次氯酸钠法处理难降解有机印染废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高效、低成本处理难降解有机物的技术是目前环境治理研究的热点与难点。次氯酸钠法广泛用于处理环境中的污染物质,以其处理效果好、设备简单、投资经济等优点而受到人们的重视。本文采用次氯酸钠法处理三芳甲烷染料、偶氮染料以及葸醌染料,并分析处理效果与物质分子结构之间的关系。
     通过正交试验和单因素影响实验,确定各目标物质采用次氯酸钠法进行处理的合理运行条件,包括次氯酸钠投加量、反应时间、染料的初始浓度。以葸醌染料为例,通过单因素影响实验确定次氯酸钠法处理葸醌染料的最佳运行条件。弱酸艳兰RAW(浓度为40mg/L):次氯酸钠投加量为0.3mL,反应时间为2.5h,在此条件下弱酸艳兰RAW的脱色率可达94.28%,COD去除率可达63.82%。弱酸艳绿GS(浓度为40mg/L):次氯酸钠投加量为1.0mL,反应时间为3h,在此条件下弱酸艳绿GS的脱色率可达92.52%,COD去除率可达69.45%。
     对反应动力学的研究发现,次氯酸钠法处理目标物质的反应都近似呈现一级反应动力学特征。
     本研究选择适当的染料分子结构描述符,通过线性哪里有归分析法对几种目标三芳甲烷染料和偶氮染料进行了分子结构与次氯酸钠法对其去除效果之间的定量关系研究。研究发现目标三芳甲烷染料的去除率与磺酸基数目、I/O值、芳香环数目和乙烷基数目之间存在着较好的线性相关性,其中I/O值对目标三芳甲烷染料去除率的影响贡献最显著;目标偶氮染料的去除率与磺酸基数目、I/O值、芳香环数目和偶氮基数目之间存在着较好的线性相关性,其中I/O值对目标偶氮染料去除率的影响贡献最显著。
High efficiency, low cost treatment for refractory organic technology is the hotspot and difficulty in the study of environmental management. Sodium hypochlorite method widely used in treatment of pollutants, with its good treatment effect, simple equipment, investment and other economic advantages and attention. In this paper, using sodium hypochlorite treatment of three aryl methane dyes, azo and anthraquinone dyes, and the analysis of treatment effect and the relationship between the molecular structure of the material.
     By orthogonal test and single factor experiment, determine the target substance using sodium hypochlorite method for processing the reasonable operation conditions, including sodium hypochlorite dosage, reaction time, the initial dye concentration. In order to anthraquinone dyes as an example, through the single factor experiment to determine the effect of sodium hypochlorite treatment of anthraquinone dyes and the best operating conditions. Weak acid brilliant blue RAW (concentration is 40mg/L):sodium hypochlorite dosage is 0.3mL, reaction time 2.5h, under the conditions of weak acid brilliant blue RAW removal rate was 94.28%, COD removal rate can reach to 63.82%. Weak acid brilliant green GS (concentration is 40mg/L):sodium hypochlorite dosage is 1.0mL, reaction time 3h, under the conditions of weak acid brilliant green GS removal rate was 92.52%, COD removal rate can reach to 69.45%.
     On the reaction kinetics study found, sodium hypochlorite treatment target material response are approximately shows a first-order kinetics characteristics.
     This study selects the appropriate dye molecular structure descriptor, by means of linear regression, several target three aryl methane dyes and azo dyes were investigated by molecular structure with sodium hypochlorite method in the study of the quantitative relationship between the removal effect. Study found that target three aryl methane dye removal rate and sulfonic acid number, I/O, aromatic ring number and ethylene alkyl number existed good linear correlation between the I/O value, to target three aryl methane dye removal rate influence the most significant contribution; target azo dye removal rate and sulfonic acid number, I/O, aromatic ring number and azo number existed good linear correlation between the I/O value, the target of azo dye removal is affected the most significant contribution.
引文
[1]钱易,汤鸿宵,文湘华等.水体颗粒物和难降解有机物的特性和控制技术原理[M].北京:中国环境科学出版社,2000.
    [2]张锡辉,Bajpai R难降解有机污染物共降解机理分析[J].上海环境科学,2000,19(7):297-301.
    [3]张锡辉,Bajpai R微生物共降解动力学模型解析[J].环境科学学报,2000,20:58-63.
