键合硅胶的合成及选择性脱除中药提取液中重金属的技术适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在中药现代化和国际化的推进进程中,我们遭遇过系列事件的剧痛,最让人难忘的是上世纪90年代以来发生的多起中药重金属超标事件。尽管这些事件多数是出于技术性贸易壁垒的缘故,但却成了国际医药市场用以贬低中药的工具和手段,严重损害了中药的国际声誉。由此,如何解决重金属超标的难题引起了国内学者的研究和关注,其中,采用配位化学原理选择性吸附或萃取中药重金属的技术成为研究的热点和焦点。然而,由于中药有效成分复杂,在考虑剔除中药中有害元素的同时,如何尽可能保留中药的有效成分不损失或少损失成为研究的难点。为了实现选择性剔除中药重金属的目标,我们设计了一些对有害元素有选择性的络合片段结合到一定的材料上,而这个材料必须对有效成分不吸附或少吸附,硅胶恰好具备这个特征,在含水量超过17%后失去其吸附性质仅为载体(而大孔吸附树脂、活性炭等难以满足此要求),其表面的羟基可进行表面修饰。
     本论文采用硅烷化反应将络合片断以Si-O-Si-C化学键连接到硅胶表面(络合片断的末端为-SH、-NH2及含氮杂环等3类基团),共合成了9种键合硅胶,其中5种为已知结构的键合硅胶,4种为新结构的键合硅胶。采用了漫反射红外、元素分析、N2吸附/解吸附等温曲线测定、X射线衍射等方法对键合硅胶的结构进行了表征。结果表明,络合片断被成功的引入到硅胶的表面,且化学键合过程不会引起硅胶本身微孔结构次序的变化。
     在pH 1.0、4.0和6.0的缓冲溶液中,测定和比较了9种键合硅胶对11种金属离子的吸附容量。结果发现,γ-巯丙基硅胶(y-mercaptopropyl-modified silica gel, MPS)对Pb2+、Cd2+、Cu2+、Hg2+等4种重金属离子均具有较高的吸附容量,且对Fe2+、Fe3+、Mn2+等有益元素吸附容量小,符合选择性吸附重金属离子的要求。分配系数测定结果进一步显示,MPS对上述4种重金属离子具有很高的选择性。因此,选择MPS作为最佳的重金属离子吸附材料。本文以Pb2+为例,研究了MPS吸附水溶液中Pb2+的吸附规律。吸附速率快,等温吸附曲线符合Langmuir方程,最佳吸附pH为6.0,最大吸附容量为0.523 mmol·g11 (108.4 mg·g-1),使用过的MPS可用0.1 N盐酸进行再生。
     将MPS应用于脱除金银花药液中的铅离子,采用静态吸附和动态吸附的方式考察铅的脱除率,并以药液含固量、HPLC指纹图谱为指标,比较了脱铅过程中,药液中化学成分的变化情况。静态吸附实验表明,MPS吸附药液中铅离子的速度快,最大铅脱除率达到80%。动态吸附对铅离子的脱除效果优于静态吸附,当金银花药液中铅离子浓度为1.04μg·mL-1,最佳脱铅的工艺参数为:上样量为6 BV的药液,径高比1:10,洗脱速度6 BV.h-1,温度为25℃;脱铅过程中,药液含固量和HPLC图谱均无明显变化。将MPS应用于某“清茶复方”水提液中铅离子的脱除,结果表明,与空白硅胶(SG)比较,MPS能够明显地降低药液中铅的含量,脱除率为74.6%;脱铅过程中,水提液中化学成分变化很小,含固量损失率仅为2.6%,HPLC图谱相似度为0.976。由此判断,MPS脱铅过程中,保留了中药有效成分,选择性地剔除药液中的铅离子,实现了实验设计的目标。
     为了获得了工艺稳定、质量可控的MPS生产技术,本论文对该材料进行了工艺研究、质量标准研究和稳定性研究。结果表明,MPS的巯基(-SH)键合量可达到600μLmol·g-1(2.0%),稳定性研究表明室温下MPS化学性质比较稳定,表面的巯基不易被氧化。
     最后,本论文基于MPS吸附金银花中铅离子的规律及化学平衡的研究,并假设动态吸附过程可以转换为多个连续的静态吸附过程和塔板吸附过程,推导出描述动态吸附过程的两个表达式。其一,铅脱除率该式从理论上证明了动态吸附可以实现重金属的完全脱除(当n→∞时,铅脱除x→100%),也反映了各主要工艺种参数之间的关系。其二,WHM=WAbs×Q0/2,该式可用于估算键合硅胶的吸附能力,为确定键合硅胶的用量提供依据。
     本课题以键合硅胶为吸附材料,用于中药提取液中铅离子的脱除,成功地实现了保留中药有效成分,选择性剔除中药重金属的目标,为键合硅胶材料应用于中药重金属的脱除提供了示范,也为中药重金属脱除技术的开发提供一种思路和方法。
In the process of modernization and internationalization of traditional Chinese medicine (TCM), we have experienced a series of misrable events, in particular, many events of heavy metals excess in TCM happened since the 1990s are impressive. Although most of these events are out of technical barriers, they indeed lead to the downgrade of TCM in international medicine market, thus affecting international reputation. Therefore, how to solve the problem of heavy metals excess triggers wide attention and research by demostic scholars, wherein the technique for selectively absorbing or extracting TCM heavey metals by using coordination chemistry principle is one of the hot spots. Since TCM effective components are complicated, we must remove the harmful elements in TCM while keeping effective components not lost or lost less. To reach this goal, chelated fragment selective for harmful elements is bonded to a certain material, and this material does not absorb effective components or absorb less. Silica gel, having this property, loses its absorption capability after water content exceeds 17%, acts as carrier only (while macroporous organic resin, active carbon and etc. can't meet this requirement), and hydroxyl group on the silica surface can be modified.
