聚苯胺复合薄膜气体传感器的制备及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气体传感器是一类重要的化学传感器,在航空航天、石油化工、环境及食品等领域有着广泛的应用。气敏材料是气体传感器的核心,与传统的TiO_2、SnO_2、ZnO等无机半导体材料相比,高分子气敏材料聚吡咯、聚噻吩、聚苯胺等具有价廉易得、制备简单的优点,最重要的是它可以在室温下使用,从而拓展了气体传感器的应用范围。而相对于其他共扼高分子体系,聚苯胺由于独特的掺杂机制、良好的导电性、优良的环境稳定性等优点而成为最具有应用前景的导电高分子材料之一。然而单一的聚苯胺分子间相互作用力大,几乎不溶不熔,加工性能和机械性能差,使得很多实际应用无法实现。而聚苯胺与纳米粒子复合的复合材料既能发挥纳米粒子自身的小尺寸效应、表面效应和量子效应而且兼有高分子材料本身的优点使得它们在光、电、磁、敏感等方面呈现出常规材料不具备的特性,故而得到广泛的研究。针对以上问题,本文主要研究了以几个部分:
     (1)采用静电力自组装和化学氧化聚合相结合的方法,以苯胺为单体,过硫酸铵为氧化剂,在酸性介质中分别制备了PANI/TiO_2复合薄膜和PANI薄膜,对其进行了表征分析和气敏特性的研究。结果表明,PANI/TiO_2复合薄膜传感器在对NH_3灵敏度、响应-恢复时间和重复性等方面均优于PANI薄膜传感器。接着研究了质子酸掺杂剂对PANI/TiO_2氨敏特性的影响。分别用HCl和PTSA作为质子酸掺杂剂,制备了HCl和PTSA掺杂的PANI/TiO_2复合薄膜,分别对其进行了表征分析和氨敏特性的研究。结果表明,HCl掺杂比PTSA掺杂复合薄膜传感器有更高的灵敏度和更短的响应-恢复时间,而两者的重复性均较为理想,但稳定性很差,因而在此基础上,又研究了聚合温度对PANI/TiO_2复合薄膜传感器氨敏特性的影响,结果表明10℃下制备的复合薄膜传感器的灵敏度最高,响应-恢复时间最短。
     (2)选用另外一种常见的无机半导体SnO_2纳米颗粒作为掺杂剂,相同的实验条件下分别制备了不加入表面活性剂TTAB和加入TTAB的PANI/SnO_2复合薄膜传感器,通过对薄膜表征分析和气敏特性的研究可知,表面活性剂TTAB的加入大大提高了高浓度NH_3的灵敏度,在响应-恢复时间上也得到了一定的改善。
Gas sensor is a kind of important chemical sensors, which is widely used in many fields such as aviation and spaceflight, petrolic and chemical industry, environment and foodstuff inspection. Gas-sensing materials are the center of gas sensor. Comparing with the conventional gas-sensing materials(TiO_2、SnO_2、ZnO and so on), macromolecular gas-sensing materials(polypyrrole, polythiophne, polyaniline and so on)expand the application range of gas sensors, due to their low cost, simple preparation and being used at room temperature. In comparision with other conjugate polymers, PANI is cheaper, which is easily polymerized, with high conductivity and a broad prospect for application. However, because of the rigid nature of its chain backbone, PANI is difficult to dissolve and melt. It is difficult to be put into practical application. The PANI composites are widely used in a lot of fields such as optic field, electronical field, magnetic field, sensitive field and so on, because it not only has small size effect, surface effect and quantum effect of the nano-particles, but also has advantage of macromoclecule. Aiming at solving the problem mentioned above, the thesis contained two sections as follows:
     First, PANI and PANI/TiO_2 thin films were prepared by in-situ chemical oxidation polymerization and electrostatic self-assembly combined technique. The films were characterized by scanning electron microcopy (SEM), UV-Vis absorption spectrum and FTIR. At the same time, the sensitivity of the PANI and PANI/TiO_2 film sensors to toxic gase NH_3 were tested. The results showed that the PANI/TiO_2 film sensor had a better charateristic than PANI film sensor in sensitivity and its response-recovery time was shorter than PANI film sensor. Then the effect of proton acid dopants on the PANI/TiO_2 composite thin films was studied. PANI/TiO__2 composite thin film doped by HCl and PTSA were prepared in the same method. SEM, UV-Vis absorption spectrum and the sensitive properties of sensors to NH_3 were studied. The results showed that the sensitivity, response and recovery characteristic of PANI/TiO_2 composite thin film doped by HCl were superior to that of PANI/TiO_2 composite thin film doped by PTSA, whereas both of the sensors were bad in stability. And the effect of various polymerization temperatures on the sensors was studied. As a result, it showed that the sensor made under 10℃had the best sensitivity and the shortest response and recovery time.
     Second, SnO_2 was chosen as the dopant. PANI/SnO_2 and PANI/SnO_2-TTAB gas sensors were made in the same method. SEM, UV-Vis absorption spectrum and FTIR were used to characterize the composite films. Through the analysis of the sensitivity to NH_3 and the response and recovery time, PANI/SnO_2-TTAB gas sensor had the higher sensitivity, and its response and recovery time improves a lot.
引文
[1]潘小青,刘庆成.气体传感器及其发展.东华理工学院学报,2004,27(1):89
    
