面向模具结构化表面光整加工的磨粒流湍流调控及加工机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对模具零件上的微小孔、槽、棱柱、棱锥等结构化表面光整加工技术难题,传统光整加工方法存在很多缺陷很难用于微小结构化表面的光整加工,本文提出采用约束模块调控液-固两相“软性”磨粒流对模具微小结构化表面进行光整加工新方法,通过理论研究、加工模拟仿真和加工试验研究等途径,验证了该方法的可行性和有效性,达到了利用约束模块对磨粒流进行湍流调控实现模具结构化表面光整加工的目的。具体研究摘要如下:
     本文的研究内容来源于导师主持的国家自然科学基金面上项目和浙江省自然科学基金重点项目,在分析课题研究背景和意义基础上,综合叙述了国内外磨粒流光整加工方法和湍流理论的研究现状及发展趋势,提出本文的研究内容和拟采用的主要方法。
     通过分析固体磨粒在液体中的受力情况和磨粒流在近壁区的流动特性,揭示了“软性”磨粒流的加工机理:微细固体磨粒与液体混合形成“软性”(低粘度)磨粒流,磨粒流中的微细磨粒对流道粗糙壁面进行撞击和刮削,粗糙壁面在磨粒长时间微力微量切削作用下逐渐被整平,从而达到光整加工提高表面粗糙度的目的。由于“软性”磨粒流的有效光整加工是在湍流状态下进行的,因此介绍了几种充分发展的湍流模型(标准k-ε模型、RNG k-ε模型和Realizable k-ε模型)。对于近壁区和低雷诺数流动,可采用壁面函数法和低雷诺数k-ε模型处理。
     为了实现“软性”磨粒流的湍流调控,根据结构化表面的结构形状设计约束模块构建磨粒流流道,研究约束模块设计和磨粒流流道构建需要注意的问题,要获得充分发展的湍流,雷诺数必须满足Re≥8000,另外还要考虑磨粒不淤临界速度。设计了一些典型的结构化表面和约束模块设计构建了磨粒流流道。提出广义约束模块的概念和“软性”磨粒流辅助EDM/ECM复合加工微细结构化表面新方法。
     基于不同结构类型的结构化表面和约束模块构建磨粒流流道,对流道中的磨粒流进行模拟仿真。通过Gambit前处理器对磨粒流模型进行网格划分,利用Fluent软件对磨粒流流动进行仿真研究,分析磨粒流的动压力、湍动能、速度和壁面切应力等分布情况,通过软件仿真验证约束模块调控磨粒流流动的可行性,以期达到提高“软性”磨粒流光整加工质量的目的。
     为了进行“软性”磨粒流光整加工试验研究,搭建了“软性”磨粒流光整加工试验平台,配置了最佳组分的“软性”磨粒流,进行了约束模块调控下的“软性”磨粒流光整加工试验和“软性”磨粒流辅助EDM/ECM复合加工试验研究,证明了基于“软性”磨粒流的微细结构化表面光整加工的可行性和有效性。
In view of the challenging technical problems of structural surface finishing of small/micro hole, slot, prism, pyramid of mould part. Traditional finishing methods can not be used to finish small/micro structural surfaces for having many disadvantages. A new method is provided in this paper that small/micro structural surface of mould is finished by liquid-solid two phases "soft" abrasive flow regulated with constraint module. The feasibility and effectiveness of the method are verified through the research measures of theoretical research, machining simulation and machining experiment, et al. The goal is achieved that mould structural surface finishing is realized by abrasive flow turbulence regulation with constraint module. The specific studies are as follows.
     The research contents of this paper come from the project of National Natural Science Foundation and key project of Natural Science Fundation of Zhejiang Province. Reseach background and significance of this paper are analyzed. Research status and development trend of domestic and foreign abrasive flow finishing method and turbulence theory are summarized. Research content and the main methods are put forward.
     The "soft" abrasive flow machining mechanism is revealed through stress analysis of solid particle in liquid and flow characteristics of abrasive flow in near wall region."Soft"(low viscosity) abrasive flow is formed by mixing micro solid particles with liquid. Rough surfaces of flow channel are hit and scraped by micro particles in abrasive flow. Rough surfaces gradually become smooth under the long time function of micro abrasive particles. The goal of improving surface roughness by abrasive flow finishing is achieved. The effective finishing of "soft" abrasive flow is under the condition of turbulence. Several fully developed turbulence models (standard k-ε model, RNG k-ε model and Realizable k-ε model) are introduced. The wall function method and the low Reynolds number k-ε model can be used for near wall region and low Reynolds number flow.
