauhon,L.J.;Kim,K.H.;Lieber,C.M.Science 2001,294,1313.
    (2)(a) Gudiksen,M.S.;Lauhon,L.J.;Wang,J.;Smith,D.C.;Lieber,C.M.Nature 2002,415,617.
    (b) Solanki,R.;Huo,J.;Freeouf,J.L.;Miner,B.Appl.Phys.Lett.2002,81,3864.
    (3)(a) Han,S.;Li,C.;Liu,Z.Q.;Lei,B.;Zhang,D.H.;Jin,W.;Liu,X.L.;Tang,T.;Zhou,C.W.Nano Lett.2004,4,1241.
    (b) Lauhon,L.J.;Gudiksen,M.S.;Wang,D.L.;Lieber,C.M.Nature 2002,420,57.
    (c) Kong,X.Y.;Ding,Y.;Wang,Z.L.J.Phys.Chem.B 2004,108,570.
    (4)(a) Hu,J.;Bando,Y.;Liu,Z.;Sekiguchi,T.;Golberg,D.;Zhan,J.J.Am.Chem.Soc.2003,125,11306.
    (b) He,R.R.;Law,M.;Fan,R.;Kim,F.;Yang,P.D.Nano Lett.2002,2,1109.
    (c) Zhan,J.H.;Bando,Y.;Hu,J.Q.;Sekiguchi,T.;Golberg,D.Adv.Mater.2005,17,225.
    (5)(a) Zheng,Y.;Zheng,L.;Zhan,Y.;Lin,X.;Zheng,Q.;Wei,K.Inorg.Chem.2007,46,6980.
    (b) Lao,J.Y.;Wen,J.G.;Ren,Z.F.Nano Lett.2002,2,1287.
    (c) Jung,Y.;Ko,D.K.;Agarwal,R.Nano Lett.2007,7,264.
    (6)(a) Khan,M.;Bhardwaj,R.;Bhardwaj,C.Int.J.Hydrogen Energy 1988,13,7.
    (b) Agarwal,R.;Barrelet,C.;Lieber,C.M.Nano Lett.2005,5,917.
    (c) Ma,R.;Dai,L.;Qin,G.Nano Lett.2007,7,868.
    (d) Jie,J.S.,Zhang,W.J.;Jiang,Y.;Meng,X.M.;Li,Y.Q.;Lee,S.T.Nano Lett.2006,6,1887.
    (e) Du,N.;Zhang, H.;Chen,B.;Chen,D.;Wu,J.B.;Yang,D.R.Nanotechnology 2007,18,115619.
    (7)(a) Chen,M.;Xie,Y.;Lu,J.;Xiong,Y.;Zhang,S.;Qian,Y.;Liu,X.J.Mater.Chem.2002,12,748.
    (b) Barrelet,C.J.;Wu,Y.;Bell,D.C.;Lieber,C.M.J.Am.Chem.Soc.2003,125,11498.
    (c) Ye,C.;Meng,G.;Wang,Y.;Jiang,Z.Zhang,L.J.Phys.Chem.B.2002,106,10338.
    (d) Wang,Y.;Meng,G.;Zhang,L.;Liang,C.;Zhang,J.Chem.Mater.2002,14,1773.
    (8)(a) Chen,W.T.;Yang,T.T.Hsu,Y.J.Chem.Mater 2005,20,7204.
    (b) Datta,A.;Panda,S.K.;Chaudhuri,S.J.Phys.Chem.C 2007,111,17260.
    (c) Liu,X.;Fang,Z.;Zhang,X.;Zhang,W.;Wei,X.W.;Geng,B.Y.Cryst.Growth Des.2009,9,197.
    (d) Shi,X.L.;Cao,M.S.;Yuan,J.;Zhao,Q.L.;Kang,Y.Q.;Fang,X.Y.;Chen,Y.J.Appl.Phys.Lett.2008,93,183118.
    (9)(a) Kwon,K.;Shim,M.J.Am.Chem.Soc.2005,127,10269.
    (b) McDaniel,H.;Shim,M.ACS Nano,2009,3,434.
    (10)(a) Zhang,J.L.;Wang,Y.;Ji,H.;Wei,Y.G.;Wu,N.Z.;Zuo,B.J.;Wang,Q.L.J.Catal.2005,229,114.
    (b) Shekhah,O.;Ranke,W.;Schule,A.;Kolios,G.;Schlogl,R.Angew.Chem.Int.Ed.2003,42,5760.
    (11)(a) Li,P.;Miser,D.E.;Rabiei,S.;Yadav,R.T.;Hajaligol,M.R.Appl.Catal.B.2003,43,151.
    (b) Wu,R.C.;Qu,J.H.;Chen,Y.S.Water Res.2005,39,630.
    (12) Chen,J.;Xu,L.N.;Li,W.Y.;Gou,X.L.Adv.Mater.2005,17,582.