     Chelated fragment is bonded on the surface of silica gel via chemical bond Si-O-Si-C by silanization reaction (the end of the chelated fragment includes-SH、-NH2 and nitro-containing heterocycle), and nine modified silica gels are synthesized, wherein five silica gels have known structures and others have new structures. The structures of the modified silica gels are characterized by FT-IR spectroscopy, elemental analysis, N2 adsorption/desorption measurement, and X-ray diffraction. The results show that chelated fragment is successfully introduced to the surface of silica gel, and the chemical bonding cause no obvious change of microcellular structure order of silica gel carrier.
     The adsorption capacities of the nine modified silica gels toward eleven metal ions are measured in buffering solution with pH 1.0,4.0 and 6.0 using batch equilibrium adsorption experiments. Results show that y-mercaptopropyl-modified silica gel (MPS) has high adsorption capacities toward heavy metals Pb2+, Cd2+, Cu2+, Hg2+ and low ones for beneficial elements Fe2+, Fe3+, Mn2+, meaning MPS is capable of selectively absorbing heavy metal ions. Partition ratio tests further show that MPS has preferable selectivity for the above four heavy metals, making it possible to use MPS as optimal adsorption material for heavy metal ions. Taking Pb2+ for example, the adsorption rate is fast and the adsorption isotherms fits to Langmuir equation, the optimal adsorption pH value is 6.0, the maximum adsorption capacity is 0.523 mmol·g-1 (108.4 mg·g-1), and the spent MPS can be regenerated using 0.1 N HC1. y-Mercaptopropyl-modified silica gel (MPS) is applied to remove plumbum ion from the extract of Lonicera japonica Flos. The static and dynamic adsorptions were used to investigate the removal efficiency of plumbum ion. The solid content and HPLC profiles of the extract were determined to evaluate the process changes. The static adsorption experiments show that MPS has fast adsorption rate and more than 80% removal efficiency toward plumbum ion. The dynamic adsorption has better plumbum ion removal effect than the static adsorption, when the concentration of plumbum ion in the extract of Lonicera japonica Flos is 1.04μg-mL-1, the optimum parameters were as follows:6 BV of sample volume, the optimum parameters were as follows:6 times of raw materials,10 times of height to diameter, and 6 BV·h-1 of flow velocity, at the temperature of 25℃. During the removal process, obvious changes of solid content and HPLC profiles were not observed. MPS can also be used for removing plumbum ion from extract of Qingcha compound. The results show that MPS can effectively remove plumbum, with the removal efficiency of 74.6%, compared with unmodified silica gel (SG). During the removal process, there were no obvious change of solid content (only 2.6% loss) and comparability of HPLC profiles (similarity is 0.976). Therefore, MPS can selevtively remove plumbum in TCM solution with the effective components being reserved, thus realizing the objective of the expriments.
     In order to get stable production process and controllable quality, the process optimization, quality standard and stability of MPS were studied. The result shows that the thiol group (-SH) content of MPS can reach 600μmol·g-1(2.0%). Stable production research test shows that MPS is stable under room temperature, and-SH on the surface is hard to be oxidized.
     Finally, based on the adsorption regularity of MPS for removing plumbum ion in Lonicera japonica Flos, and the assumption that the dynamic adsorption process can be converted into successive static adsorption process and plate adsorption process, expressions for dynamic adsorption process are deduced. Firstly, plumbum removal efficiency which not only proves that dynamic adsorption can remove heavy metal completely in theory (x goes to 100% while n is infinite), but also reflects the relations between main process parameters. Secondly, WHM=WAbs×Q0/2, which is used for evaluating the adsorption ability of modified silica gel, and provides foundation for dosage of modified silica gel.
     In this paper, modified silica gel is used as the adsorbent, for removing plumbum ion in extract of TCM. Effective components are reserved, and heavy metals are selectively removed. Hence, this paper provides an example of applying modified silica gel to TCM heavy metal removal, and also a novel method for developing TCM heavy metal removal technique.
引文
[1]陈建存.输美中成药受重金属/化学品污染及违反FDA规定情况.中国中医药信息杂志,2000,7(8):54-57.