     In order to realize turbulence regulation of "soft" abrasive flow, constraint module is designed according to the structural surface and abrasive flow channel is constructed. Problems need to be paid attention to are researched during constraint module design and abrasive flow channel construction. To obtain fully developed turbulence, Reynolds number must be Re≥8000. In addition, non silting velocity also needs to be taken into account. Some typical structural surfaces and constraint modules are designed to construct abrasive flow channel. The concept of generalized constraint module and the method of "soft" abrasive flow assisted EDM/ECM combined machining micro structured surfaces are put forward.
     Abrasive flow channels are constructed based on different structural surfaces and constraint modules. Abrasive flow in the flow channel is simulated. Gambit preprocessor is used to mesh abrasive flow model. Abrasive flow is simulated by the software of Fluent. Distribution of dynamic pressure, turbulent kinetic energy, velocity and wall shear stress of abrasive flow are analyzed. The feasibility of abrasive flow is regulated by constraint module is verified through software simulation. The purpose of improving "soft" abrasive flow finishing quality is expected to be achieved.
     In order to carry out experimental study of "soft" abrasive flow finishing,"soft" abrasive flow finishing test platform is built and "soft" abrasive flow is mixed with the optimum percentage of components."Soft" abrasive flow finishing experiment is carried out under the regulation of constraint module. Experiment of "soft" abrasive flow assisted EDM/ECM combined machining is carried. Feasibility and effectiveness of small/micro structural surface finishing based on "soft" abrasive flow are verified
引文
[1]李德群,张宜生.模具企业数字制造技术的现状与发展[J].CAD/CAM与制造业信息化,2003,7(1):10-15.
    [2]谢蔚,许珞萍,吴晓春,等.用高新技术进一步提升模具钢质量[J].上海金属,2006,28(3):1-5.
    [3]周永泰.模具工业在国民经济中的重要地位及其发展趋势[J].模具商情,2003,62(6):2-4.
    [4]Brinksmeier E. Polishing of structured molds[J]. CIRP Annals-Manufacturing Technology,2004, 53(1):247-250.
    [5]Brinksmeier E. Finishing of structured surfaces by abrasive polishing[J]. Precision Engineering, 2006,30(3):325-336.
    [6]熊惟皓,郑立允,杨青青.模具表面处理与表面加工[M].化学工业出版社,2007.1.
    [7]陈锡栋等.模具精饰加工及表面强化处理技术[M].机械工业出版社,2002.2.
    [8]Tom Kohut, Surface finishing with abrasive flaw machining[J], SME technical paper.1989:35-43.
    [9]H.E. Williams, K.P. Hajurkar. Stochastic modeling and analysis of abrasive flaw machining[J]. Trans. ASME Eng. Ind.1992,114:74-81.
    [10]T.k. Loveless, k.E. Williams, K.P. kajurker. A study of the effects of abrasive flow machining on various machined surfaces[J], Journal of Materials Processing Technology.1994,47:133-151.
    [11]V.K. Jain, S.G. Adsul. Experimental investigations into abrasive flow machining(AFM)[J]. International Journal of Machine Tools & Manufacture,2000,40:1003-1021.
    [12]方慧,郭培基,余景池.液体喷射抛光材料去除机理的研究.光学技术[J],2004,30:248-250.
    [13]Wm I Kordonski. Adaptive Structures Based on Magnetorheological Fluids[C], Proc 3rd Int. Conf., Adaptive Struct. San Diego,1992.
    [14]Prokhorov I V, Kordonski W I. New high-precision magnetorheological instruments-based method of polishing optics[J]. QSA OF&T Workshop Digest,1992,24:134-135.
    [15]Kordonski W I, Jacobs S D. Magnetorheological finishing[J]. International Journal of Modem Physics B,1995,10:2837-2848.
    [16]张学成,戴一帆,李圣怡.磁射流抛光中磁场的分析与设计[J].航空精密制造技术,2006,42(1):12-15.
    [17]T. Ku riyagawa, M. Saeki, K. Syoji. Electrorheological fluid-assisted ultra-precision polishing for small three-dimensional parts[J]. Journal of the International Societies for Precision Engineering and Nanotechnology,2002,26:370-380.
    [18]Tom K. Surface finishing with abrasive flow machining[J]. ASME technical paper,1989:35-43.
    [19]Gorana V K, Jain V K, Lal G K. Experimental investigation into cutting forces and active grain density during abrasive flow machining[J]. International Journal of Machine Tools & Manufacture, 2004,44(2-3):201-211.
    [20]Gorana V K, Jain V K, Lal G K. Forces prediction during material deformation in abrasive flow machining[J]. Wear,2006,260(1):128-139.
    [21]Williams H E, Hajurkar K P. Stochastic modeling and analysis of abrasive flow machining[J]. Journal of Engineering for Industry-Transactions of the ASME,1992,114(1):74-81.