    [4]中海虹,顾国维,李咏梅.缺氧反硝化去除难降解杂环化合物吡啶研究[J].上海环境科学,2001,20(11):530-533.
    [5]李咏梅,顾国维,赵建夫.焦化废水中儿种含氮杂环化合物缺氧降解机理[J].同济大学学报,2001,29(6):720-723.
    [6]吕萍萍,王慧,施汉昌,等.基因工程菌强化芳香化合物的处理工艺[J].中国环境科学,2003,23(1):12-15.
    [7]李顺成,刘振华,李哲,等.SBR+高效菌种处理采油废水[J].城市环境与城市生态,2003,16(6):74-75.
    [8]乌锡康.有机化工废水治理技术,1999.7.
    [9]林中祥.萃取-汽提法处理硝基苯废水的研究.环境导报[J],1998,1,14-16.
    [10]张乃东.HV/Fe(C2O4)33-/H2O2法处理苯胺类废水的研究[D].哈尔滨:哈尔滨工业大学,1999.
    [11]Castillo L. A.,Sillet A.,Roussy J.,et al.Treatment of high organic-loaded industrial effluent sriver. Water Science and Technology,2000.(11):115-118.
    [12]周明华.电化学工艺去除有毒难降解有机物应用基础研究[D].杭州,浙江大学,2003.
    [13]鞠美庭,冯承武.连续式超临界水氧化装置处理苯酚用溶液的动力学讨论[J].水处理技术,2000,26(2)105-109.
    [14]林春绵.超临界水氧化法降解聚氧乐果的研究[J].中国环境科学,2002,20(4)305-308.
    [15]贾建丽,等.新型负载型光催化剂及其4BS降解研究[J].中国环境科学,2001,21(4):293-296.
    [16]闫惠珍,樊荣涛.光催化在饮用水中的应用[J].环境与健康,2002,19(20),153-154.
    [17]黄艳娥,琚行松.纳米二氧化钛光催化降解水中有机污染物的研究进展[J].化工环保,2002,22(1):23-27.
    [18]武正簧,周丽.Ti02薄膜光催化降解甲基橙和亚甲基蓝[J].化学工程师,2002,88(1),1-3.
    [19]沈从学.载铂Ti02对3B艳红染料溶液光催化降解性能的研究[J].水处理技术,2001,27(1)33-36.
    [20]张新荣TiO2·SiO2/beads降解有机磷农药的研究[J].工业水处理,2001,21(3):13-15.
    [21]曲显恩.含氯消毒剂的性能与应用[J].中国氯碱,2005,1:19-23.
    [22]邵黎歌,程卿.次氯酸钠的分解特性及提高其稳定性能的途径[J].氯碱工业,1997,4:21-24.
    [23]波任,M.E.等.无机盐工艺学.第四版.天津化工研究院组织翻译.下册.北京:化学工业出社,1981:405-417.
    [24]Lange's Handbook ofChemistry.3th ed. New York(USA):McGraw-Hill Book Company,1985:10-19.
    [25]王卉,吕锡武.电厂冷却水采用的杀菌方式[J].给水排水,1999,3:39-41.
    [26]顾庆龙.次氯酸钠氧化法脱除二级生化出水中氨氮的中试研究[J].环境科学与管理,2007,32(12):97-99,147.
    [27]施光明,张品三,邢绍然.用次氯酸钠降低ADC发泡剂废水中氨氮含量[J].河南化工2006,32(6):27-28.
    [28]王光华,李文兵,余龙江,等.次氯酸钠处理终冷水中氰化物硫化物的研究[J].环境污染与防治,2005,27(9):679-682.
    [29]张建新,裴福云,刘红栓,等.次氯酸钠法处理草净津含氰废水[J].化工技术经济,2003,21(1):38-40,49.
    [30]卫世乾.用次氯酸钠处理含Cu(CN)32配离子配水的研究[J].许昌学院学报,2007,26(5):114-117.
    [31]熊辉,杨晓利,李光兴.次氯酸钠氧化脱除黄磷尾气中的硫、磷杂质[J].化工环保,2002,22(3):161-164.