    [2] Taguchi R. Japanese patent No. 45-38200,1962
    
    [3] Seiyama T, Kato A, Fujishi K, et al. A new detector for gaseous using semiconductor thin film.Anal Chem. 1962,34:1502-1505
    
    [4] Mexner H, Lampe U. Metal Oxide sensors. Sensors and Actuators B, 1996,33:198-202
    
    [5] Srczurek A, Szecowka P.M., Licmmki B.W.. Application of sensor amy and neural networksfor quantification of organic solvents vapors in air, Sensors and Actuators B, 1999,58:427-432
    
    [6] Gardner J W, et al. Transducers'95,1995:671 -674
    
    [7] Maksiovich N. P, Yeremina L. E. Sensors and Actuators B, 1993,13-14: 256-258
    
    [8]马戎,周王民,陈明.气体传感器的研究及发展方向.航空计测技术,2004,24(4):1-4
    
    [9]马黎君.气体传感器的发展现状及前景研究.中国科技信息,2005,21:20-25
    
    [10]张强,管自生.电阻式半导体气体传感器.仪表技术与传感器,2006,7:6-8
    
    [11] P.B.M.Archer, A.V Chadwick, J.J.Miasik. Kinetic factors in the response of organometallic semiconductor gas sensors. Sensors and actuators, 1989,16:379-392
    
    [12]吴玉峰,田彦文,韩元山,等.气体传感器研究进展和发展方向.计算机测量与控制, 2003,11(10):731-734
    
    [13]李平,余萍,肖定全.气体传感器的近期进展.功能材料,1999,30(2):126-128
    
    [14]江舟,陈耐生,杨叔苓,等.酞菁配合物的结构和气敏性.结构化学,2001,20(5):331-338
    
    [15]马丽杰.日本气体传感器产业化发展现状.云南大学学报(自然科学版),1997,19(2): 211-216
    
    [16]王玉田,孟宗,刘卫东.环境监测与光纤传感器.世界科技研究与发展,2001,23(6): 15-17
    
    [17]刘崇进,陈明光,贝承训,等.气体传感器的发展概况和发展方向.计算机自动测量与控 制,1999,7(2):55
    
    [18] Rapp M, Slanel R. Gas detection in the ppb-range with a high frequency, high sensitivity SAWdevices. Thin Solid Films, 1992,210: 474-475
    
    [19] Wang Yude, Sun Xiaodan, Li Yanfeng, et al. Perovskite-type NiSnO_3 used as the ethanolsensitive material. Solid-State Electron, 2000,44(11): 2009-2014.
    
    [20] Shatokhin A, Putilin F, Safonova O, et al. Sensor properties of Pd-Doped SnO_2 films depositedby laser ablation inorganic materials. Sensors and Actuators, 2002, 38(4):374-379.
    
    [21] Garder J W, Bartl Ettceds P N. Sensors and sensory systems for electronic nose. Dordrecht/Boston/London:Kluwer Academic Publishers, 1992
    
    [22] Brattain W H, Bardeen J. Surface Properties of Germanium. Bell Syst Tech J, 1953, 32: 1
    
    [23] Kata.A, Fujushi K, et al. A new detector for gaseous component Using semiconductor thinfilm. Anal Chem, 1962,34: 1052-1053
    
    [24] Hideki Shirakawa, Edwin J. Louis, Alan G MacDiarmid, et al. Synthesis of electricallyconducting organic Polymers: Halogen derivatives of Polyacetylene, (CH)_x. Chem. Commun,1977,16:578-580
    
    [25] Harsanyi G, Reczey M, Dobay R, et al. Combining inorganic and organic gas sensor elements:a new approach for multi-component sensing. Sensor Review, 1999,19(2): 128-134
    
    [26]陈友汜,李杨,杨慕杰.高分子及其复合物气敏材料的研究进展.科技通报,2005,21(2): 226-230
    
    [27] M. Nechtschein, C.Santier, J. P. Travers, et al. Water effects in polyaniline: NMR and transportproperties. Synthetic Metals, 1987,20(1-3): 135-141
    
    [28] O N Timofeeva, B z Lubenstov, Y Z Sudakova, et al. Conducting polymer interaction withgaseous substances. I. Water. Systh Met, 1991,40:111
    
    [29] S Hossein Hosseini, Ali A Entezami. Chemical and Electrochemical Synthesis of Homopolymer and Copolymers of 3-Methoxyethiophene with Aniline, Thiophene and Pyrrole forStudies of Their Gas and Vapour Sensing Sensors. Polym Adv Technol, 2001,12: 524-534
    