    [2]韩小丽,张小波,郭兰萍,等.中药材重金属污染现状的统计分析.中国中药杂志,2008,33(18):2041-2047.
    [3]茅向军,杨永东,熊慧林,等.贵州杜仲中铅、砷、汞含量的研究.药物分析杂志,2000,20(3):172-174.
    [4]苏薇薇,吴忠,陈继慈.中药水煎过程中铅的浸出率研究.中药材,1997,20(12):618-621.
    [5]李敏,刘渝,周睿,等.国内外有关中药中重金属和砷盐的限量标准及分析.时珍国医国药,2007,18(11):2859-2860.
    [6]程黔荣,杨勤,钟世红.中药材规范化种植中重金属污染的防治.中国药业,2004(6):21-22.
    [7]张晖芬,赵春杰.中药材中重金属的控制及其分析方法.中药研究与信息,2004,6(5):10-12.
    [8]梁成满,黄少烈,李琼.超临界C02配合萃取中药中重金属的研究进展.化工进展,2005,24(6):607-611.
    [9]崔洪友,王涛,关艳芬,等.用超临界C02络合萃取法脱除中成药中的重金属.清华大学学报(自然科学版),2001,41(12):25-27.
    [10]赵春杰,张晖芬,陈静,等.黄芪中重金属超临界C02净化技术研究.沈阳药科大学学报,2004,21(5):381-384.
    [11]王先良,王小利,徐顺清.大孔螯合树脂可用于处理中药重金属污染.中成药,2005,27(12):1376-1379.
    [12]程晓亮,杨亚妮,倪力军,等.两种螯合树脂用于银杏叶提取液脱重金属的研究.中药新药与临床药理,2008,19(6):492-495.
    [13]魏继新,张立国,倪力军.两种螯合树脂用于板蓝根提取液脱重金属的比较.中药新药与临床药理,2007,18(2):139-141.
    [14]王龙虎,吴国良,程翼宇.壳聚糖及其衍生物在中药制药工业中的应用.中 国中药杂志,2004(4):289-292.
    [15]张彤,徐莲英,蔡贞贞.壳聚糖澄清剂对中药水提液中锌、锰、钙及重金属元素铅的影响.中成药,2001,23(4):243-245.
    [16]A R Cestari, C Airoldi. Chemisorption on thiol-silicas:divalent cations as a function of pH and primary amines on thiol-mercury adsorbed. Journal of Colloid and Interface Science,1997,195(2):338-342.
    [17]M Najafi, R Rostamian, A A Rafati. Chemically modified silica gel with thiol group as an adsorbent for retention of some toxic soft metal ions from water and industrial effluent. Chemical Engineering Journal,2011,168(1):426-432.
    [18]J Aguado, J M Arsuaga, A Arencibia, et al. Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. Journal of Hazardous Materials,2009,163(1):213-221.
    [19]X Huang, X Chang, Q He, et al. Tris(2-aminoethyl) amine functionalized silica gel for solid-phase extraction and preconcentration of Cr(III), Cd(II) and Pb(II) from waters. Journal of Hazardous Materials,2008,157(1):154-160.
    [20]P K Jal, S Patel, B K Mishra. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta,2004,62(5):1005-1028.
    [21]S T Beatty, R J Fischer, D L. Hagers, el al. A comparative study of the removal of heavy metal ions from water using a silica-Polyamine composite and a polystyrene chelator resin. Industrial & Engineering Chemistry Research,1999,38 (11), 4402-4408.
    [1]梁琼芳.中药不良反应与铅、镉含量关系研究.广东徽量元素科学,1997,4(5):53-56.
    [2]田金改,金红宇,杜庆鹏,等.中药制剂中重金属、农药残留的监控.中国药事,2006,20(12):755-758.
    [3]陈可冀张京春马晓昌.中成药重金属超标问题之思考.中国处方药,2003,6:79-81.
    [4]李敏,刘渝,周睿,等.国内外有关中药中重金属和砷盐的限量标准及分析.时珍国医国药,2007,18(11):2859-2860.
    [5]孙业兵,李强,谢平,等.中药制剂中重金属的测定研究评析.中医药学刊,2003,6(21):1020-1022.
    [6]王跃生,张晶.对中药成方制剂中重金属问题的思考.中国中药杂志,2000,25(6):377-380.
    [7]W H Miller, H M Schipper, J S Lee, et al. Mechanisms of action of arsenic trioxide. Cancer Research,2002,62:3893-3903.
    [8]C Rollig, T Illmer. The efficacy of arsenic trioxide for the treatment of relapsed and refractory multiple myeloma:a systematic review. Cancer Treatment Reviews, 2009,35(5):425-430.
    [9]杨明宏.卢进.向赤忠,等.土壤环境质量与中药材GAP.-中国中药杂志,2001(6):514-516.
    [10]姜理英,杨肖娥,石伟勇,等.植物修复技术中有关土壤重金属活化机制的研究进展.土壤通报,2003;34(2):154-157.
    [11]顾兴平,顾永祚,胡明芬,等.中药川附子微量重金属元素的分析研究.四川环境,2002,21(3):4-7.