    (13) Zeng,H.;Li,J.;Liu,J.P.;Wang,Z.L.;Sun,S.H.Nature.2002,420,395.
    (14) Jordan,A.;Scholz,R.;Maier-Hauff,K.;Johannsen,M.;Wust,P.;Nadobny,J.;Schin'a,H.;Schmidt,H.;Deger,S.;Loening,S.;Lanksch,W.;Felix,R.J.Magn.Magn.Mater.2001,225,118.
    (15)(a) Liu,X.;Hu,Q.;Zhang,X.;Fang,Z.;Wang,Q.J.Phys.Chem.C,2008,112,12729.
    (b) Gao,J.;Zhang,W.;Huang,P.;Zhang,B.;Zhang,X.;Xu,B.J.Am.Chem.Soc.2005,130,3710.
    (c) Wang,D.;He,J.;Rosenzweig,Z.Nano Lett.2004,4,409.
    (d) Selvan,S.;Patra,P.;Ang,C.;Ying,J.Angew.Chem.,Int.Ed.2007,46,2448.
    (e) Li,D.;Haneda,H.Journal Photochem.Photobiol., A,2003,160,203.
    (f) Tan,O.;Zhu,W.;Yan,Q.;Kong,L.Sens.Actuators,B,2000,65,361.
    (g) Xuan,S.H.Jiang,W.Q.;Gong,X.L.;Hu,Y.;Chen,Z.Y.J.Phys.Chem.C,2009,113,553.
    (16) Yan,P.;Xie,Y.;Qian,Y.;Liu,X.Chem.Comm.1999,86,1293.
    (17) Ding,Y.;Wang,Z.J.Phys.Chem.B 2004,108,12280.
    (18) Yin,L.;Bando,Y.;Zhan,J.;Li,M.;Golberg,D.Adv.Mater.2005,17,1972.
    (19) Yu,D.;Sun,X.;Zou,J.;Wang,Z.;Wang,F.;Tang,K.J.Phys.Chem.B 2006,110,21667.
    (20) Talapin,D.V.;Mekis,I.;Gotzinger,S.;Kornowski,A.;Benson,O.;Weller,H.J.Phys.Chem.B 2004,108,18826.
    (21)(a) Saunders,A.E.;Popov,I.;Banin,U.J.Phys.Chem.B 2006,110,25421.
    (b) Cozzoli,P.D.;Curri,M.L.;Giannini,C.;A.Agostiano,Small 2006,2,413.
    (22)(a) Casavola,M.;Buonsanti,R.;Caputo,G.;Cozzoli,P.D.Eur.J.Inorg.Chem.2008,837.
    (b) Wang,L.;Liu,X.Z.;Yang,M.;Fan,Y.J.;Zhan,J.H.Eur.J.Inorg.Chem.2009,897.
    (c) Casavola,M.;Grillo,V.;Cadino,E.;Giannini,C.;Gozzo,F.;Pinel,E.F.;Garcia,M.A.;Manna,L.;Cingolani,R.;Cozzoli,P.D.Nano Lett.2007,7,1386.
    (23) Zhan,J.,Lin,H.;Mou,C.Adv.Mater.2003,15,621.
    (24) Gu,H.;Zheng,R.;Liu,H.;Zhang,X.;Xu,B.Small 2005,1,402.
    (25) Iskhakov,R.S.;Komagortsev,S.V.;Balaev,A.D.;Okotrub,A.V.;Kudashov,A.G.;Kuznetsov,V.L.;Butenko,Y.V.JETP Lett.2003,78,236.
    (26)(a) Deng,H.;Li,X.L.;Peng,Q.;Wang,X.;Chen,J.P.;Li,Y.D.Angew.Chem.,Int.Ed.2005,44,2782.
    (b) Shafi,V.P.M.;Gedanken,A.;Prozorov,R.J.Chem.Mater.1998,10,3445.
    (27)(a) Wang,R.;Xin,J.H.;Yang,Y.;Liu,H.;Xu,L.;Hu,J.Appl.Surf.Sci.2004,227,312.
    (b) Lachheb,H.;Puzenat,E.;Houas,A.;Ksibi,M.;Elaloui,E.;Guillard,C.;Hermman,J.M.Appl.Catal.B Environ.2001,31,145.
    (c)Yogi,C.;Kojima,K.;Wada,N.;Tokumoto,H.;Takai,T.;Mizoguchi,T.;Tamiaki,H.Thin Sol.Films 2008,516,5881.
    1. Y. Wu, J. Xiang, C. Yang, W. Lu, C. M. Lieber, Nature 430, 61 (2004). doi: 10.1038/nature02674
    