    [22]Loveless T K, Williams K E, Kajurker K P. A study of the effects of abrasive flow machining on various machined surfaces[J]. Journal of Materials Processing Technology.1994,47(17):133-151.
    [23]Jain V K, Adsul S G. Experimental investigations into abrasive flow machining (AFM)[J]. International Journal of Machine Tools & Manufacture,2000,40(7):1003-1021.
    [24]计时鸣,唐波,谭大鹏.基于VOF的模具结构化表面软性磨粒流数值模拟[J].中国机械工程,2011,22(3):334-339.
    [25]Mahabalesh P. A study of taper angles and material removal rates of drilled holes in the abrasive water jet machining process[J]. Journal of Materials Processing Technology,2007,189(1-3): 292-295.
    [26]方慧,郭培基,余景池.液体喷射抛光材料去除机理的研究[J].光学技术,2004,30(2):248-250.
    [27]方慧,郭培基,余景池.液体喷射抛光时各工艺参数对材料去除量的影响[J].光学技术,2004,30(4):440-442.
    [28]李长河,修世超,李琦等.磨料喷射光整加工机理及在机械领域中的应用[J].机械制造,2004,42(8):18-21.
    [29]刘增文,黄传真,朱洪涛.高压磨料水射流加工中材料去除机理研究[J].金刚石与磨粒磨具工程,2010,30(4):21-29.
    [30]Seok J W, Kim Y J, Jang K I, et al. A study on the fabrication of curved surfaces using magnetorheological fluid finishing[J]. International Journal of Machine Tools & Manufacture.2007, 47(14):2077-2090.
    [31]Jung B, Jang K I, Min B K, et al. Magnetorheological finishing process for hard materials using sintered Iron-CNT compound abrasives[J]. International Journal of Machine Tools & Manufacture 2009,49(5):407-418.
    [32]张峰,潘守甫,张学军.磁流变抛光材料去除的研究[J].光学技术,2001,27(6):522-525.
    [33]彭小强,戴一帆,李圣怡.磁流变抛光的材料去除数学模型[J].机械工程学报,2004,40(4):67-70.
    [34]潘艳.基于“软性”液-固两相磨粒流的模具结构化表面光整加工的工艺研究[D].浙江工业大学,2009.
    [35]宫斌.基于“游离态”的液固两相软性磨粒流的加工理论研究及数值模拟分析[D].浙江工业大学,2010.
    [36]唐波.基于流体体积模型的软性磨粒流数值模拟和实验研究[D].浙江工业大学,2010.
    [37]计时鸣,唐波,谭大鹏等.结构化表面软性磨粒流精密光整技工方法及其磨粒流动力学数值分析[J].机械工程学报,2010,46(15):178-184.
    [38]Ji S M, Xiao F Q, Tan D P. Analytical method for softness abrasive flow field based on discrete phase model[J]. Science China:Technological Sciences,2010,53(10):2867-2877.
    [39]池永为.约束模块在软性磨粒流精整加工中的应用及其设计方法[D].浙江工业大学,2011.
    [40]李琛.软性磨粒流近壁区微切削机理及其控制方法研究[D].浙江工业大学,2012.
    [41]周培源.非压缩性流体的湍流理论[J].力学与实践,2002,24(4):1-9.
    [42]Reynolds O. On the dynamical theory of turbulent incompressible viscous fluids and the determination of the criterion[J]. Phil Trans R Soc London,1894, A186:123-161.
    [43]是勋刚.湍流[M].天津:天津大学出版社,1994.
    [44]周培源.科学论文集[C].北京:中国科学技术出版社,1992.
    [45]Smagorinsky J. General circulation experiments with the primitive equations I. the basic experiment[J]. Mon. Wea. Rev.,1963,91(3):99-164.
    [46]Deardorff J W. A numerical study of three-dimensional turbulent channel flow at large reynolds number[J]. Journal of Fluid Mechanics,1970,41:452-480.
    [47]Germano M, Piomelli U and Cabot W. A dynamic subgrid-scale eddy viscosity model[J]. Physics of Fluid,1991, A3:1760-1765.
    [48]苏铭德,弗里德里克.用大涡模拟检验湍流模型[J].应用数学和力学,1994,15(11):991-997.
    [49]苏铭德.子格(SGS)模型在内流湍流中的大涡模拟[J].水动力学研究与进展A辑,1994,9(6):680-688.
    [50]Su Ming-de. Large eddy simulation of fully developed turbulent flow in a curved channel[J]. Acta Mechanica Sinica,1994,10(3):203-211.
    [51]Ghosal S, Lund T S and Moin P. A dynamic location model for large-eddy simulation of turbulent flows[J]. Journal of Fluid Mechanics,1995,286:229-255.