    [12]茅向军,杨永东,熊慧林,等.贵州杜仲中铅、砷、汞含量的研究.药物分析杂志,2000,20(3):172-174.
    [13]章骅,何品晶,吕凡,等.重金属在环境中的化学形态分析研究进展.环境化学,2011,30(1):130-137.
    [14]张丽娟,谷学新,周勇义.中药产品中的重金属元素.首都师范大学学报(自然科学版),2004,25(1):35-36.
    [15]杨居荣,查燕.食品中重金属的存在形态及其与毒性的关系.应用生态学报,1999,10(6):766-770.
    [16]杨居荣,查燕.污染稻、麦籽实中Cd、Cu、Pb的分布及其存在形态初探.中国环境科学,1999,19(6):500-504.
    [17]韩小丽,张小波,郭兰萍,等.中药材重金属污染现状的统计分析.中国中药杂志,2008,33(18):2041-2047.
    [18]张晖芬,赵春杰,倪娜.5种补益类中药中重金属的含量测定.沈阳药科大学学报,2003,20(1):8-11.
    [19]陆龙根.植物类中药材中砷、镉和铅的含量及安全性评价.微量元素与健康研究,2003,20(1):51-52.
    [20]温慧敏,陈晓辉,董婷霞,等.ICP-MS法测定4种中药材中重金属含量.中国中药杂志,2006,31(16):1314-1317.
    [21]谢晓梅,汪电雷,郑荣庆,等.夏枯草和薯蓣不同部位铅镉汞砷的含量分析.安徽中医学院学报,2002,21(5):47-49.
    [22]刘丽,郭巧生,安琼,等.药用白菊花4个栽培类型农药与重金属残留的比较研究.中国中药杂志,2003,28(8):711-713.
    [23]苏薇薇,吴忠,陈继慈.中药水煎过程中铅的浸出率研究.中药材,1997,20(12):618-621.
    [24]袁迎.3种中药重金属成分铅、镉的含量分析.中国药房,2007,18(6): 446-448.
    [25]雷泞菲,彭书明,李凛.6种常见中草药中重金属元素铅与镉的测定.时珍国医国药,2008,19(3):565-566.
    [26]张晖芬,赵春杰.中药材中重金属的控制及其分析方法.中药研究与信息,2004,6(5):10-12.
    [27]付福友,李敏,白志川.中药材重金属污染的原因和治理方法初探.世界科学技术——中医药现代化,2003,5(4):69-72.
    [28]N G Smart, T E Carleson, S Elshani, et al. Extraction of toxic heavy metals using supercritical fluid carbon dioxide containing organophosphorus reagents. Industrial& Engineering Chemistry Research,1997,36 (5):1819-1826.
    [29]梁成满,黄少烈,李琼.超临界CO2配合萃取中药中重金属的研究进展.化工进展,2005,24(6):607-611.
    [30]崔洪友,王涛,关艳芬,等.用超临界C02络合萃取法脱除中成药中的重金属.清华大学学报(自然科学版),2001,41(12):25-27.
    [31]孔春燕.超临界法及夹带剂超临界法去除黄芪中的重金属离子的效果研究[J].时珍国医国药,2009,20(8):2017-2018.
    [32]党志,朱志鑫,文震,等.超临界CO2配合萃取中药广霍香中的重金属.华南理工大学学报(自然科学版),2005,33(6):59-62.
    [33]韩桂茹,徐韧柳,冯丽,等.水提醇沉对中药各类有效成分的影响.中国中药杂志,1993,18(5):286-287.
    [34]王远亮.酸碱软硬度的理论研究.化学通报,1991,4:13-16.
    [35]软硬酸碱理论.百度百科,http://baike.baidu.com/view/1958728.htm.
    [36]S Babel, T A Kurniawan. Low-cost adsorbents for heavy metals uptake from contaminated water:a review. Journal of Hazardous Materials,2003,97(1-3): 219-243.
    [37]A J Varma, S V Deshpande, J F Kennedy. Metal complexation by chitosan and its derivatives:a review. Carbohydrate Polymers,2004,55(1):77-93.
    [38]E Guibal. Interactions of metal ions with chitosan-based sorbents:a review. Separation and Purification Technology,2004,38(15):43-74.
    [39]程红霞,林强.壳聚糖对中药水提液中重金属残留的吸附特性研究.北京联合大学学报(自然科学版),2006,20(1):69-72.
    [40]张彤,徐莲英,蔡贞贞.壳聚糖澄清剂对中药水提液中锌、锰、钙及重金属元素铅的影响.中成药,2001,23(4):243-245.
    [41]王龙虎,吴国良,程翼宇.壳聚糖及其衍生物在中药制药工业中的应用.中国中药杂志,2004(4):289-292.
    [42]向万宏,刘峥.螯合树脂的合成及应用研究进展.化工技术与开发,2003,32(2):16-22.
    [43]A Lezzi, S Cobianco, A Roggero. Synthesis of thiol chelating resins and their adsorption properties toward heavy metal ions. Journal of Polymer Science Part A: Polymer Chemistry,1994,32(10):1877-1883.