    2. U. K. Gautam, X. Fang, Y. Bando, J. Zhan, D. Golberg, ACS Nano. 2,1015 (2008). doi:10.1021/nn800013b
    
    3. A. Jensen, J. R. Hauptmann, J. Nygrd, J. Sadowski, P. E. Lindelof, Nano Lett. 4, 349(2004). doi: 10.1021/n10350027
    4. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber, Nature 415, 617 (2002). doi: 10.1038/415617a
    
    5. R. Solanki, J. Huo, J. L. Freeouf, B. Miner, Appl. Phys. Lett. 81, 3864 (2002). doi: 10.1063/1.1521570
    
    6. Y. Zhang, K. Suenaga, C. Colliex, S. Iijima, Science 281, 973 (1998). doi: 10.1126/science.281. 5379.973
    
    7. S. Han, C. Li, Z. Q. Liu, B. Lei, D. H. Zhang, W. Jin, X. L. Liu, T. Tang, C. W. Zhou, Nano Lett. 4, 1241 (2004). doi:10.1021/nl049467o
    
    8. X. Y. Kong, Y. Ding, Z. L. Wang, J. Phys. Chem. B 108, 570 (2004). doi:10.1021/jp036993f
    
    9. J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, S. T. Lee, Chem. Mater. 15, 305 (2003). doi:10.1021/cm020649y
    
    10. Y. J. Hsu, S. Y. Lu, Chem. Commun. 18, 2102 (2004). doi:10.1039/b403932g
    
    11. T. Mokari, U. Banin, Chem. Mater. 15, 3955 (2003). doi:10.1021/cm034173+
    
    12. L. Manna, E. C. Scher, L. S. Li, A. P. Alivisatos, J. Am. Chem. Soc. 124, 7136 (2002). doi: 10.1021/ja025946i
    
    13. S. Kar, S. Santra, H. Heinrich, J. Phys. Chem. C 112, 4036 (2008). doi:10.1021/jp800277x
    
    14. Z. L. Wang, Z. R. Dai, R. P. Gao, Z. G.Bai, J. L. Gole, Appl. Phys. Lett. 77, 3349 (2000). doi: 10.1063/1.1327281
    
    15. J. Hu, Y. Bando, Z. Liu, T. Sekiguchi, D. Golberg, J. Zhan, J. Am. Chem. Soc. 125, 11306 (2003). doi:10.1021/ja0302351
    
    16. R. R. He, M. Law, R. Fan, F. Kim, P. D. Yang, Nano Lett. 2, 1109 (2002). doi:10.1021/nl0257216
    
    17. J. H. Zhan, Y. Bando, J. Q. Hu, T. Sekiguchi, D. Golberg, Adv. Mater. 17, 225 (2005). doi: 10.1002/ adma.200400585
    
    18. B. K. Teo, C. P. Li, X. H. Sun, N. B. Wong, S. T. Lee, Inorg. Chem. 42, 6723 (2003). doi:10.1021/ic034397u
    
    19. Y. Zheng, L. Zheng, Y. Zhan, X. Lin, Q. Zheng, K. Wei, Inorg. Chem. 46, 6980 (2007). doi:10.1021/ic700688f
    20. J. Y. Lao, J. G.Wen, Z. F. Ren, Nano Lett. 2, 1287 (2002). doi:10.1021/nl025753t
    
    21. Y. Jung, D. K. Ko, R. Agarwal, Nano Lett. 7, 264 (2007). doi:10.1021/nl0621847
    
    22. S. Bae, H. Seo, H. Choi, J. Park, J. Park, J. Phys. Chem. B 108, 12318 (2004). doi:10.1021/jp048918q
    
    23. Y. Q. Li, J. X. Tang, H. Wang, J. A. Zapien, Y. Y. Shan, S. T. Lee, Appl. Phys. Lett. 90, 093127 (2007). doi: 10.1063/1.2710743
    