    [52]Orszag S A, Patterson G S. Numerical simulation of three-dimensional homogeneous isotropic turbulence[J]. Phys. Rev. Lett.,1972,28:76-79.
    [53]John Kim, Parviz Moin, Robert Moser. Turbulence statistics in fully developed channel flow at low Reynolds number[J]. J. Fluid Mech.1987,177:133-166.
    [54]Spalart P R. Direct numerical simulation of a turbulent boundary layer up to Rθ=1410[J]. J. Fluid Mech.1988:61-98.
    [55]Wang Jianping. Numerical simulation on compressible turbulence by spectral method[J]. Acta Mechanica Sinica(English Series),1998,14(3):193-207.
    [56]万曦马树微,张劲柏李椿萱.壁面展向匀速运动的槽道湍流的直接数值模拟[J].北京航空航天大学学报,2008,34(8):944-947.
    [57]蔡树棠,刘宇陆.湍流理论[M].上海:上海交通大学出版社,1993.
    [58]金忠青.N-S方程的数值解与紊流模型[M].南京:河海大学出版社,1989.
    [59]陈景仁.湍流模型及有限元法[M].上海:上海交通大学出版社,1989.
    [60]Yakhot V, Orszg S A. Renormalization group analysis of turbulence:I Basic theory [J]. Journal of Scientific Computing,1986,1(1):1-51.
    [61]Shih T-H, Liou W, Shabbir A, Zhu J. A new k-ε eddy-viscosity model for high Reynolds turbulent flows-model development and validation[J]. Computers Fluids,1995,24(3):227-238.
    [62]王晋军.粘性底层特性的实验研究[J].水利水运科学研究,1992,2:181-187.
    [63]刘家浚.材料磨损原理及其耐磨性[M],第一版.北京:清华大学出版社,1993.
    [64]林福严,曲敬信,陈华辉.磨损理论与抗磨技术[M],第一版.北京:科学出版社,1993.
    [65]Clark H M. The influence of the flow field in slurry erosion[J]. Wear,1992,152(2):223-240.
    [66]Walker C I, Bodkin G C. Empirical wear relationships for centrifugal slurry pumps part1: side-liners[J]. Wear,2000,242(1-2):140-146.
    [67]唐学林,唐宏芬,吴玉林等.水轮机转轮内固液两相紊流场数值模拟及磨蚀预估[J].工程热物理学报,2001,22(1):51-54.
    [68]Finnie I. Some reflections on the past and future of erosion[J], Wear,1995,186-187:1-10.
    [69]Finnie I, Kabil Y H. On the formation of surface ripples during erosion[J]. Wear,1965,8(1):60-69.
    [70]Finnie I, Stevick G R, Ridgely J R. The influence of impingement angle on the erosion of ductile metals by angular abrasive particles[J]. Wear,1992,152(1):91-98.
    [71]Svahn F, Kassman-Rudolphi A, Wallen E. The influence of surface roughness on the friction and wear of machine element coatings[J]. Wear,2003,254(11):1092-1098.
    [72]Launder B E, Spalding D B. Lecture in Mathematical Models of Turbulence[M]. London:Academic Press,1972.
    [73]Fluent Inc., Fluent User's Guide[M]. Fluent Inc.,2003.
    [74]陶文铨.数值传热学(第二版)[M].北京:清华大学出版社,1995.
    [75]郭鸿志.传热过程数值模拟[M].北京:冶金工业出版社,1998.
    [76]H K Versteeg, W Malalasekera. An introduction to computational fluid dynamics:the finite volume method[M]. Wiley, New York,1995.
    [77]P Moin. Progress in large eddy simulation of turbulence flows[J]. AIAA paper,1997,97-15761.
    [78]Shin T H, Liou W W, Shabbir A, et al. A new k-ε eddy viscosity model for high Reynolds number turbulent flows[J]. Computers Fluids,1995,24(3):227-238.
    [79]章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社,1998.
    [80]W P Jones, B E Launder. The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence[J]. Int J Heat Mass Transfer,1973,16:1119-1130.
    [81]B J Daly, F H Harlow. Transport equations in turbulence[J]. Phys Fluids,1970,13:2634-2649.
    [82]费祥俊.浆体管道的不淤流速研究[J].煤炭学报,1997,22(5):532-536.
    [83]费祥俊.浆体与粒状物料输送水力学[M].北京:清华大学出版社,1994.
    [84]邹履泰,章少强.两相流管道临界不淤流速的预估[J].武汉水利电力学院学报,1990,23(2-3):139-144.
    [85]丁宏达.沉积临界流速公式探讨油气运输[J].1989,8(1):1-5.
    [86]郭长青,张楚汉.流体黏性对输流管道运动方程及临界流速的影响[J].力学与实践,2010,32(5):10-13.
    [87]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700