    [44]王先良,王小利,徐顺清.大孔螯合树脂可用于处理中药重金属污染.中成药,2005,27(12):1376-1379.
    [45]程晓亮,杨亚妮,倪力军,等.两种螯合树脂用于银杏叶提取液脱重金属的研究.中药新药与临床药理,2008,19(6):492-495.
    [46]魏继新,张立国,倪力军.两种螯合树脂用于板蓝根提取液脱重金属的比较.中药新药与临床药理,2007,18(2):139-141.
    [47]D W O'Connell, C Birkinshaw, T F O'Dwyer. Heavy metal adsorbents prepared from the modification of cellulose:a review. Bioresource Technology,2008,99 (15): 6709-6724.
    [48]N M, Y Yang, S Chen, et al. Preparation of amine group-containing chelating fiber for thorough removal of mercury ions. Journal of Hazardous Materials,2009, 171:288-293.
    [49]赵萍,张轶,王雅,等.纤维素的改性及其在中药甘草中除铅特性的研究.中国科技论文在线,http://www.paper.edu.cn/index.php/default/releasepaper/downPaper/200806-141.
    [50]P K Jal, S Patel, B K Mishra. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta,2004,62(5):1005-1028.
    [51]S T Beatty, R J Fischer, D L. Hagers, et al. A comparative study of the removal of heavy metal ions from water using a silica-Polyamine composite and a polystyrene chelator resin. Industrial & Engineering Chemistry Research,1999,38 (11), 4402-4408.
    [52]王智民,高慧敏.键合硅胶类复合材料在脱除中药提取液中重金属的应用,中国.CN 200710178048.1.
    [53]A D Browski, Z Hubicki, P Podkoscielny, et al. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere,2004,56(2):91-106.
    [54]R Say, E Birlik, A Ersoz, et al. Preconcentration of copper on ion-selective imprinted polymer microbeads. Analytica Chimica Acta,2003,480(2):251-258.
    [55]江伟,苏海佳,谭天伟.分子印迹吸附剂对红景天水煎液中重金属的吸附.化工学报,2008,59(5):1179-1183.
    [56]龚耀刚,王兴文,程莉,等.水提三七有效部位重金属及农药残留的研究.云南中医学院学报,2004,27(4):11-13.
    [57]陆宇照,龚跃刚,王兴文,等.中药提取物中重金属的研究.云南中医学院学报,2001,24(1):1-8.
    [58]E Repoa, T A Kurniawana, J K Warcholb, et al. Removal of Co(II) and Ni(II) ions from contaminated water using silica gel functionalized with EDTA and/or DTPA as chelating agents. Journal of Hazardous Materials,2009,171 (1-3) 1071-1080.
    [59]L A Berrueta, B Gallo, F Vicente. A review of solid phase extraction:basic principles and new developments. Chromatographia,1995,40(7-8):474-483.
    [60]T M Florence, G E Batley. Removal of trace metals from seawater by a chelating resin. Talanta,1975,22(2):201-204.
    [61]C Sun, R Qu, C Ji. A chelating resin containing S, N and O atoms:synthesis and adsorption properties for Hg(II). European Polymer Journal,2006,42(1):188-194.
    [62]K Sharma, S Mittal, M Koel, Analysis of trace amounts of metal ions using silica-based chelating resins:a green analytical method. Critical Reviews in Analytical Chemistry,2003,33(3):183-198.
    [63]M R Buchmeiser. New synthetic ways for the preparation of high-performance liquid chromatography supports. Journal of Chromatography A,2001,918(2): 233-266.
    [64]C Delacoe, F O M Gaslainc, B Lebeauc, et al. Factors affecting the reactivity of thiol-functionalized mesoporous silica adsorbents toward mercury(II). Talanta,2009, 79(3):877-886.
    [65]J Nawrocki. The silanol group and its role in liquid chromatography. Journal of Chromatography A,1997,779 (1-2):29-71.
    [66]C S Gill, B A Price, C W Jones. Sulfonic acid-functionalized silica-coated magnetic nanoparticle catalysts. Journal of Catalysis.2007,251(1):145-152.
    [67]B Singh, Treatment of spent catalyst from the nitrogenous fertilizer industry-A review of the available methods of regeneration, recovery and disposal. Journal of Hazardous Materials.2009,167(1-3):24-37.
    [68]M C Bruzzoniti, R M D Carlo, S Fiorilli, et al. Functionalized SBA-15 mesoporous silica in ion chromatography of alkali, alkaline earths, ammonium and transition metal ions. Journal of Chromatography A,2009,1216(29):5540-5547.
    [69]T Doussineau, S Trupp, G J Mohr, et al. Ratiometric pH-nanosensors based on rhodamine-doped silica nanoparticles functionalized with a naphthalimide derivative. Journal of Colloid and Interface Science.2009,339 (1):266-270.
    [70]杜力.有机硅烷偶联剂对无机填料表面的处理技术.国外塑料,1991,9(2):42-47.