    [32]Huijian Jiang,Linfeng Rao,Zhicheng Zhicheng Zhang,et al.Characterization and oxidation of chromium(lll) by sodium hypochlorite in alkaline solutions[J]. Inorganica Chimica Acta,2006,359:3237-3242.
    [33]顾泽平,孙水裕,肖华花.用次氯酸钠法处理选矿废水[J].化工环保,2006,26(1):35-37.
    [34]杜国勇.次氯酸钠氧化去除气田水中COD研究[J].石油与天然气化工,2003,32(3): 185-186.
    [35]陈芳,胡珍珠.次氯酸钠氧化降解亚甲基蓝水溶液的研究[J].精细石油化工进展,2004,5(11):36-38.
    [36]邓艳文,张栋栋,张利萍.次氯酸钠溶液对荧光增白剂的氧化[J].日用化学工业,2008,38(1):24-27,31.
    [37]汪雪姣,高乃云,孙晓峰,等.次氯酸钠氧化消除水中BPA的影响因素和动力学[J].环境科学,2007,28(17):2544-2549.
    [38]Albert T. Lebedev,Gulnara M.Shaydullina,Nstalia A.Sinikova,et al.GC-MS comparison of the behavior of chlorine and sodium hypochlorite towards organic compounds dissolved in water[J]. Water Research,2004,38:3713-3718.
    [39]Jaromir Michalowicz,Wirfilliusz Duda,Jadwifa Stufka-Olcayk. Transformation of phenol,catechol,guaiacol and syringol exposed to sodium hypochlorite[J]. Chemosphere,2007(66):657-663.
    [40]Ya-Jane Wang,Linfeng Wang. Physicochemical properties of common and waxy corn starches oxidized by different levels of sodium hypochlorite[J]. Carbohydrate Polymers,2003,52:207-217.
    [41]E.Veschetti,D.Cutilli,L.Bonadomma,et al. Polot-plant comparative study of peracetic acid and sodium hypochlorite wastewater disinfection[J]. Water Research,2003,37:78-94.
    [42]Control of gastrointestinal parasite larvae of ruminant using nitrogen fertilizer,limestone and sodium hypochlorite solutions[J].Small Ruminant Research,1999,32:197-204.
    [43]鲁秀国,刘玮,霍建,等.磁强化次氯酸钠氧化法处理邻硝基苯酚废水的实验研究[J].环境污染与防治,2005,27(4):268-270.
    [44]程建忠,张英,何水亮,等.次氯酸钠催化氧化法处理十二碳硫醇恶臭污水[J].城市环境与城市生态,2001,14(2):32-33.
    [45]阢新潮,杜予民,赵晖,等.天然锰矿-次氯酸钠)光催化氧化处理分散蓝2BLN废水[J].城市环境与城市生态,2003,16(5):65-66.
    [46]Mechanism of oxidation of aryl methyl sulfoxides with sodium hypochlorite catalyzed by (salen) Mn complexes[J].Journal of Molecular Catalysis,2006,247:260-267.
    [47]张大丽,余国忠。次氯酸钠/过氧化氢法处理含铜绿微囊藻原水[J].河南大学学报(自然科学版),2007,37(3):245-248.
    [48]张乾,刘钦甫,吉雷波,等,双氧水和次氯酸钠联合氧化漂白高岭土工艺研究[J].非金属矿,2006,29(4):36-38.
    [49]Yong-Jae Lee,Chang-Ho Chung,Donal F.Day. Sugarcane bagasse oxidation using a combination of hypochlorite and peroxide[J].Bioresource Technology,2008,10:1016.
    [50]傅金祥,杨涛,林齐,等.次氯酸钠、高锰酸钾联合预氧化微污染水的中试研究[J].沈阳建筑大学学报(自然科学版),2006,22(3):437-440.
    [51]黄梓博,林洁玲.次氯酸钠预氧化与氯化铁混凝相结合除砷效果的研究[J].净水技术,2007,26(2):25-27,49.
    [52]梁永顺.聚合硫酸铁-次氯酸钠-聚丙烯酰胺法治理含镍废水[J].有色金属,2001,53(4):54-56.
    [53]田长顺,刘祖文.偶氮染料分子结构与脱色性能的定量关系研究[J].工业用水与废水,2008,39(4):10-12.
    [54]黑木宣彦.染色理论化学(陈水林,译).北京:纺织工业出版社,1957:85-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700