    24. L. J. Lauhon, M. S. Gudiksen, D. L. Wang, C. M. Lieber, Nature 420, 57 (2002). doi: 10.1038/nature01141
    
    25. F. Tao, Y. Liang, G. Yin, D. Xu, Z. Jiang, H. Li, M. Han, Y. Song, Z. Xie, Z. Xue, J. Zhu, Z. Xu,. L. Zheng, X. Wei, Y. Ni, Adv. Funct. Mater. 17, 1124 (2007). doi: 10.1002/adfm.200600177
    
    26. R. Agarwal, C. Barrelet, C. M. Lieber, Nano Lett. 5, 917 (2005). doi: 10.1021/ nl050440u
    
    27. R. Ma, L. Dai, G. Qin, Nano Lett. 7, 868 (2007). doi:10.1021/nl062329+
    
    28. J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, S. T. Lee, Nano Lett. 6, 1887(2006). doi: 10.1021/nl060867g
    
    29. M. Chen, Y. Xie, J. Lu, Y. Xiong, S. Zhang, Y. Qian, X. Liu, J. Mater. Chem. 12, 748 (2002). doi:10.1039/bl05652m
    
    30. C. J. Barrelet, Y Wu, D. C. Bell, C. M. Lieber, J. Am. Chem. Soc. 125, 11498 (2003). doi:10.1021/ja036990g
    
    31. C. Ye, G.Meng, Y. Wang, Z. Jiang, L. Zhang, J. Phys. Chem. B 106, 10338 (2002). doi:10.1021/jp0255785
    
    32. Y. Wang, G.Meng, L. Zhang, C. Liang, J. Zhang, Chem. Mater. 14, 1773 (2002). doi:10.1021/cm0115564
    
    33. M. A. Malik, P. O'Brien, N. Revaprasadu, Chem. Mater. 14, 2004 (2002). doi:10.1021/cm011154w
    
    34. P. Reiss, J. Bleuse, A. Pron, Nano Lett. 2, 781 (2002). doi:10.1021/nl025596y
    
    35. M. Danek, K. F. Jensen, C. B. Murray, M. G. Bawendi, Chem. Mater. 8, 173 (1996). doi:10.1021/cm9503137
    
    36. A. Datta, S. K. Panda, S. Chaudhuri, J. Phys. Chem. C 111, 17260 (2007). doi:10.1021/jp076093p
    
    37. Y. J. Hsu, S. Y. Lu, Y. F. Lin, Adv. Funct. Mater. 15, 1350 (2005). doi:10.1002/ adfm.200400563
    
    38. M. R. Kim, Y. M. Kang, D. J. Jang, J. Phys. Chem. C 111, 18507 (2007). doi:10.1021/jp075218n
    
    39. J. Zhan, X. Yang, D. Wang, S. Li, Y. Xie, Y. Xia, Y. Qian, Adv. Mater. 12, 1348 (2000).doi:10.1002/1521-4095(200009)12:18<1348::AID-ADMA1348>3.0.CO;2 -X
    
    40. Y. J. Hsu, S. Y. Lu, Langmuir 20,194, (2004). doi: 10.1021/la0347410
    
    41. S. Kalele, S. W. Gosavi, J. Urban, S. K. Kulkarni, Curr. Sci. 91, 1038 (2006). Sici: 0011-3891(20061025) 91:8L.1038:NPSP;1-U
    
    41. P. Reiss, M. Protie re, L. Li, small 5, 154 (2009). doi: 10.1002/smll.200800841
    
    42. R. G. Xie, U. Kolb, J. X. Li, T. Basche, A. Mews, J. Am. Chem. Soc. 127, 7480 (2005). doi: 10.1021/ja042939g
    
    43. R. Wang, J. H. Xin, Y. Yang, H. Liu, L. Xu, J. Hu, Appl. Surf. Sci. 227, 312 (2004). doi: 10.1016/j.apsusc.2003.12.012
    
    44. H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, J. M. Hermman, Appl. Catal. B: Environ. 31, 145 (2001). doi:10.1016/S0926-3373(00) 00276-9
    
    45. C. Yogi, K. Kojima, N. Wada, H. Tokumoto, T. Takai, T. Mizoguchi, H. Tamiaki, Thin Solid Films 516, 5881 (2008). doi: 10.1016/j.tsf.2007.10.050
    
    46. L. H. Kieth, W. A. Telliard, Environ. Sci. Technol. 13, 416 (1979). doi: 10.1021/ es60152a601
    
    47. X . Shen, L. Zhu, G. Liu, H. Yu, H. Tang, Environ. Sci. Technol. 42, 1687 (2008). doi:10.1021/es071788p
    
    48. X. Shen, L. Zhu, J. Li, H. Tang, Chem. Commun. 1163 (2007). doi:10.1039/ b615303h

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700