    [71]A Kiado. Extraction of uranium by amine, amide and benzamide grafted covalently on silica gel. Journal of Radioanalytical and Nuclear Chemistry,2004, 260(3):443-450.
    [72]L Mercier. T J Pinnavaia. Heavy metal ion adsorbents formed by the grafting of a thiol functionality to mesoporous silica molecular sieves:factors affecting Hg(Ⅱ) uptake. Environmental Science & Technology,1998,32 (18):2749-2754.
    [73]X Liang, Y Xu, G Sun, et al. Preparation, characterization of thiol-functionalized silica and application for sorption of Pb2+ and Cd2+. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2009,349(1-3):61-68.
    [74]M Najafi, R Rostamian, A A Rafati. Chemically modified silica gel with thiol group as an adsorbent for retention of some toxic soft metal ions from water and industrial effluent. Chemical Engineering Journal,2011,168(1):426-432.
    [75]G Hernandez, R Rodriguez. Adsorption properties of silica sols modified with thiol groups. Journal of Non-Crystalline Solids,1999,246(3):209-215.
    [76]M Barczak, E Skwarek, W Janusz, et al. Functionalized SBA-15 organosilicas as sorbents of zinc(II) ions. Applied Surface Science,2010,256(17):5370-5375.
    [77]A R Cestari, C Airoldi. Chemisorption on thiol-silicas:divalent cations as a function of pH and primary amines on thiol-mercury adsorbed. Journal of Colloid and Interface Science,1997,195(2):338-342.
    [78]J Hao, M Han, C Wang, et al. Enhanced removal of arsenite from water by a mesoporous hybrid material-Thiol-functionalized silica coated activated alumina. Microporous and Mesoporous Materials,2009,124(1-3):1-7.
    [79]W Yantasee, B Charnhattakorn, G E Fryxell, et al. Detection of Cd, Pb, and Cu in non-pretreated natural waters and urine with thiol functionalized mesoporous silica and Nafion composite electrodes. Analytica Chimica Acta,2008,620(1-2):55-63.
    [80]C Huang, B Hu. Silica-coated magnetic nanoparticles modified with y-mercapto-propyl-trimethoxysilane for fast and selective solid phase extraction of trace amounts of Cd, Cu, Hg, and Pb in environmental and biological samples prior to their determination by inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B:Atomic Spectroscopy,2008,63(3):437-444.
    [81]J Aguado, J M Arsuaga, A Arencibia, et al. Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. Journal of Hazardous Materials,2009,163(1):213-221.
    [82]L Zhang, C Yu, W Zhao, et al. Preparation of multi-amine-grafted mesoporous silicas and their application to heavy metal ions adsorption. Journal of Non-Crystalline Solids,2007,353 (44-46):4055-4061.
    [83]A Shahbazi, H Younesi. A Badiei. Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(Ⅱ), Cu(Ⅱ) andCd(Ⅱ) heavy metal ions in batch and fixed bed column. Chemical Engineering Journal, In Press, Available online 23 November 2010.
    [84]A Benhamou, M Baudu, Z Derriche, et al. Aqueous heavy metals removal on amine-functionalized Si-MCM-41 and Si-MCM-48. Journal of Hazardous Materials, 2009,171(1):1001-1008.
    [85]X Huang, X Chang, Q He, et al. Tris(2-aminoethyl) amine functionalized silica gel for solid-phase extraction and preconcentration of Cr(Ⅲ), Cd(Ⅱ) and Pb(Ⅱ) from waters. Journal of Hazardous Materials,2008,157(1):154-160.
    [86]L N H. Arakaki, J G P Espinola, S F Oliveira, et al. Chemisorption of Cu(Ⅱ) chloride and nitrate in aqueous and non-aqueous solutions on matrix containing ethylenimine anchored on thiol modified silica gel surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2002,203(1-3):129-136.
    [87]L N H Arakaki, L M Nunes, J A Simoni, et al. Ethyleneimine anchored on thiol-modified silica gel surface-adsorption of divalent cations and calorimetric data. Journal of Colloid and Interface Science,2000,228(1):46-51.
    [88]L N H Arakaki, M G Fonseca, E C S Filho, et al. Extraction of Pb(II), Cd(II), and Hg(II) from aqueous solution by nitrogen and thiol functionality grafted to silica gel measured by calorimetry. Thermochimica Acta,2006,450(1-2):12-15.
    [1]P K Jal, S Patel, B K Mishra. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta,2004,62(5):1005-1028.
    [2]I M El-Nahhal, N M El-Ashgar, J Organomet. A review on polysiloxane-immobilized ligand systems:Synthesis, characterization and applications. Journal of Organometallic Chemistry,2007,692(14):2861-2886.
    [3]T Kang, Y Park, K Choi, et al. Ordered mesoporous silica (SBA-15) derivatized with imidazole-containing functionalities as a selective adsorbent of precious metal ions. Journal of Materials Chemistry,2004,14:1043-1049.