    [30]朱道本,王佛松.有机固体.上海:上海科学技术出版社,1999
    
    [31] Letheby H, On the Physiological Properties of Nitrobenzole and Aniline. J. Am. Chem. Soc, 1862-1863,15:550-559
    
    [32]王利祥,王佛松.导电聚合物聚苯胺的研究进展——1.合成、链结构和凝聚态结构.应用 化学,1990,7(5):1-10
    
    [33]祝伟.导电高分子材料研究进展.黎明化工,1997,5:31
    
    [34]曾幸荣,龚克成.聚苯胺的掺杂及其性能的研究.高分子材料科学与工程,1991,6:73
    
    [35]谭焰,肖静知,谢乃贤.聚苯胺在金属腐蚀保护中的应用.电镀与涂饰,1998,3:49-52
    
    [36]於黄中,陈明光,黄河.不同类型的酸掺杂对聚苯胺结构和电导率的影响.华南理工大学 学报(自然科学版),2003,31(5):21-24
    
    [37] Sun Z C, Geng Y H, Catalytic oxidization Polymerization of aniline in an H_2O_2-Fe~(2+) system. J.of Appli.sci, 1999,72(8): 1077-1084
    
    [38] Su Shi-Jina, K. Noriyuki, Synthesis of processable polyaniline complexed with anionicsurfactant and its conducting blends in aqueous and organic system. Synthetic Metals, 2000,108:121-126
    
    [39] Y. HaBa, E. Segal, M. Narkis, et al. Polymerization of aniline in the presence of DBSA in anaqueous dispersion. Synthetic metals, 1999,106(1): 59-66
    
    [40]周震涛,刘芳,杨洪业,等.(NH_4)_2S_2O_8体系聚苯胺合成、结构与性能研究.华南理工大学 学报(自然科学版),1995,23(2),47-51
    
    [41] Gong Jian, CuiXiu-Jun. The solid-state synthesis of polyaniline/H_4SiW_(12)O_(40) Materials. Synth.Met, 2002,129(2): 187-192
    
    [42] Chandrakanthi R L N, Careem M A. Preparation and characterization of CdS and Cu_2Snanoparticle/polyaniline composite films. Thin Solid Films, 2002,417(1-2): 51-56
    
    [43]杨青林,宋延林.导电聚苯胺与Fe_3O_4磁性纳米颗粒的复合物合成与表征.高等学校化学 学报,2002,23(6):1105-1109
    
    [44] Stejskal J, Kratochvil P, Armes S P. Polyaniline dispersions: 6, stabilization by colloidal silicaparticles. Macromolecules, 1996,29(34): 6814-6819
    
    [45] Jiaxing Huang, Richard B. Kaner. A general chemical route to polyaniline nanofibers. J. Am.Chem. Soc, 2004,126: 851-855
    
    [46] Gill M, Mykytiuk J, Arms S P. Novel colloidal polyaniline-silica composites, J Chem. Soc. Chem. Commun., 1992,3(4): 108-109
    
    [47]魏琦,王新,陶雪钰,等.原位分散聚合法制备PANI-SiO_2薄膜及成膜机理探讨.高分子 材科学与工程研讨会,2006:94-95
    
    [48]杨得全,范垂祯.LB膜及其在气体传感器中的应用(二).真空与低温,1997,3(3):166-171
    
    [49]肖恺,于贵,刘云圻.有机场效应晶体管研究和应用进展.科学通报,2002,47(12): 881-890
    
    [50]叶龙,李焰,李敖.有机敏感材料NO_2气体传感器.传感器技术,1994,4:1-6
    
    [51]周慧,陶杰.聚苯胺/纳米TiO_2复合粒子的制备.云南大学学报(自然科学版), 2005,27(3A):181-183
    
    [52]苏碧桃,敏世雄,佘世雄,等.导电聚苯胺/TiO_2复合纳米纤维的制备和表征.西北师范 大学学报(自然科学版),2006,42(14):67-70
    
    [53]汪菊英,张兴华,曹有名.导电高分子聚吡咯纳米复合材料的研究进展.塑料,2005, 34(6):84-91
    
    [54] Li D, Ding W Y, Wang X, et al. J. Mater. Sci. lett., 2001,20: 1925
    
    [55] Prakash R. Somani, R. Marimuthu, U. P. Mulik, et al. High piezoresistivity and its origin inconducting polyaniline/TiO_2 composites. Synth Met, 1999, 106(1): 45-52
    
    [56] M. Matsuguchi, J. Io, G. Sugiyama, et al. Effect of NH_3 gas on the electrical conductivity ofpolyaniline blend films. Synth Met, 2002, 128(1): 15-19
    
    [57]赵金安.苯胺乳液聚合条件的紫外-可见光谱研究.安阳师范学院学报,2006:5:75-76
    
    [58]王彦宗,沈明欢,刘振营.聚苯胺-二氧化锡纳米复合材料合成及表征.化工新型材料, 2007,35(1):46-47

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700