    [4]S De, M G B Drew, N A Alcalde, et al. Imidazole-imidazole stacking in some inorganic complexes. Inorganica Chimica Acta,2009,362(8):2879-2883.
    [5]A R Cestari, C Airoldi. Chemisorption on thiol-silicas:divalent cations as a function of pH and primary amines on thiol-mercury adsorbed. Journal of Colloid and Interface Science,1997,195(2):338-342.
    [6]P S Roldan, I L Alcantara, G R Castro, et al. Determination of Cu, Ni, and Zn in fuel ethanol by FAAS after enrichment in column packed with 2-aminothiazole-modified silica gel. Analytical and Bioanalytical Chemistry,2003, 375(4):574-577.
    [7]李来生,达世禄,等.对-叔丁基杯[8]芳烃键合硅胶制备及其毛细管电色谱性能研究.高等学校化学学报,2005,26(7):1228-1232.
    [8]R Brindle, K Albert, S J Harris, et al. Silica-bonded calixarenes in Chromatography:I. Synthesis and characterization by solid-state NMR spectroscopy. Journal of Chromatography A,1996,731(1-2):41-46.
    [9]G Grigoropoulou, P Stathi, M A Karakassides, et al. Functionalized SiO2 with N-, S-containing ligands for Pb(II) and Cd(II) adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2008,320(1-3):25-35.
    [10]X Huang, X Chang, Q He, et al. Tris(2-aminoethyl) amine functionalized silica gel for solid-phase extraction and preconcentration of Cr(III), Cd(II) and Pb(II) from waters. Journal of Hazardous Materials,2008,157(1):154-160.
    [11]A M F Guimaraes, V S T Ciminelli, W L Vasconcelos. Smectite organofunctionalized with thiol groups for adsorption of heavy metal ions. Applied Clay Science,2009,42 (3-4):410-414.
    [12]S Radi, A Attayibat, A Ramdani, et al. Synthesis and characterization of novel silica gel supported N-pyrazole ligand for selective elimination for Hg(II). European Polymer Journal 2008,449(10):3163-3168.
    [13]Y Zhang, R Qu, C Sun, et al. Comparison of synthesis of chelating resin silica-gel-supported diethylenetriamine and its removal properties for transition metal ions. Journal of Hazardous Materials,2009,163(1):127-135.
    [14]D P Quintanilla, I Hierro, M Fajardo, I Sierra.2-Mercaptothiazoline modified mesoporous silica for mercury removal from aqueous media. Journal of Hazardous Materials,2006,134(1-3):245-256.
    [1]W Ma, F Liu, K A Li, et al. Preconcentration, separation and determination of trace Hg(Ⅱ) in environmental samples with aminopropylbenzoylazo-2-mercaptobenzothiazole bonded to silica gel. Analytica Chimica Acta,2000,416(2): 191-196.
    [2]H Feng, T Wang, S F Y Li. Sensitive determination of trace-metal elements in tea with capillary electrophoresis by using chelating agent 4-(2-pyridylazo) resorcinol (PAR). Food Chemistry,2003,81(4):607-611.
    [3]胡一辉,陈捍.镍基堆焊料中钯的直接测定—碘化钾比色法.冶金分析,1982,3:59-60.
    [4]闫敏.磺基水杨酸光度法测定铁.中国给水排水,1995,15(8):47-48.
    [5]M E Mahmoud, I M M Kenawy, M A H Hafez, et al. Removal, preconcentration and determination of trace heavy metal ions in water samples by AAS via chemically modified silica gel N-(1-carboxy-6-hydroxy) benzylidenepropylamine ion exchanger. Desalination.2010,250(1):62-70.
    [6]M E Mahmoud, M M Osman, O F Hafez. Removal and preconcentration of lead (II), copper (Ⅱ), chromium (Ⅲ) and iron (Ⅲ) from wastewaters by surface developed alumina adsorbents with immobilized 1-nitroso-2-naphthol. Journal of Hazardous Materials,2009,173(1-3):349-357.
    [7]F An, B Gao. Chelating adsorption properties of PEI/SiO2 for plumbum ion. Journal of Hazardous Materials,2007,145(3):495-500.
    [8]E Repoa, T A Kurniawana, J K Warcholb, et al. Removal of Co(II) and Ni(II) ions from contaminated water using silica gel functionalized with EDTA and/or DTPA as chelating agents. Journal of Hazardous Materials,2009,171(1-3):1071-1080.
    [1]王燕,王智民,林丽美.等.金银花及其同属植物化学成分研究进展.中国中药杂志,2008,33(8):968-972.
    [2]何显忠,兰荣德.金银花的药理作用与临床应用.时珍国医国药,2004,15(12):865-867.
    [3]L Nobs, F Buchegger, R Gurny, et al. Surface modification of poly(lactic acid) nanoparticles by covalent attachment of thiol groups by means of three methods. International Journal of Pharmaceutics,2003,250(2):327-337.
    [4]中国药典,一部.2010:1082,附录48.
    [5]熊艳,高慧敏,王智民,等.金银花不同干燥技术HPLC指纹图谱研究.中国中药杂志,2009,29(34):1015-1017.
    [1]王智民,高慧敏.键合硅胶类复合材料在脱除中药提取液中重金属的应用.中国,CN 200710178048.1.
    [2]J P Badyal, A M Cameron, N R Cameron, et al. A simple method for the quantitative analysis of resin bound thiol groups. Tetrahedron Letters,2001,42(48): 8531-8533.
    [3]中国药典,一部.2010:附录32,48.
    [4]李敏,刘渝,周睿,等.国内外有关中药中重金属和砷盐的限量标准及分析.时珍国医国药,2007,18(11):2859-2860.
    [5]莫燕霞,胡宝祥,胡伟,等.高效液相色谱测定茶叶中茶多酚.理化检验-化学分册,2008,44:593-596.
    [1]A R Cestari, C Airoldi. Chemisorption on thiol-silicas:divalent cations as a function of pH and primary amines on thiol-mercury adsorbed. Journal of Colloid and Interface Science,1997,195(2):338-342.
    [2]安富强,高保娇,刘青.PEI/SiO2复合材料对Zn2+、Cd2+的螯合吸附性能研究.化学通报,2006,3:201-206.
    [3]M E Mahmoud, G A Gohar, Silica gel-immobilized-dithioacetal derivatives as potential solid phase extractors for mercury(II), Talanta 2000,51(1):77-87.
    [4]M L Menezes, J C Moreira, J T S Campos. Adsorption of various ions from acetone and ethanol on silica gel modified with 2-,3-, and 4-aminobenzoate. Journal of Colloid and Interface Science,1996,179(1):207-210.
    [5]L Mercier, T J Pinnavaia. Heavy metal ion adsorbents formed by the grafting of a thiol functionality to mesoporous silica molecular sieves:factors affecting Hg(II) uptake. Environmental Science & Technology,1998,32 (18):2749-2754.
    [6]L Nobs, F Buchegger, R Gurny, et al. Surface modification of poly(lactic acid) nanoparticles by covalent attachment of thiol groups by means of three methods, International Journal of Pharmaceutics,2003,250(2):327-337.
    [7]J P Badyal, A M Cameron, N R Cameron, et al. A simple method for the quantitative analysis of resin bound thiol groups. Tetrahedron Letters,2001,42(48): 8531-8533.
    [8]R Nogueira, M Lammerhofer, N Maier, et al. Spectrophotometric determination of sulfhydryl concentration on the surface of thiol-modified chromatographic silica particles using 2,2-dipyridyl disulfide reagent. Analytica Chimica Acta,2005,533(2): 179-183.
    [9]苏婧,惠文利,王兰英,等.功能化磁性微粒的合成及表面巯基的测定,西北大学学报(自然科学版),2006,36(1):59-62.
    [10]D Margolese, J A Melero, S C Christiansen, et al. Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups. Chemistry of Materials, 2000,12 (8):2448-2459.
    [11]梁成满,黄少烈,李琼.超临界C02配合萃取中药中重金属的研究进展.化工进展,2005,24(6):607-611.
    [12]崔洪友,王涛,关艳芬,等.用超临界C02络合萃取法脱除中成药中的重金属.清华大学学报(自然科学版),2001,41(12):25-27.
    [13]孔春燕.超临界法及夹带剂超临界法去除黄芪中的重金属离子的效果研究[J].时珍国医国药,2009,20(8):2017-2018.
    [14]王先良,王小利,徐顺清.大孔螯合树脂可用于处理中药重金属污染.中成药,2005,27(12):1376-1379.
    [15]程晓亮,杨亚妮,倪力军,等.两种螯合树脂用于银杏叶提取液脱重金属的研究.中药新药与临床药理,2008,19(6):492-495.
    [16]魏继新,张立国,倪力军.两种螯合树脂用于板蓝根提取液脱重金属的比较.中药新药与临床药理,2007,18(2):139-141.
    [1]Y Cui, X Chang, X Zhu, et al. Chemically modified silica gel with p-dimethylaminobenzaldehyde for selective solid-phase extraction and preconcentration of Cr(Ⅲ), Cu(Ⅱ), Ni(Ⅱ), Pb(Ⅱ) and Zn(Ⅱ) by ICP-OES. Microchemical Journal,2007,87 (1):20-26.[2] X Chang, N Jiang, H Zheng, et al. Solid-phase extraction of iron(Ⅲ) with an ion-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique. Talanta,2007,71 (1):38-43.
    [3]王远亮.酸碱软硬度的理论研究.化学通报,1991,4:13-16.
    [4]傅献彩,沈文霞,姚天扬,等.物理化学(上册).北京:高等教育出版社,2005.P343,352.
    [5]孙毓庆.分析化学(上册).北京:人民卫生出版社.2001.P241.
    [6]何余生,李忠,奚红霞,等.气固吸附等温线的研究进展.离子交换与吸附,2004,20(4):376-384.
    [7]同济大学数学教研室.高等数学(下册).北京:高等教育出版社,1996.P259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700